

Neuron Simulation: Allowing Students to Visualize the Invisible During the Action Potential

Françoise Judith Benay Bentley¹, Janet Casagrand¹, Katherine Perkins², Noah Podolefsky²

¹Department of Integrative Physiology, University of Colorado, Boulder

²Physics Education Technology Research Team (PhET), Department of Physics, University of Colorado, Boulder

http://phet.colorado.edu

Purpose

- 1. To develop a simulation that would allow students to explore the physiological mechanisms associated with the Action Potential.
- 2. To create a simulation that would allow students to overcome observed student difficulties. (Described below and observed in the Integrative Physiology Department major courses and literature)
- 3. To create opportunities for students to visualize cellular properties governing the action potential.

GOALS/STUDENT DIFFICULTIES

Goals of Simulation are to help students establish that:

- changes in ion concentration are quite small during each action potential
- leak channels are the major contributing factor to establishing the resting membrane potential
- 3. during a temporary change in membrane potential the Na/K ATPase is not necessary for re-establishing the $V_{m rest}$

STUDENT DIFFICULTY DOCUMENTATION

- 1. Noted from observations in in class and out of class activities (clicker questions, homework, help room, discussions, exams)
- 2. Literature (FB: ADD CITATION)

FUTURE DIRECTIONS

- Additional tabs exploring:
 - Passive properties
 - Graded potentials
 - Neuron-neuron signalling
- Develop validated curriculum for grades
 K-16
- Measure that the simulation helps student achieve goals and overcome observed difficulties

Neuron Simulation Design & Features

Sim Goal # 1

Changes in ion concentration are quite small during each action potential

Student Belief

Students indicate that changes in concentration are much larger than actually occur during the action potential (X% in IPHY Courses:FB TO ADD

Feature in Sim

Sim Goal #3

the $V_{m rest}$

Student Belief

Feature in Sim

membrane events.

Real time reveal button for concentration

During a temporary change in membrane potential

the Na/KATPase is not necessary for re-establishing

That the Na/K ATPase is the sole contributor to re-

establishing the Vmrest after n action potential. X%

No Na/K ATPase visible in simulation and the ability

to slow down the refractory period and visualize

Sim Goal #2

Leak channels are the major contributing factor to establishing the membrane potential

PhET

Potassium Ion (K+)

Sodium Gated Channel

Potassium Gated Channel

Sodium Leak Channel

Potassium Leak Channel

Student Belief

Students often state that the Na/K ATPase is responsible for establishing the membrane potential and do not discuss the role of the leak channels, particularly potassium leak channels (X% in IPHY Courses (n =FB TO ADD)

Feature in Sim

A physiologically relevant distribution of leak channels in the membrane, particularly potassium leak channels. Also no Na/K ATPase channels are visible in this simulation.

Research-Based Simulation Development

Design Features

- Interactive sliders to zoom in and out of membrane and change speed of Vm trace.
- 2. Time sensitive to regenerate Action Potential
- 3. Visual representations of leak and gated ion channels, ions, and voltage trace
- 4. Pause functionality to see small changes in ion concentration throughout action potential and $V_{\rm m}$
- 5. Ability to hide ion concentrations and voltage trace

Student Interviews

- Think-aloud protocol –
 "Play with everything
- ~1 hour each~4-8 interviews/round
- and talk as you go"
- Tests: Interface design

Representational Interpretation
Engagement (scientist-like exploration)
Progress towards learning goals

FUNDING

- Hewlett Foundation, JILA, King Saud University. NSF CCLI Grant #0817582
- University of Colorado, Boulder Science Education Initiative