CPSC 111 Course Learning Goals

By the end of the course
students can...

1. Write and modify
code to "express
understanding" of

basic programming

constructs (including
sequential exeuction,
conditional execution,
iteration, arrays,
methods/parameter

2. Read and hand-execute
(trace) provided code to
"express understanding"

of basic programming
constructs and memory
models (including
sequential exeuction,
conditional execution,
iteration, arrays,
methods/parameter

3. Write code to
solve moderately-
difficult problems

(moderately
difficult will be
defined through
example in an

4. Recognize,
create, and
manipulate

various models of
programs

including memory

tracing and UML

5. Explain Java
language features
(e.g. classes,
visibility, fields, and
methods) which
support OO design
principles such as
modularity,
encapsulation,

6. Explain the major
components of a computing
system and how a program

compiles and executes to a non-

computer scientist.

pa.ssmg _O Jec passing, object-orientation appendix) class diagrams abstraction and
orientation and . .]]
. . o and inheritance inheritance.
inheritance principles). .
principles).
AB
Computing Systems (2) ’
Programming Language
?
Basics (4) <D ¢ E, (F?)
G,H G, H,I |
Classes and Objects (3) ’ T
Conditionals (3) J,K L J,K L (J?,K?), L
Designing and Defining
? ?
Classes (4/2) M, N, O, (Q?) (0?),R N, Q O,R M, P
Iteration (3) S, U T S,U T
Arrays (3,1) V, X V, W, X
AA* (not done by everyone who
, Z (Z?)

Sorting (2) teaches course)
Advanced Class Design

8 AB1, AC1, AC3 AB4, AC4, AC5 AD AB2, AB3, AC2,
(3) (AC4?), (AC5?)

AE2, AF AE1

Graphics (2)

CPSC 111 Course Level Learning Goals DRAFT VERSION Feb 2008

Topic ID |Assessed in? |Goals
Students can...
Computing A M1 define and give real world examples of key components of the computer (input, output, processor, memory).
Systems (2) B can distinguish and describe how layers of abstraction are supported in computing problem solving through algorithms, programming languages, assembly, and computer
hardware.
Programming C |M1,M2,F, L, A |apply with basic competence simple programming constructs such as sequential execution, variable typing and declaration, naming, algebraic operations, operation
Language Basics precedence.
(4) D |M1,M2,F, L, A |create programs which translate explicit English problem statements (an algorithm) into short series of sequential Java instructions.
E describe the multiple ways in which a natural language paragraph can be interpreted and contrast to the single way an algorithm can be interpreted.
F explain why a particular numeric type can only represent numbers in a particular range.
Classes and G |M1, M2, F define the relationship between classes and objects.
Objects (3) H M1, M2, F, L, A [read and write code utilizing the API of key Java classes (e.g. String, Scanner).
explain how control flow and data pass on a method call.
| identify specific standard methods like accessors and mutators and describe why these operations are needed for non-primitive data types.
Conditionals (3) |[J M2,F, L A hand-trace and create programs which use if-statement conditionals to model behavior of input-driven programs.
K M2,F, L A utilize Boolean expressions, relational, and logical operators to control conditional execution.
L M2, F, L A utilize block statements, short-circuit evaluation(?), and nested ifs to create code to solve problems in Java.
Designing and M |M1, M2, F, L, A |create a simple class (with instance variables, accessors and setters) utilizing basic components of OO design (including encapsulation, visibility modifiers, and overloading) to
Defining Classes model a real world entity (including it’s actions and state).
(4/2) N [M2,F LA use that class in a simple program.
0O |[M2,F, apply their understanding of references and objects by writing standard constructors and drawing diagrams of memory after an object is constructed.
P explain how encapsulation (as implemented with visibility modifiers) supports data integrity and good interface design.
Q |[M2,F LA apply with more expert competence simple programming constructs such as sequential execution, variable typing and declaration, naming, algebraic operations, operation
precedence.
R describe how reference objects differ from primitive variables and describe problem solving scenarios which are best supported by each.
Iteration (3) S M2,F, LA solve problems by creating code where repeated actions are controlled with looping structures (for and while loops).
T M2, F, L A identify and debug a loop that never stops (an infinite loop).
U [M2,F LA solve problems which requires a loop within a loop where the inner loop iteration does not depend on the outer loop iterator (e.g. to draw a rectangle of stars).
solve problems which requires a loop within a loop where the inner loop iteration does depend on the outer loop iterator (e.g. to draw a triangle of stars).
Arrays (3) V. |M2,F LA solve problems with collections of same-type data using arrays (including primitive type collections (e.g a collection of class grades) and collections of objects (e.g. a collection
of String names or a deck of cards).
W |M2,F, LA apply with more expert competence branching, looping, and nested loops through practice solving problems using arrays and 2-D arrays.
X M2, F, L A solve problems by creating code which require the creation and use of 2-D arrays (e.g. graphics and averaging scores of students and other data that can be stored in matrix
form).
Sorting (2) z F identify a simple sorting algorithm.
AA |F explain that a simple sorting algorithm can be analyzed through simple techniques such as comparison counting and that different sorting algorithms can have different
execution time costs and that the number of elements sorted is important in making these analyses.
Advanced Class |AB1 (M2, F, L, A create codes which require the use of advanced class syntax and semantics including static methods and variables, scoping, primitive and non-primitive parameter passing.
Design (10)
AB2 explain the difference between static and non-static fields and give an example of when each should be used.
AB3 explain the difference between static and non-static methods and give an example of when each should be used.
AB4 given a piece of code, identify the scope of a variable (locals, class-level, or global).
AC1|F, L, (A) create codes which require the use of advanced OO concepts such as inheritance, class hierarchy, and polymorphism.
AC2 explain how inheritance is a form of code re-use that can be valuable in large systems.
AC3 given a parent class and a specification for a subclass, implement the subclass, including method overriding, calls to the super class constructor and calls to the super class’s
version of the overwritten method.
AC4 explain what happens when polymorphic assignment happens.
AC5 explain what happens when a polymorphic method call is made.
AD |F, L, (A) apply with more expert competence class design and usage through practice with programs implementing inheritance, class hierarchy and polymorphism.
Graphics (3) AE1 explain how graphics applications use inheritance and interfaces.
AE2 create codes which require the use of basic graphical user interface APIs in Java.

AF

create codes which utilize an event-driven execution model.

CPSC 121 Course Level Learning Goals DRAFT VERSION Feb 2008

1. Apply the formal
systems we discussed to
model computational
systems (like programs and
circuits), including
reasoning about them,

2. Justify the
behaviour and
correctness of

some algorithms

3. Translate easily among English
language, simple formal
representations (i.e., propositional
and shallowly nested predicate logic
statements), and closely related
equivalent formal representations (in

. (e.g. at the level of) . 5. Create
proving relevant . order to identify alternate methods
. selection sort and o) regular
properties, and i) to solve or simplify a variety of 4.Read a .
L recursive binary . expressions
communicating about problems, such as writing proof, and
By the end of the . searc or » . L and DFAs to
them clearly and precisely) conditionals, as you work with them).| justify why
course, students . quicksort), but .) solve
with fellow Computer) Write proofs for simple theorems by | each step of
can... L especially for . . ! . | problems that
Scientists. Learn and apply) i translating the theorem into first- | the proofis i
. algorithms with . . are important
new formalisms,) order logic, decomposing the correct.)
. singly and doubly .) to them in
specifically be able to , statement into its components,)
nested loops in : . programming.
connect between features and then using the proof techniques
) . order to prove . . .
and conclusions in the discussed in class (direct proofs,
) them correct or o -
formal and informal) indirect proofs by contrapositive,
) bound their . .
(English language, sketch- L indirect proofs by contradiction,
running time.
based, pseudo-code, etc.) proofs by weak and strong
representations. mathematical induction).
Propositional Logic
. C A, B
and Circuits (3)
? ?
Proofs (4) (G)7 (F)7 D,EF G
. NP H, I
Arithmetic Circuits (2)
. J K
Sets and functions (2)
Finite Automata (3) LMN LM
Induction (3) O,P O Q
R R

Relations (1)

CPSC 121 Topic Level Learning Goals

Topic ID |Assessed in? Learning Goals
Students can...
Propositional |A Implicitly assessed with B, express simple natural language statements using propositional logic.
Logic and *should* be assessed on a quiz,
Circuits assighment
B midterm (sometimes on a quiz, |distinguish between statements that express the same information about the world versus statements that don’t using logical equivalences.
but too long)
C Lab(1-2), quiz or midterm, translate back and forth between propositional logic statement and circuits that assesses the truth or falsehood of those statements.
sometimes assignment
Proofs D F6a, midterm, assignments (with [express natural language statements which require the use of predicate logic to describe, for example, the result of algorithms that use loops.
variety of domains), quiz
E Assignment, sometimes quiz make statements about the relationships between properties of various objects (e.g. every candidate got votes from at least three people in every province).
F F5, F6b, F7b, F9, quizzes, create simple direct and indirect proofs, to be able to prove the correctness of operations that can be performed in programs. As another example, supports the
assignments, midterm development of data type representations (e.g. rational numbers).
G Not directly assessed (now one |evaluate when a proof fails to satisfy as a communication between people — that is identify inaccuracies or missing steps in proofs.
on quiz and one assignment),
maybe occasionally on an
assignment. Suggestion, use the
web.
Arithmetic H Fla, Flb, labs a lot, lightly on describe how the arithmetic operations of the computer break down into simpler logical operations as this is understanding one step of the layered structure of
Circuits assighment computers.
| F1b?, F3a, F3b, F3c, lab, recognize why the numerical systems that we work with on computers behave the way they do, especially in cases where they break down such as floating point
breakdown not assessed representation being inaccurate, overflow, and limitations of integral numerical types (longs, ints, etc.).
otherwise
Sets and J1 |F2a (simpler), F2b, F7a, F7b, not |apply previously developed formalism to proofs about sets and functions as applied in Java collection classes and in databases.
Functions J2 |really the application to Java or |give examples of function that have certain properties and vice versa (e.g. injective, surjective, bijective).
K Continue to do questions like D/E |more precisely explain the meaning of quantified statements. (elaboration of D/E)
and they understand better.
Assignments, quizzes
Finite L F11a, lab (adding a new one), model and solve real world problems such as control circuits (traffic lights), matching problems, validating input, and (in the abstract) modeling the capabilities of a
Automata assighment, computer using real circuits/DFAs.
M |F11b, assignment, quiz, lab Students can create regular expressions which produce DFAs to solve problems that are important to them in programming.
Induction F8(not prog), F10b but easier, too [prove things about programs that the use loops and recursion.
hard to assess, not convinced
that we have a simple enough
problem that they can do. Save
for 221., assignment (a lot), quiz
P F8(not prog) justify the correctness of a reasonably complex recursive algorithm (like quicksort or mergesort). An example of O.
Q [F8(not prog), F10a, talk a lot be able to list out the exhaustive steps from a proof that should prove that -- given a property that they want to prove and given any specific value to prove that
about in class, but not on property at.
assignment, the application can
just be done mechanically (NOT
ASSESSED BEFORE FINAL)
Relations R Sometimes we get to it and prove that a relation is symmetric, transitive or reflexive.

sometimes we don'’t.

CPSC 211 Course Learning Goals

Move from personal software
development methodologies to
professional standards and

Given an API,
write code that

Identify and evaluate

Read and write

Extend their
mental model of

Work with an
existing codebase,
including reading

. . trade-offs in design and rograms in i and understandin
After this class practices (e.g. create programs | conforms to) g prog) computation i 8
]) > implementation Java using given code, and
students can... that interact with their the API to . from that)
environment (files etc.) and [perform a given decisions for systems advanced developed in augment its
,' task of an intermediate size.| features functionality.
human users according to ask. CPSC111 .
. [Happens only with
standard professional norms). .
assignments]
Programming by
contract Al, A2, A3, A4
Exception handling B1, B5 B1, B6 B2, B3, B4, B5
Streams, 1/0 C3 C2,C3 C1
Testing D1, D2, D3 D4
Software Design E2, E3, E4, E5, E6 E1, E7, ES, E10 E9
Java Collections F3,F8,F11, |F1, F2, F4,F12,F16, [|F3,F6, F7, F10,
Framework F15, F18, F19 [F20 F13, F17, F21
Graphical User
Interfaces G1 Gl G2,G3,G5,G6 |G4
Multi-threaded
programming H6 H4, H5, H6 H1, H2, H3
Recursion 15 11, 14,16 12,13
Implementing basic
collection classes J1, J2,J3

CPSC 211 Topic Learning Goals

Assessed
Topic ID in? |Students can:
Programming |Al write client code that adheres to the contract specified for a class using invariants, preconditions and postconditions
by contract A2 implement a class given a contract specified by invariants, preconditions and postconditions
A3 describe the benefits of programming by contract for client and developer
A4 use assertions appropriately in code
Exception B1 incorporate exception handling into the design of a method's contract
handling B2 trace code that makes use of exception handling
B3 write code to throw, catch or propagate an exception
B4 write code that uses a finally block
B5 write code to define a new exception class
B6 compare and contrast checked and unchecked exceptions
Streams, 1/0 C1 describe stream abstraction used in Java for byte and character input/output
Cc2 write programs that use streams to read and write data
C3 incorporate data persistence in a program using Java's serialization mechanism
Testing D1 compare and contrast blackbox and whitebox testing (at the level of what each type of testing provides)
D2 use blackbox testing with equivalence classes to test a method and from that a suite of test cases
D3 describe how unit testing is applied to a class (describe a hierarchy of tests that you could apply)
D4 write a suite of tests to apply unit testing to a class using JUnit (putting the above into practice with a particular tool)
Software E1 describe the basic design principles of low coupling and high cohesion
Design E2 design a software system (expressed in UML) from a given specification that adheres to basic design principles (Ic and hc)
E3 interpret UML class diagrams to identify relationships between classes
E4 draw a UML class diagram to represent the design of a software system
E5 describe the Liskov Substitution Principle
E6 explain whether or not a given design adheres to the LSP
E7 incorporate inheritance into the design of software systems so that the LSP is respected
E8 compare and contrast the use of inheritance and delegation
E9 use delegation and interfaces to realize multiple inheritance in design (e.g. to support the implementation of multiple types)
E10 identify elements of a given design that violate the basic design principles of low coupling, high cohesion, the LSP
Java Collections [F1 use big-O notation to categorize an algorithm as constant, linear, quadratic or logarithmic time
Framework F2 given two or more algorithms, rank them in terms of their time efficiency
F3 program to the generic List interface including read and use the List API (e.g. use Lists in ways similar to arrays)
Fa compare and contrast ArrayList and LinkedList implementations of the List interface
F6 compare and contrast assignment with various generic collections under specific subclass scenarios
F7 use wildcards appropriately in generic type parameters to enable assignment in sub and super class scenarios
F8 program to the generic Iterator and Listlterator interfaces including reading and using the APIs
F10 read and write code that uses a for-each loop to iterate over a collection
F11 program to the generic Set and SortedSet interfaces inclduign read and use the API
F12 compare and contrast the HashSet and TreeSet classes (benefits of using each, basic run time analysis)
design and implement a class in such a way that it can be used with the Java collections framework (overrides equals in HashCode,
F13 implement the generic Comparable and Comparator interfaces to account for multiple sorting criteria)
F15 program to the generic Map and SortedMap interfaces by reading and using the API
F16 compare and contrast HashMap and TreeMap classes (benefits of using each, basic run time analysis)
F17 write code (solve problems) that uses the generic algorithms provided in the Collections class
F18 program to the generic Queue interface
F19 program to the API of the generic Stack class
F20 identify (in words or through code) appropriate types for collections of data needed in a given software system
F21 write code that implements unidirectional, bidirectional, 1-1 and 1-many associations
Graphical User |G1 describe basic principles of good user interface design (user interface hall of shame)
Interfaces G2 use layout managers to produce a well designed GUI
G3 write code to produce a well designed GUI that includes frames, panels, menus and buttons
G4 describe the event driven model
G5 describe and apply scoping rules that apply to the use of inner classes
G6 write code that uses inner classes (including anonymous inner classes) to handle events raised by GUI elements
Multi-threaded |H1 Describe the multi-threaded programming model including thread scheduler, thread priority, and time slices.
programming [H2 describe the various states that a Java thread can achieve and the events that lead to transition from one state to another
H3 define the terms deadlock, race condition and critical section
H4 identify possible legal traces of a multithreaded program
H5 identify deadlock and race conditions in a multithreaded program
H6 write a thread-safe class using Lock and Condition objects
Recursion 11 trace code that uses recursion to determine what the code does
12 draw a recursion tree corresponding to a recursive method call
13 draw a stack trace of code that uses single and multi-branch recursion
14 write recursive methods
15 compare and contrast iterative and recursive solutions to a problem
16 replace a recursive implementation of a method with an iterative solution that uses a stack to model the run-time stack
Implementing |J1 write code to perform search, insertion and removal operations on a singly or doubly linked list
basic collection |J2 implement a class (e.g., list, stack or queue) that stores data in a linked list
classes J3 implement a class (e.g., list, stack or queue) that stores data in an array

CPSC 213 Course Learning Goals

Be a better programmer because,
you will have a deeper
understanding of the features of a
programming langauge in order to
be able to a) understand in detail
how your programs are executed,
b) be able to more easily learn new
programming languages and c) be

Appreciate that system designis a
complex set of tradeoffs which, while

are important to be able to analyze will

not have exactly one optimal answer
(while there are often many sub-
optimal answer). Tradeoffs exist at a
range of levels including the hardware

level, programming language level, etc.

Develop
distinctions
between the static
and dynamic
components of

Utilize
synchronization
primitives to
control
interaction in
various situations
including among

Understand how

able evaluate design tradeoffs in Experience with these tradeoffs programs and processes, computing
considering languages most prepares the student to deal with systems and be threads, and systems work
After this class |appropriate for solving a given tradeoffs in desin in real world able to describe |networked including
students can... |problem. programming scenarios. their implications. [communication. [networking.
ALU/Registers/
Memory
Al Al
Machlntj:' Level B2, B3, B4, BS5,
Instructions B1, B2, B6 B6 B1, B6 B/
ISA Design C1,C2, C3, C4
Variables D1, D2, D3 D1 D1, D2, D3
Flow of Control E4, E5, E6 ES, E6 E3, E4 E1, E2, E3, E5
Language
Design and
Tradeoffs F1, F2, F3, F4 F1, F2, F3, F4, F5, F7, F8, F9 F1, F3 F4, F7
External Devices
G1 G1
Devices and H1, H2, H3, H5,
Files H1, H8 H1, H4, H7 H8
Networking 12,13 12,13 11,14
Processes J1,12, 13, 14, J6,
J12,J13 J2, J6,17,18,19,110 |J9
Javaand C

comparative
understanding*

K1, K2, K3, K4, K6, K7, K8, K10, K11

K6, K8, K9, K10

K5, K9

CPSC 213 Topic Learning Goals

Topic ID Learning Goals Students Can...
ALU/Registers/ [A1 Describe a basic computer with basic components (ALU, Registers, Memory) and explain how instructions execute and data flows.
Memory
Machine Level |B1 Trace execution of a simple C program and translate to a set of machine level instructions to emulate that C program
Instructions B2 Identify and group Gold Assembly instructions based on their utility for programming(control flow of execution, access memory, arithmetic operations, etc.)
B3 Describe in what ways instructions and data are the same at the bit level
B4 Translate a Gold Assembly instruction into machine representation (in bits)
B5 Decipher according to Gold Assembly language rules the various parts of an instruction (opcode, operands, etc) from the bit
B6 Identify what information is available to an instruction statically and what must be calculated dynamically at run time. For example, instructions are created ahead of time and live in memory
and are static but that the data they access, including the memory addresses to be accessed may be only calculated or available at run time
B7 Recognize that subtracting a number from another involves taking the twos complement of the number and adding it. Be able to apply the principles of twos complement to be able to correct!
implement sign extension.*
ISA Design C1 Describe the minimal set of addressing modes needed for an instruction set to be complete.
Cc2 Compare and contrast various addressing modes (e.g. the limitations of not supporting a particular mode in an instruction set, why dynamically generated addressing is necessary).
Cc3 Compare and contrast the performance impact of addressing modes -- specifically be able to discuss the design trade offs in instruction size, memory versus register access, and direct versus
indirect addressing.
ca Evaluate tradeoffs in instruction set design. This involves discussion of minimalness, orthogonality, and simplicity, and performance. This should be done for pairs of instructions up to the poin
of evaluating the differences in CISC and RISC instruction sets
Variables D1 Describe the differences between dynamic and static variables in terms of what the compiler can do for each in creating assembly instructions.
D2 Give examples of both dynamic and static variables in both Java and C
D3 State for different kinds of variables what information is statically known and what information is dynamically known.
Flow of Control |E1 Keep track of program counter when code using control flow (jumps) is executed
E2 Calculate jump targets based on the address of the program counter
E3 Explain why conditional control flow (loops) is needed enable static programs to compute dynamically sized results.
E4 Compare and contrast scenarios which require static versus dynamic jump targets
ES Give C or Java code examples which require direct versus indirect jumps and vice versa
E6 Describe how performance can be affected by dynamic jumps (e.g. be able to show how you can use jump tables to make switch statements faster)
Language F1 Explain why procedure return in C/Java must be dynamic — consider the case of a programming language whose procedure RETURN was a static jump
Design and F2 Explain the consequences to programming if local variables were allocated statically
Tradeoffs F3 Explain the consequences to programming of eliminating dynamically allocated local variables and/or dynamic return.
F4 Explain the advantage of using the stack for local variables as opposed to just using the heap, including describing how the stack is not required (e.g. you can just have a heap — and that having
the stack is a design tradeoff).
F5 Show how procedure call implementation is different if you use the heap instead of the stack.
F6 [Understand advantage of maintaining a closure after a procedure returns and that this would require using the heap instead of the stack. Advanced students only
F7 Show the machine instructions necessary to implement a procedure call and return and describe the format of the stack
F8 Explain why a procedure-calling convention exists and the design tradeoffs of having it implemented by the compiler and not imbedded in the instruction architecture alone
F9 Explain how the independence of callers and callees complicates the planning of register usage (e.g. what values to store in register). For example, describe how storing all values in the caller is|
rarely optimal.
F10 [[Develop a heuristic that a compiler could use to determine when to use a callee-save register and alternatively when to use a caller-save register by giving examples in machine code that
benefit from each choice.]
External Gl Explain what PIO and DMA are and how they differ and are similar to each other
Devices and H1 Explain what disk drive characteristics contribute to how quickly information can be retrieved from dis|
Files H2 Calculate average disk access time
H3 Explain how sectors are identified (head, track sector)
H4 Explain and compare the tradeoffs disk scheduling algorithms make
H5 Describe and draw pictures of the UNIX file system, basic building blocks and on disk data structures including blocks, inodes, and files
H7 Apply knowledge about disk performance characteristics to data layout on disk
H8 Explain how failure of the OS impacts various structures in the file system — at various points of time of failure, depending on the status of the write in a file system. (this will likely be going
away).
Networking 11 Compare and contrast the communication model for procedures on a single machine (the procedure call model) versus networked communication (these differences include: make a
connection, transfer data, shut down the connection)
12 Write a simple networked program (e.g. perhaps a very simple web server involving a client and server getting connected), including gaining familiarity with networking APIs.
13 Describe how networked communication follows an asynchronous communication model in which synchronization needs to be handled explicitly
14 Describe how sending a stream of data across a network involves chopping that stream into chunks, sending them independently, chunks can get lost, and that reliability issues arise and must
be dealt with. Describe the role that a protocol plays in abstracting these issues.
15 [Protocol stack and layering (design, layers of abstraction)not covered in 213
Processes 1 Explain that there is a private address space for each process and that that hardware does the translation (via base-bounds).
12 Explain the design tradeoffs of why virtual addressing is needed and desirable and also the complicating and performance implications.
13 Explain that processes are separate entities with their own address space and that if two processes access the same address location it’s different and that this is an example of virtual memory.
14 Describe a motivation for processes based on an example of why we need to move from asynchronous access to concurrent access with synchronization primitives
J5 [Describe at a basic level the tradeoffs (via analysis with examples of round robin, the role of the kernel clock, pre-emption, interrupts) available for scheduling of processes.]
J6 Trace though code with a producer/consumer relationship
17 Use synchronization primitives to enable mutual exclusion access, e.g using semaphores to control access to a shared array.
J8 Use synchronization primitives to enable signaling in producer/consumer structures
J9 Explain how threads and processes differ specifically with regards to shared memory
J10 |Describe real world scenarios which require the use of concurrency via multi-threading
J11 |[Would like: Explain how processes converts asynchrony into concurrency by using synchronization primitives. Interrupts.
J12 |Compare and contrast the synchronization features that students already know from Java with the variations available in C and Unix
J13 |Compare and contrast the threading features that students already know from Java with the variations available in C and Unix
J14 |[Explain how when a program has more than one lock, that it introduces the possibility of deadlock. Give an example of a code that has the possibility of deadlocking and a different example
with live-locking. Explain the tradeoffs associated with different granularities of locking. Can explain the standard dining philosophers’ problem. Priority inversion and techniques for dealing
with it?]
Javaand C K1 Write C code equivalent to known Java code (for the subset of C that is basically the same in both languages — primarily the imperative structures and primitive types
comparable |K2 Describe how arrays are different in C and Java (C arrays are static and Java arrays are dynamic)
K3 Use C syntax for pointers and compare that to reference variable use in Java.
K4 Describe the similarities and differences between C structs and Java objects and specifically how their features are addressed in assembly code
K5 Do pointer arithmetic in C.
K6 Describe that dynamic memory allocation is the same in C and Java but that type safety is different
K7 Describe how memory reclamation is different and be able to write C programs that use memory reclamation
K8 Describe how garbage collectors only solve one of these two memory problems: dangling pointers and memory leaks (including being able to describe these two problems and give code
examples which would create them).
K9 Create a jump table to implement a C switch statement.
K10 |[Describe why Java’s polymorphism required indirect jumps and discuss the performance implications of that

Read and understand basic C programs.

CPSC 221 Course Learning Goals

After this course students
can...

Analyze design tradeoffs and
constraints (e.g. through
space/time complexity analysis)
and make appropriate choices in
data structures and algorithms
when solving problems.
(Students care because a good
programmer may not be able to
do this, but a good computer
scientist does -- a good computer
scientist has broader design goals
(e.g. proof of correctness,
resource constraints,
performance and scalability
issues)).

Expand your programming language
repertoire with the addition of C++.
Through learning a new language,
gain experience in identifying and
exploiting high-level properties
across programming languages (as
opposed to language-specific
properties). For example, the use of
general data structures in multiple
languages, the commonalities of
dynamic memory allocation,
parameter passing conventions,
templates, etc.)

Gain an appreciation for the role
of mathematical formalisms
(such as discrete mathematics,
functions, sets, Big-O notation,
proofs, trees, graphs) in
expressing and solving problems
in computer science (e.g. link the
principles of loops, recursion,
and induction to establish
loop/program correctness).

Begin to form a clear conception
of the integration of the topics
seen previously (such as
introductory programming
techniques, recursion, etc) as the
greater science of computers. Be
able to recognize the bigger
picture and how the topics
learned in your courses so far
come together to serve computer
science at large; be able to justify
why you have learned the topics
you have learned so far.

Manipulate data
structures
algorithmically,
without a specific
implementation

Doesn't fit in
available
course goals

Introduction and Motivation,

Foundations Al Al Al
C++ Programming B3 B1,B2,B3 B1,B2
Review of Sets and Functions Cc7 C1,C3,C4,C5,C6,C7 Cc2,Cca
Induction and Recursion D3,D4,D7 D4,D5,D6 D1,D2 D2,D3
Loop Invariants E1,E2
Big-O, Big-Omega, Big-Theta
Complexity F1,F2,F7,F8,F9,F10 F5 F1,F2,F3,F4,F5,F6,F7
NP-Completeness ** (optional) G1, G3, G4
Space Complexity H1,H2,H3 H2
Memory Layout 11,12,13,14 11,12,13,14
Linked Lists (Including Stacks,
Queues, and Deques), Introduction
to Pointers 12,14,16 14,15,16 J1,)8
Insertion Sort, Mergesort, Quicksort
K1,K2,K3 K5
Introduction to Trees and Tree
Traversal L2,L4 L3 L1, L3 L5
Priority Queues, Heaps, Heapsort |M1,M3 M2
Hashing N1,N2,N3,N4,N5 N6 N1 N6
B+ Trees 01,04,05,06,07 03 04,06 02
Counting: Product Rule, Sum Rule,
Inclusion-Exclusion, Tree Diagrams,
Combinations, Permutations P1,P2,P3
Binomial Theorem, Combinatorial
Identities Q1,Q2 Q2
Binomial Distribution and Basic
Probability (new) R1,R3 R2,R3
Pigeonhole Principle S1 S1
Graph Theory: Introduction and
Terminology T1,T2
Graph Representation,
Isomorphism, Graph Connectivity U1,U2** U3
Euler/Hamilton Paths/Cycles** V1,\V2
Graph Traversals W1 W2
Planar Graphs** X1,X2,X3

CPSC 221 Topic Learning Goals

Topic

Students Can

Introduction and Motivation,
Foundations

A

[

Compare abstract and concrete data structures and implications for implementations.

C++ Programming

B

e

Effectively pick up a new programming language on their own similar to the first language of instruction (Java). (e.g., code assignments in C++ with minmal help

B2

Implement basic data structures in the C++ programming language -- the programs (up to several pages long) should effectively use arrays, lists, pointers, recursion, trees, dynamic memory allocation, and
classes in C++.

B3

Analyze C++ programs and functions to determine their algorithmic complexity

Review of Sets and
Functions

C

1

Demonstrate mathematical literacy (competence, familiarity, ability to use to solve problems) in sets, functions, and mathematical symbol:

C

[N)

Be prepared for further computing studies in fields such as database management systems, algorithm analysis, information retrieval, logic/Al courses (binding of symbols), and functional programming.

Cc3

Communicate effectively through set parlance and notation (e.g., be able to translate general problem into rigorous problem statements throughout the course).

c4

Apply sets and functions to the topic areas in the course including (hashing, complexity analysis, counting, and generally supporting exact problem expression throughout the course).

Understand the notion of mapping between sets.

Cé

Prove one to one and onto for finite and infinite sets.

c7

Recognize the different classes of functions in terms of their complexity.

Induction and Recursion

D1

Prove that a Toop invariant holds for a given code or algorithm example.

D2

Describe the relationship between recursion and induction (e.g., take a recursive code fragment and express it mathematically in order to prove it’s correctness inductively)

D3

Evaluate the effect of recursion on space complexity (e.g., explain why a recursively defined method takes more space then an equivalent iteratively defined method.)

D4

Describe how tail recursive algorithms can require less space complexity than non-tail recursive algorithms.

D5

Recognize algorithms as being iterative or recursive.

D6

Convert recursive solutions to iterative solutions and vice versa.

D7

Draw a recursion tree and relate the depth to a) the number of recursive calls and b) the size of the runtime stack. Identify and/or produce an example of infinite recursior

Loop Invariants

El

Take a loop code fragment and express it mathematically in order to prove it’s correctness inductively (specifically describing that the induction is on the iteration variable

E2

In simpler cases, determine the loop invariant.

Big-O, Big-Omega, Big-
Theta Complexity

Define which program operations we measure in an algorithm in order to approximate its efficiency (e.g., number of instructions, steps, function calls, comparisons, swaps, 1/Os, networl
accesses).

Define “input size” and determine the effect (in terms of performance) that input size has on an algorithm

Give examples of common practical limits of problem size for each complexity class.

Give examples of tractable, intractable, and undecidable problems.**

Given a code, write a formula which measures the number of steps executed as a function of the size of the input (N)

Compute the worst-case asymptotic complexity of an algorithm (e.g., the worst possible running time based on the size of the input (N))

Categorize an algorithm into one of the common complexity classes (e.g. constant, logarithmic, linear, quadratic, etc.).

Explain the differences between best, worst, and average case analysis.

Describe why best-case analysis is rarely relevant and how worst-case analysis may never be encountered in practice.

Given two or more algorithms, rank them in terms of their time and space complexity

NP-Completeness **
(optional)

G1

State the basic properties of NP-Complete problems and explain why they are hard to solve computationally

G3

Give examples of NP-Complete problems.

G4

Explain the significance of NP-Completeness to Big-O, Big-Omega, and Big-Theta complexity

G5

Explain the difference between the complexity of a problem and the complexity of a particular algorithm for solving that problem

Space Complexity

H1

Compare and contrast space and time complexity.

H2

Discuss the tradeoffs in algorithm performance with respect to space and time complexity. E.g., Compare and contrast the space requirements for a linked list (single, double) vs. an array-based
implementation.

Compare and contrast the space requirements for Mergesort versus Quicksort.

Memory Layout

Describe general Tayout of program memory (e.g. the Tocations or program, stack, and heap).

Diagram how the stack and heap grow in relation to each other in the context of a code example

Explain how stack overflow may arise as a result of recursion

Explain the low level implementation of methods calls and returns by describing an activation record and how it is pushed and popped from the stack

Linked Lists (Including
Stacks, Queues, and
Deques), Introduction to
Pointers

Differentiate an abstraction from an implementation.

Define and give examples of problems that can be solved using the abstract data types stacks, queues and deques.

Compare and contrast the implementations of these abstract data types using linked lists and circular arrays in C++.

Demonstrate how dynamic memory management is handled in C++ (e.g., allocation, deallocation, memory heap, run-time stack)

Gain experience with pointers in C++ and their tradeoffs and risks (dangling pointers, memory Teaks)

Explain the difference between the complexity of a problem (sorting) and the complexity of a particular algorithm for solving that problen

Manipulate data in stacks, queues, and deques (irrespective of any implementation)

Insertion Sort, Mergesort,
Quicksort

Describe and apply various sorting algorithms; Compare and contrast their tradeoffs.

K2

State differences in performance for large datasets versus small datasets on various sorting algorithms.

K3

Analyze the complexity of these sorting algorithms.

K4

Explain the difference between the complexity of a problem (sorting) and the complexity of a particular algorithm for solving that problen

K5

Manipulate data using various sorting algorithms (irrespective of any implementation)

Introduction to Trees and
Tree Traversal

L1

Determine if a given tree is an instance of particular type (e.g. heap, binary, etc.) of tree

=
N

Describe and use pre-order, in-order and post-order tree traversal algorithms.

Describe the properties of binary trees, binary search trees, and more general trees; and implement iterative and recursive algorithms for navigating them in C++.

Compare and contrast ordered versus unordered trees in terms of complexity and scope of application.

Insert and delete elements from a binary tree.

Priority Queues, Heaps,
Heapsort

Provide examples of appropriate applications for priority queues and heaps.

Manipulate data in heaps (irregardless of any implementation).

Describe the Heapify and Heapsort algorithms, and analyze their complexity.

Hashing

Provide examples of the types of problems that can benefit from a hash data structure.

Compare and contrast open addressing and chaining.

Evaluate collision resolution policies

Describe the conditions under which hashing can degenerate from O(1) expected complexity to O(n).

Identify the types of search problems that do not benefit from hashing (e.g., range searching) and explain why

Manipulate data is hash sturctures both irrespective of implementation and also within a given implementatior

B+ Trees

Describe the structure, navigation and complexity of an order m B+ tree.

Insert and delete elements from a B+ tree.

Explain the relationship among the order of a B+ tree, the number of nodes, and the minimum and maximum capacities of internal and external nodes.

efficiently)

Compare and contrast B+ trees and hash data structures.

Explain and justify the relationship between nodes in a B+ tree and blocks/pages on disk

Justify why the number of I/0Os becomes a more appropriate complexity measure (than the number of operations/steps) when dealing with larger datasets and their indexing structures (e.g., B+ trees).

Counting: Product Rule,
Sum Rule, Inclusion-
Exclusion, Tree Diagrams,

Apply counting principles to determine the number of arrangements or orderings of discrete objects, with or without repetition, and given various constraints.

Use appropriate mathematical constructs to express a counting problem (e.g. counting passwords with various restrictions placed on the characters within).

o
w

Identify problems that can be expressed and solved as a combination of smaller sub problems. When necessary, use decision trees to model more complex counting problems

Binomial Theorem,
Combinatorial Identities

Solve problems using combinatorial arguments and algebraic proofs.

Q2

State the relationship among recursion, Pascal’s Triangle, and Pascal’s Identity

Binomial Distribution and
Basic Probability (new)

R1

Define binomial distribution and identify applications.

R2

Model and solve appropriate problems using binomial distribution.

R

w

Apply basic probability theory to problem solving, and identify the parallels between probability and counting.

Pigeonhole Principle

S1

Define various forms of the pigeonhole principle; recognize and solve the specific types of counting and hashing problems to which they apply

Graph Theory:
Introduction and

T

-

Describe the properties and possible applications of various kinds of graphs (e.g., simple, complete), and the relationships among vertices, edges, and degrees.

T2

Prove basic theorems about simple graphs (e.g. handshaking theorem).

Graph Representation,
Isomorphism, Graph
Connectivity

Ul

Convert between adjacency matrices / lists and their corresponding graphs.

U2

Determine whether two graphs are isomorphic.**

U3

Determine whether a given graph is a subgraph of another.

Euler/Hamilton
Paths/Cycles**

V1

Compare and contrast Euler and Hamilton paths/cycles.

V2

Given an arbitrary graph, determine whether or not a Hamilton path, Hamilton cycle, Euler path, or an Euler cycle exists, and if so, provide an example.

Graph Traversals

W

Perform breadth-first and depth-first searches in graphs.

W

Explain why graph traversals are more complicated than tree traversals,

Planar Graphs**

X1

Describe the properties and possible applications of planar graphs.

X2

Use Euler’s Formula to solve given planar graph problems.

X3

Apply the notion of graph colourability to determine if a k-colouring exists for a particular graph

**Qptional

	CPSC111.pdf
	CP111-1
	Sheet1

	CPSC111.pdf
	CP111-1.pdf
	111 Course LGs

	CP111
	Sheet1

	CPSC 121
	121 Course LGs
	121 Topic LGs

	CPSC 211
	211 Course LGs
	211 Topic LGs

	CPSC 213
	213 Course LGs
	213 Topic LGs

	CPSC 221
	221 Course LGs
	221 Topic LGs

