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The Concise Data Processing Assessment (CDPA) was developed to probe student abilities related to

the nature of measurement and uncertainty and to handling data. The diagnostic is a ten question,

multiple-choice test that can be used as both a pre-test and post-test. A key component of the development

process was interviews with students, which were used to both uncover common modes of student

thinking and validate item wording. To evaluate the reliability and discriminatory power of this diagnostic,

we performed statistical tests focusing on both item analysis (item difficulty index, item discrimination

index, and point-biserial coefficient) and on the entire test (test reliability and Ferguson’s delta). Scores on

the CDPA range from chance (for novices) to about 80% (for experts), indicating that it possesses good

dynamic range. Overall, the results indicate that the CDPA is a reliable assessment tool for measuring

targeted abilities in undergraduate physics students.
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I. INTRODUCTION

With contemporary physics education research efforts,
there exists an increasing demand for strategies that reli-
ably measure student comprehension and evaluate the
success of instructional techniques. The ability to handle
real data is considered by many to be the most important
skill to be developed for the novice physicist, of all that is
or could be taught in an introductory physics laboratory.
We have developed a short diagnostic tool that addresses
some of the differences between experts and novices in
their ability to handle real data, differences identified in the
literature and that our teaching experiences have shown
exist with physics students’ laboratory skills.

One broad class of skills indispensable to the physics
student is aptitude with measurement and uncertainty.
Research by Séré et al. [1] has shown that students typi-
cally do not understand the need to make several measure-
ments, do not possess a critical insight into the notion of
confidence intervals, cannot distinguish between random
and systematic uncertainties, and hold the general notion
that the more measurements one makes, the ‘‘better’’ the
result is, without understanding the nature of what is meant
by ‘‘better.’’ Work by Leach et al. [2] has revealed that
students commonly believe that perfect measurements can,
in principle, be made (i.e., measurements without uncer-
tainty), think that the arithmetic mean should always be
used to obtain a final result from a set of data, and claim
that the average is all that matters when comparing any two

data sets. Many such published findings align well with our
personal teaching experiences. For example, that students
believe in the existence of a ‘‘true value’’ when a measure-
ment is made [3] is consistent with our observation that
students are often unable to weigh the relative importance
of numbers that have differing uncertainty or recognize
whether numbers with an associated uncertainty are in
agreement with one another. These are just a few examples
of where a clear distinction between expertlike versus
novicelike thinking can be identified (others may be found
in Refs. [4–6], and the references therein).
A second broad class of skills that is essential to any

student planning to pursue the sciences is facility with data,
graphs, and models. That is, they need to be able to move
readily between numbers, functions, and graphical repre-
sentations. Students frequently have difficulties in reading
and interpreting graphs, as has been well documented for
the case of kinematics graphs [7,8] and, more recently,
with calculus graphs [9] for which the focus is conceptual
understanding and graphical interpretation of a function
and its derivative. Our observations suggest that such
graphical literacy becomes significantly reduced when stu-
dents are presented with anything more challenging than a
linear-linear plot; currently, this is a topic for which the
research is highly limited. Furthermore, we have anecdo-
tally observed that our students struggle in recognizing
basic functional forms in data sets whether they are pre-
sented numerically or graphically. (Related misconcep-
tions about astronomical magnitudes, a power-law
response formulaically represented by a logarithmic scale
in an obscure base, have been reported [10].) Our students
also persistently believe that any rapidly rising or falling
function is ‘‘exponential’’ and even fail to recognize the
difference between data of the form 2x and x2. They
struggle even further when coefficients are added
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to these functions, coefficients whose values must be
estimated from data. This practical understanding of func-
tions is another area for which the research is very limited.

This basic facility with data, including such useful tools
as rescaling axes, semilog, and log-log plots, is of use to
students no matter what their future path in the sciences
may be, so we regard them as core goals of any first-year
physics laboratory. These aspects of managing and
interpreting real data are examples of key characteristics
that distinguish experts from novices and are a class of
numeracy skills essential to the sciences and increasingly
valuable in a data-filled world. A numerate (and literate)
population is a primary goal of modern society. Numeracy
(and literacy) skills carry the means by which children are
equipped for the education processes on which their loca-
tion in the adult world will depend [11]. There are of
course many other things that can be taught in a first-
year laboratory, but the goals outlined above comprise a
basic set of skills that is testable in the form of a multiple-
choice concept inventory.

Motivated by earlier standardized, multiple-choice tests
[8,9,12–20], which were designed to measure what physics
students learn with respect to a given set of concepts, we
have developed and validated the Concise Data Processing
Assessment (CDPA). This assessment instrument is in-
tended to probe mainly students’ abilities in the two broad
aspects of data handling discussed above. The CDPA itself
serves not as an improvement over any of these previous
diagnostics but rather as a complement to them: it tests
skills that the other diagnostics do not consider. Tests of
their understanding of uncertainty range from simple de-
cisions over significant figures to critical judgements based
on differing uncertainty in measured quantities. Their flu-
ency in graphs, functions, and data is tested by asking them
to identify models that best describe various data sets in
tabular and graphical form. The CDPA is also intended to
be used to compare the effectiveness of various classroom
instructional approaches from one year to the next.

In this paper we report on the development of the CDPA
and on the evidence collected in support of its validity and
reliability. This survey can be used to probe students’
mastery of some difficult concepts related to collecting
and processing data. The design process, outlined in
Sec. III, aligns with professional criteria that have been
established for educational testing as well as the compo-
nents of assessment identified as requisite in a recent
National Research Council (NRC) study on assessment
[21]. Crucially, we make use of student interviews to un-
cover the different ways in which students think and to
make certain that students interpret the question as we
intended. Validity pertains to the degree to which the test
actually measures what it claims to measure, and is also the
extent to which inferences, conclusions, and decisions
made on the basis of test scores are appropriate and mean-
ingful. Validity can be established by the combination of

student interviews and a consensus of expert opinion and is
discussed in Sec. IV. Reliability refers to whether a test is
consistent within itself and across time, and can be mea-
sured using statistical calculations that focus both on indi-
vidual items and on the test as a whole. The results of these
statistical metrics are presented in Sec. V.

II. BACKGROUND

The CDPAwas originally created for measuring mastery
of data handling skills for first-year physics laboratory
students who are either majoring in physics or are enrolled
in a team-taught, academically rigorous science program
(in which biology, chemistry, mathematics, and physics are
presented in a unified and integrated format), called
Phys 107/109 and Science One, respectively. The lecture
component of the course associated with this laboratory
covers typical first-year physics material, dealing with
conservation laws, angular momentum of rigid bodies,
simple harmonic motion, and wave phenomena, as well
as concepts of probability and kinetic theory. It is intended
for students planning to take higher-level courses in phys-
ics and astronomy.
It should be made explicit that our first-year physics labs

have considerably different learning goals from the tradi-
tional first-year physics lab. This context is highlighted as a
caveat regarding the types of students or settings for which
the tool should be used—often, data handling learning
goals are not addressed until more advanced labs. While
there has been considerable research on the extent to which
labs can contribute to students’ conceptual understanding
of physics (see section IVC. of Ref. [22]), the lab for which
the CDPA was designed is not primarily motivated by the
aim to teach particular physics concepts or to reinforce
what is taught in lectures and tutorials. This arises from the
concern that introductory physics labs frequently have a
large number of learning goals including mastery of par-
ticular equipment, computer software, statistical methods,
physics content, as well as all of the goals regarding data
that were outlined in the last section, leading frequently to
cognitive overload. To avoid such overload for students,
this lab is focused on broadly applicable skills that will be
of value no matter what their later academic path may be
(such basic skills are equally important to those students
planning on pursuing a career in the health sciences
[23,24]) and that can uniquely be addressed in a laboratory
setting. Physics concepts can be carefully woven into such
a course, but the primary goal is to develop a practical
mastery at handling measurements of any kind. This in-
cludes skill at acquiring data, understanding the nature of
uncertainty in measurements, and developing statistical
and graphical methods for evaluating the data.
The particular goals of the diagnostic are aimed at two

broad classes of difficulties that we have observed in
first-year students and that also persist in many students
in higher-level laboratory courses. The first of these
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is proper understanding of the uncertainty attached to a
measurement and how it is used. Students’ difficulties with
this have been explored extensively by the University of
Cape Town group’s research on students’ ideas about
measurement and uncertainty; there, they examine deeply
held student misconceptions about measurement and ways
to change their thinking [25], and have also developed
complementary diagnostic tools for that purpose [20].
They differentiate novice and expert thinking in this area
as ‘‘pointlike’’ versus ‘‘setlike’’ thinking. The expert no-
tion of setlike thinking views a measurement and its un-
certainty as a distribution of possible outcomes from an
experiment. Pointlike thinking ascribes importance to par-
ticular values of the measurement. This includes issues
such as students’ concern for searching for the ‘‘right
answer,’’ or a fixation on verifying the first number that
was measured, or ascribing special importance to a number
that appears twice in a set of repeated measurements.

We add to this work on uncertainty a second substantial
issue which is students’ ability to build mathematical mod-
els that fit their measurements, and to derive meaning from
the success or failure of those models; that is, how to fit
functions to data and draw inferences from those fits. An
expert seamlessly connects together numbers, mathemati-
cal functions, and various graphical representations of
them. For instance, a value that quadruples when its inde-
pendent variable is doubled is a sign of a quadratic power
law. Exponentials rise or fall by amultiplicative factorwhen
the independent variable changes by a fixed amount.
Semilog and log-log plots can help elucidate these relation-
ships, but many students struggle with the fluid conversion
between numbers, functions, and graphs, which in experi-
ments are a conversion between data, models, and their
plots. This is akin to the problem students have moving
back and forth between mathematical and text-based rep-
resentation of problems. The high-level goal is for the
students to discover that science is not simply a static
body of concepts and mathematics, but is based on empiri-
cal observation and experimentation, and connecting those
together involves these concepts of measured numbers,
their uncertainty, and their graphical representation.

III. DEVELOPMENT

The development of the CDPA involved several sequen-
tial steps. The creation of such assessment tools provides
methods to compare instruction across institutions and
over time in a calibrated manner. This methodology for
test construction is outlined by Adams and Wieman [26],
who summarize the procedures recommended in
‘‘Standards for Educational and Psychological Testing’’
[27] and highlight key points in the National Research
Council’s 2001 study of assessment [21]. We have
adhered to the recommendations that an assessment be
founded upon three reciprocally connected elements: cog-
nition, the facets of achievement that are to be evaluated,

observation, the tasks employed to amass evidence about
students achievement, and interpretation, the techniques
used to analyze the evidence resulting from the tasks.
Briefly, we first established learning goals for the course

(Sec. III A): identifying explicitly what the students should
be capable of doing by the end of the term. With that, we
created questions (Sec. III B) that directly related to our
major, course-level learning goals. These questions were
then presented to the students at the end of term, who were
given up to 30 min to provide full written solution to these
questions. Upon completion of the test, student volunteers
were found with whom to conduct interviews (Sec. III C),
to help us understand why and where student reasoning
failed on various questions. Employing different types of
research procedures (personal experience plus student test
answers and interviews) was done very deliberately to
obtain accurate insights into students’ understanding. An
array of perspectives is essential if one hopes to triangulate
upon an authentic and balanced view, rather than one that
may be biased by examining only from a single perspec-
tive. Having a better-grounded understanding of student
thinking in hand, we drafted multiple-choice versions of
the very same questions (Sec. III D). These were then given
to the following year’s students and, again, were followed
by more student interviews (Sec. III E). The instrument
was also presented to a number of experts to help deter-
mine test validity. Item and test statistics were then calcu-
lated to characterize the test and identify potentially
problematic questions (Sec. III F).
Our primary goal was to arrive at a test of minimum

length that would yield scores with the necessary degree of
reliability and validity for the intended uses described
above. Abridged tests need not necessarily lose validity
to their longer counterparts (Bell and Lumsden [28] state
‘‘that all tests could be reduced [in length] by more than
60%without appreciable decreases in validity’’) and in fact
the validity decreases as a test gets longer, typically after a
small number (7–12) of items [29]. We also aimed to create
an assessment that would not overtax our students’ endur-
ance and be useful beyond first-year, all the while recog-
nizing that the cost of large dynamic range is paid for in
resolution of the instrument.

A. Learning goals

Learning goals are statements which define, in opera-
tional terms, what the student should be able to do by the
end of a course. In addition to helping direct the design of
curriculum, learning goals can also guide teaching and aid
learning by edifying what students are expected to master
[30], as well as informing our evaluation methods by
having made explicit what teachers care for their students
to have learned. Well-developed learning goals are con-
ducive to an evidence-based approach to education.
For the Phys 107/109 and Science One lab course, from

which this project initiated, there are currently 42 distinct
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learning goals. Examples of the learning goals from which
the CDPAwas created include, but are not limited to, being
able to

(1) weigh the relative importance of numbers that have
differing uncertainty

(2) judge whether or not a model fits a data set
(3) linearize exponential distributions, by using semilog

plots, and power-law distributions, by using log-log plots
and power-law scaling

(4) extract meaning from the slope and intercept of data
which have been linearized.

All learning goals are similar to the examples above, and
the lab course for which the CDPA was initially designed
concentrates on broadly applicable data handling skills.

B. Questions

Having identified the skills that students should possess
by the end of term, we drafted ten questions (see the
appendix for the final versions) that directly related to
our major course-level learning goals. Items 1, 2, 5, 6, 9,
and 10 are related to students’ understanding of the mean-
ing and use of uncertainty in measurements, and items 3, 4,
7, and 8 are measures of their ability to relate functions,
graphs, and numbers. The questions were administered to
three sections of about 25 students each at the end of term,
and the �75 represent those students who attended their
lab section during the final week of courses. Each section
had an approximately equal mix of Phys 107/109 and
Science One students, who were given 30 min to complete
all ten questions and were asked not to use a calculator.
Their performance was motivated by the promise that their
score on this set of questions could only have an upward
influence on their final lab grade (up to 1% bonus).

C. Student interviews

Student interviews should always be used when devel-
oping educational tests, and the value of the kind of infor-
mation extracted from such interviews is stressed in the
2001 NRC report [21], which states that ‘‘the methods used
in cognitive science to design tasks, observe and analyze
cognition, and draw inferences about what a person knows
are applicable to many of the challenges of designing
effective educational assessments.’’ A general finding of
physics education research is that students can perform
well on sophisticated tasks while still having serious mis-
understandings about the underlying concepts. Performing
interviews with students can help to identify such occur-
rences. The principles behind and practice of the inter-
views used in the development of the CDPA are described
in some detail by Adams and Wieman [26].

We performed interviews with ten student volunteers,
after they completed the assessment, to discover what
content and wording was appropriate for the test. The
students chosen for interviews were all of the students
willing to sit with the instructor and the researcher follow-

ing completion of the assessment. As such, we did not
control for student ability when selecting our volunteers.
The interviewers, the course instructor (Bonn) and a re-
searcher unknown to the students (Day), asked students to
explain the answers they had given and to expand on what
particular terms or concepts meant to them [31]. The
instructor was involved in the earliest interviews before
learning that it is standard practice to have all interviews
done by a researcher outside of the course instruction. The
interviews were semistructured and rather flexible, allow-
ing for new questions to be raised as a result of what the
student replied. Sometimes the concepts we asked about
were related to specific assessment questions (e.g., how
does one treat data with differing uncertainty?) and other
times the concepts were introduced by the students (e.g.,
‘‘human error’’). Because the researcher (Day) was un-
known to the students, he played the role of a novice
physicist, allowing for very simple questions (e.g., ‘‘what
do you mean when you use the word exponential?’’ or
‘‘what exactly is radioactive decay?’’) to be interpreted
earnestly by the student, thus providing excellent insight
into the student’s thinking. The instructor asked primarily
the scripted questions (e.g., ‘‘how did you calculate your
average?’’). We observed nothing during the interviews to
lead us to believe that students were intimidated by the
2-on-1 interview style, consistent with the fact that all those
who volunteered knew they would be speaking with two
interviewers. Written notes were taken during these pre-
liminary interviews, but they were not audio recorded.
Upon their completion, the interviewers held a debriefing
to make sense of everything that was said and done by the
student. These interviews helped to confirm that we were
measuring student thinking as intended, as well as allowing
for us to catch any flaws in the questions that might allow
students to misinterpret what was being asked.

D. Multiple-choice questions

Possessing a set of students’ written answers and the
insight gained from the interviews, the questions were
transformed into multiple-choice format. Great care went
into crafting multiple-choice options that accurately re-
flected student thinking. The distractor options presented
to the students in the multiple-choice version of the assess-
ment are representative examples of the most commonly
identified failure modes that were displayed in student
thinking. These options for all items are explained in the
appendix.
These new multiple-choice questions were then admin-

istered as a pre-test to 145 first-year physics students in the
Phys 107/109 and Science One stream. Students were
given 20 min to complete all ten multiple-choice questions
and were asked not to use a calculator. Students recorded
their name and identification number, to allow for matched
pre-test and post-test data at the end of the term. To
motivate effort on the pre-test, it was explained that
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although their scores would not count towards the course
grade, their scores could be confidentially returned to them
on request and would assist both themselves and their
instructors to know the degree and type of effort required
for them to meet the primary, course-level learning goals.
The assessment itself was not returned to the students and
no mention whatsoever was made that the same test would
be given as a post-test.

The instrument was also presented to a number of ex-
perts, as outlined in Sec. IV, in order to collect evidence for
the determination of test validity.

E. Question validation student interviews

We conducted further interviews with student volunteers
to validate the multiple-choice questions, i.e., to determine
whether the students were interpreting the questions and
answer options as we intended. Twelve student interviews
were conducted by a single interviewer. Each interview
lasted about 1 h, during which the students were asked to
rephrase in their own words the questions they thought
were being asked of them. Notes were taken during the
interview and an audio recording of each interview was
collected. The audio recording was then reviewed by the
interviewer immediately after having met with the student,
during which more detailed notes were taken and conclu-
sions about question validity were drawn. Three of the 12
audio recordings, selected at random, were listened to by a
third party who was blinded to the conclusions of the
interviewer, in order to help validate the conclusions of
the interviewer. It was determined that the wording of the
CDPA was clear, and that the questions were consistently
interpreted as intended.

These same students were also asked to explain the
answers they had provided. Through this process, malfunc-
tioning items were identified and subsequently corrected.
For example, the first item, concerning a weighted average,
originally presented data (see Fig. 1 for the form of this
question) which allowed students to select the correct op-
tion for the wrong reasons. The original question presented
90� 8 mL=s and 100� 2 mL=s as the independent mea-
sures from which an appropriate average was to be calcu-
lated. Students could succeed using either the properly
weighted average of 99:4 mL=s or the ‘‘overlap value’’ of
98 mL=s with the given container volume of 900 mL to
arrive at 9.1 s as their forced-choice answer. Fortuitously,
this provided an example of pointlike thinking, in which
students ascribed importance to the particular value at
which the extremes of two uncertainties met one another,
rather than thinking of each measurement as a distribution.
As another example, the sixth item (see Fig. 6), concerning
a straight line of best fit, graphically presented data printed
sufficiently small that some students were not noticing the
data point in the bottom right corner of the figures.
Therefore, we were able to identify that some students
were getting the wrong answer but for the wrong reasons.

F. Item analysis

The assessment was given again to the same students
during the final week of classes with no prior notification,
with bonus course credit awarded for post-test perform-
ance. As with the pre-test, the assessment itself was not
returned to the students, although it was announced that
instructors would be willing to discuss questions on the
assessment with interested students in private.
We calculate various descriptive statistics from the stu-

dents’ postcourse scores, with the details presented in
Sec. V. In particular, we found that item difficulty, item
discrimination, and point biserial correlation provided par-
ticularly useful information; primarily, these statistics aid
in describing how the questions on the assessment relate to
one another and to the test as a whole. We further calculate
Ferguson’s delta, which serves as a measure of the dis-
criminatory power of the test as a whole, and the Pearson
product-moment correlation coefficient, which serves as a
measure of the reliability of the test.
It should be made clear, however, that these statistics are

often used for single factor summative assessments of
individual students, so the more common interpretation
of their values and acceptable cutoff ranges do not neces-
sarily hold. The CDPA examines multiple different facets
of thinking and learning, rather than a single construct, and
certainly does not cover all of the course material. While
the intended use of the CDPA is to measure how well
students are thinking like experts, the goal is not simply
to obtain a summative assessment of student learning; we
also want to provide formative assessment of teaching.
Indeed, we consider the results from the students’ CDPA
scores as a group more important than ranking individual
students, which is fundamentally different from many
assessments [26].

IV. TEST VALIDATION

Test validation is the procedure by which evidence is
gathered to determine if the test items satisfactorily repre-
sent a concept domain and whether the test measures the
properties that it proposes to measure. Face validity is an
estimate of whether an assessment seems to measure cer-
tain criteria (without guaranteeing that it actually does), or
the validity of a test at face value. In different terms, a test
can be said to have face validity if it appears it will measure
what it is supposed to measure. Content validation is the
evaluation of the correctness of the items constituting the
assessment.
In collecting evidence to determine test validity, a re-

quest for expert feedback was solicited and an online
version of the CDPA was made available to all faculty
members of the Department of Physics and Astronomy at
University of British Columbia (UBC), a structure which
allowed for responses to be submitted anonymously.
Twelve faculty supplied their responses, providing us
with evidence of both face and content validity. Four
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faculty openly contacted us to provide specific critiques of
the test items. One explicit example of this type of feed-
back was to avoid using the term ‘‘radioactive decay’’
(originally used in item 1, instead of water flow rates);
the concern was that this is a term with which students tend
to have some very bizarre interpretations as to what is
actually meant, and that it is best to avoid using it whenever
possible as it is difficult to know what students will think it
means. Another explicit example was that we had inadver-
tently used the term ‘‘standard deviation’’ when we meant
‘‘uncertainty in the mean’’ in item 10. We also received
feedback on the specific wording of many of our questions.
Minor changes that resulted from this feedback included
altering ‘‘the data below shows’’ to ‘‘the data below show’’
and ‘‘model/function’’ to ‘‘algebraic expression.’’ An ex-
ample of a larger change was editing item 4 from ‘‘the log-
log plot below shows the natural logarithm of the power
radiated by an object as a function of the natural logarithm
of its temperature’’ to ‘‘the log-log graph below shows the
natural logarithm of the power emitted E, measured in
Watts (W), by an astronomical object as a function of the
natural logarithm of its surface temperature T, measured in
Kelvin (K).’’

The CDPA was also administered to 11 graduate stu-
dents registered in a graduate course on teaching tech-
niques in physics and astronomy, and four additional
graduate student volunteers (i.e., teaching assistants) fa-
miliar with the Phys 107/109 and Science One laboratory.
Their responses were considered along with those submit-
ted by the faculty in collecting lines of evidence of both
face and content validity.

Construct validity is a measure of whether an assessment
is able to successfully distinguish between populations.

Analysis of CDPA scoring shows that it measures certain
expected results (see Table I). For example, using a t-test
for pairwise comparisons between levels and a Bonferroni
correction to address the problem of multiple comparisons,
there were statistically significant differences at the
0:05=4 ¼ 0:0125 level (equal variance not assumed) be-
tween the scores for first-year and fourth-year students:
tð110Þ ¼ 2:85, p ¼ 4� 10�3; the scores for fourth-year
students and faculty: tð26Þ ¼ 7:51, p ¼ 6� 10�14; and the
scores for graduate students and faculty: tð38Þ ¼ 4:94, p ¼
8� 10�7. There was not a statistically significant differ-
ence between the scores for fourth-year and graduate stu-
dents: tð56Þ ¼ 1:17, p ¼ 0:24; these two means certainly
are different, but we cannot know whether the size of that
difference is scientifically trivial or important without
more data. However, there was also a statistically signifi-
cant difference between the scores for first-year students
and second-year students whose previous physics labs did
not include data handling learning goals: tð109Þ ¼ 3:75,
p ¼ 3� 10�4. Collectively, these results suggest that the
CDPA is able to distinguish between populations in the
novice-to-expert spectrum of facility with data.
Specifically, our results suggest that as physics students
progress through their program, they become more expert-
like in their data handling abilities. We also observe that a
large portion of the improvement in scores happens during
the first year (cf. first- and fourth-year UBC physics pre-
test results of Table I with first-year UBC physics post-test
results of Table II).
Of course, there exist limitations in the extent to which

our conclusions generalize to broader populations. While
the students used in this study should be largely represen-
tative of typical UBC physics students, our findings may

TABLE I. Pre-test results.

Sample Number of students Mean score Standard deviation Standard error

UBC Phys 107/109 71 2.56 1.56 0.22

UBC Science One 74 2.74 1.57 0.18

UBC Phys 101 254 2.28 1.34 0.08

U of Edinburgh first-year physics 249 2.13 1.38 0.09

Overall first-year students 647 2.30 1.43 0.06

UBC second-year students 59 3.03 1.52 0.20

UBC fourth-year students 75 4.73 2.26 0.26

UBC graduate students 32 5.31 2.36 0.42

UBC faculty 12 8.00 1.21 0.35

TABLE II. UBC post-test results.

Sample Number of students Mean score Standard deviation Standard error

Phys 107/109 122 3.89 1.98 0.18

Science One 133 3.93 2.00 0.17

Overall 255 3.91 1.99 0.12
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not be consistent with all groups of students. As such,
issues of potential internal and external threats to validity
are briefly noted. Internal validity is the confidence that can
be placed in the cause and effect relationship of a scientific
study. As this work did not employ an experimental design
which examined the effect of manipulating a single vari-
able while observing the outcome, no threats to internal
validity exist. Threats to external validity are factors which
limit the extent to which the findings of a study can be
applied to populations beyond that which was studied.
Some inherent risk exists in generalizing from our sample
of first-year students at UBC to the larger target popula-
tions of introductory physics students elsewhere in the
world. The generalization of our conclusions is also limited
by the extent to which the items approximate the actual
learning objectives of the subjects in the target population.
For this assessment, such concerns could relate to whether
or not the items are deemed by the students to be authentic
versus contrived. Lastly, the students in this study were not
required to complete the assessment and received minimal
extra credit for their willingness to answer questions.
These same students might have performed differently if
given the same questions in a higher stakes scenario.

V. TEST RELIABILITY

Test validity is requisite to test reliability; if a test is not
valid, then its reliability is moot.

While there are psychometric tests that will provide
reliability information, many of the commonly used statis-
tical tests are specifically designed for assessments that
measure a single construct or factor. One characteristic of
the CDPA is that it evaluates thinking about multiple
concepts, so the results of statistical measures must be
interpreted accordingly.

Pre-test performance on CDPA does not vary much
among different populations of first-year students, as
shown in Table I, and pre-test scores average around
23%. The Phys 101 population was only measured in the
pre-test stage, and are generally those students who are not
considering physics as their major. Random guessing on
the CDPA produces a score of 23.5%.

Table I also includes data from the University of
Edinburgh, where the CDPA was administered in their
flagship course in introductory physics. This class is large
(nearly 250 students) and the student mix is inhomogene-
ous (half are aspiring physicists and half belong to other,
mainly science, programs). The CDPAwas administered at
the University of Edinburgh because of an expressed in-
terest from their physics education research group to get a
measure of the data handling abilities of their students.
Their data are presented as a demonstration of the appar-
ently universal difficulties novice physicists have concern-
ing the management and sense-making of data. A finer
inspection of the University of Edinburgh data, although
not presented here, reveals strikingly similar item difficul-
ties, discriminations, etc. While only pre-test data were
collected from the University of Edinburgh, we are further
reassured of the CDPA’s reliability, detailed below, upon
comparison of their results to ours.
In this paper we use only postinstruction data, summa-

rized in Table II, for test statistics as we are focusing on
evaluation of the CDPA and not on a comparison of student
pre-test and post-test performance. The post-test popula-
tion deviates slightly from normality, with small positive
skewness (0.45) and weak platykurticity (3.19).

A. Item difficulty index

The item difficulty index (P) is defined as the proportion
of individual students in a sample that correctly answer the
item. It is a measure of how difficult (or easy) a certain item
is. Items with P values of 0.50 are taken as ideal (with the
caveat that items are not highly intercorrelated), as they
provide the highest levels of differentiation between indi-
viduals in a group. A low P value does not inevitably imply
a malfunctioning item: a good item might be answered
incorrectly by a majority of students if it addresses a deeply
rooted misconception or difficulty in reasoning that has not
yet been reversed by instruction. Also worth noting is that
the P value depends on the particular population taking the
test. As shown in Table III, the items on the CDPA cover a
reasonable range in difficulty from about 0.2 to nearly 0.8.
The averaged difficulty index value of all items, commonly

TABLE III. Item descriptive statistics for the CDPA.

CDPA item Difficulty index, P Discrimination index, D Uncorrected point-biserial index Corrected point-biserial index, rpb

1 0.27 0.51 0.44 0.24

2 0.77 0.41 0.44 0.24

3 0.27 0.40 0.45 0.25

4 0.48 0.47 0.42 0.19

5 0.26 0.33 0.33 0.12

6 0.18 0.25 0.36 0.17

7 0.38 0.46 0.43 0.21

8 0.44 0.57 0.53 0.32

9 0.52 0.45 0.41 0.17

10 0.36 0.47 0.45 0.23
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used as an indication of the test difficulty, is 0.39 for the
CDPA.

B. Item discrimination index

The item discrimination index (D) is a measure of how
well each item in a test distinguishes between more and
less competent students. The higher the D value, the better
the item discriminates.

An extreme group method is used to calculate D. To
begin, two groups of students are created: an upper group
consisting of those having the highest overall test scores
and a lower group consisting of those having the lowest
overall test scores. A reasonable population percentage to
use in creating these extreme groups is the upper and lower
21% of the distribution, as this is the critical ratio that
separates the tail from the mean of the standard normal
distribution of response error [32]. The P value for each
group is then determined and the difference between the
two is taken, giving D. The possible range of D values is
from �1 (where everyone in the lower group answers a
question correctly and everyone in the upper group an-
swers incorrectly) to 1 (vice versa). An item is typically
considered to have good discrimination ifD � 0:3 [33]. As
shown in Table III, the items on the CDPA cover a reason-
able range in discrimination from about 0.25 to nearly 0.6.
The averaged discrimination index value is 0.43 for the
CDPA, satisfying the commonly used criterion of �D � 0:3
[33]. Question 6 is the only item on the CDPAwhich hasD
below the arbitrary cutoff 0.3 and is therefore, at worst,
only a weak discriminator. We have retained it because we
feel it tests an important concept (of weighing the relative
importance of data points that have differing uncertainty).

C. Item-to-total correlation

Another assessment of items related to their discrimina-
tion index is the (corrected) Pearson point-biserial corre-
lation coefficient [34]. This metric, which probes how
responses to an item relate to the total test score, is given by

rpb ¼
�Y1 � �Y

�y

ffiffiffiffiffiffiffiffiffiffiffiffiffi

px=qx

q

;

where �Y1 is the mean of the corrected total test scores for
those whose dichotomous response was 1, �Y is the mean of
the corrected total test scores for the whole sample, �y

is the standard deviation of all scores on the corrected total
test, px is the proportion of individuals whose dichotomous
response was 1, and qx is the proportion of individuals
whose dichotomous response was 0. The correction entails
a total score which excludes the response to the item in
question [35], as total scores which include the item in
question will possess inauthentically greater correlation
than total scores consisting only of other items in the
test, especially when the assessment possesses relatively
few items. Values of this metric range from�1 to 1, with a

positive value meaning greater correlation between item
and overall score. Values of rpb � 0:2 are considered de-

sirable [36]. These data are shown in Table III.
The averaged corrected Pearson point-biserial correla-

tion coefficient �rpb for the CDPA is 0.21. This relatively

low value is not too surprising considering that the CDPA
was designed to test multiple abilities in as few questions
as possible. Furthermore, a minimum critical Pearson
point-biserial correlation coefficient has been defined
[37] as one which is 2 standard deviations above zero,
with the standard deviation calculated by

�r ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

N � 1
p ;

where N is the sample size. The minimum critical Pearson
point-biserial correlation coefficient from our data is 0.125,
a value met or exceeded by all of the items on the CDPA.

D. Ferguson’s delta

A measure of whole-test discrimination is Ferguson’s
delta � [38], which investigates how broadly the total
scores of a sample are distributed over the possible range.
Calculation of Ferguson’s delta relies on the relationship
between the overall test scores of any two students.
Defined as the ratio of the observed number of relations
of difference to the maximum number of such relations, it
is given in simplified form as

� ¼ n2 �P

kþ1
i f2i

n2 � n2=ðkþ 1Þ ;

where fi is the frequency obtaining a score value i, in a test
of k items, administered to n individuals.
The possible range of values for Ferguson’s delta are

from 0 (no distribution) to 1 (a rectangular distribution);
the normal distribution yields a � of 0.93 and generally a
good test should have a � � 0:9 [39]. Ferguson’s delta for
the CDPA is 0.94.

E. Test-retest reliability

Internal consistency coefficients can be used as mea-
sures of task variability, but since the goal of the CDPA
includes probing multiple concepts with a minimum
number of questions and as the CDPA was not designed
to measure individual students, task variability is not a
good reflection of the reliability of the instrument.
Administering the test to two equivalent populations and
obtaining a test-retest stability coefficient was the method
we chose for measuring reliability of the CDPA.
A test-retest stability coefficient measures the consis-

tency of test results if the same test could be given to the
same population again under identical circumstances. Of
course, this is impossible because it would require that
giving it the first time does not have any impact on the test
takers or that they have not changed in any other way
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between the first and second administrations. However,
when administering tests to large university courses, one
has the ideal situation: the test can be administered again
the following year in the same course. The population of
students who enroll in a course is very similar from one
year to the next, provided the university maintains constant
admissions criteria. Support for this claim can be based on
more than a decade of results for the incoming population
of our first-year physics lab students at UBC, which have
been remarkably stable (i.e., less than 5% variation) over
that period. Each year’s students will have received like
preparation for the course, will possess like university
experiences, and will be of like demographics.

When using the test-retest method, reliability may be
estimated with the Pearson product-moment correlation
coefficient between two administrations of the same mea-
sure. It is a measure of the correlation between two vari-
ables and may range from�1 (strong negative correlation)
to 1 (strong positive correlation), and is widely used in the
sciences to gauge the strength of linear dependence be-
tween two variables. The Pearson coefficient is usually
used to correlate two measures of the same test subject;
here we have used it to correlate two measures (item
difficulties) of the same assessment (CDPA). Explicitly,
we used the post-test data from 2009 (N2009 ¼ 118) and
2010 (N2010 ¼ 137) in our calculation of the Pearson
coefficient, and paired the item difficulty of question 1 in
2009 with the item difficulty of question 1 in 2010, the
item difficulty of question 2 in 2009 with the item difficulty
of question 2 in 2010, and so on. We measure a reliability
of 0.80; a reliability coefficient of 0.7 is usually regarded
as a minimum for tests which are to be used with individu-
als [40].

It is worth being explicit, at this point, in our deliberate
omission of reporting a value for the Cronbach’s alpha, an
internal consistency coefficient commonly quoted as a
measure of reliability for many other physics education
research concept tests. Cronbach’s alpha is primarily use-
ful for a single construct test, as it depends on both the
correlation between questions and the number of ques-
tions; the CDPA, however, is not a single construct test.
In fact, having a high correlation between items, which
results in a higher value for Cronbach’s alpha, means that
these items are redundant. The way a formative assessment
of instruction is typically administered puts a premium on
minimizing the time required to complete the assessment

and hence the number of questions. Therefore, a low
Cronbach’s alpha on an assessment of this type would be
quite reasonable, and a high Cronbach’s alpha on a for-
mative assessment of instruction does not guarantee that
the test will be more reliable for its intended use, and may
be an indication that there are redundant questions that
should be removed.

VI. SUMMARY

We have created a diagnostic instrument, called the
Concise Data Processing Assessment (CDPA), that probes
students’ thinking related to the nature of handling data.
Such skills include being able to appropriately weight
measurement uncertainties when calculating simple statis-
tics and/or in fitting straight lines to linear data, correctly
propagate measurement precision through a simple calcu-
lation, extract a mathematical description from numeri-
cally and/or graphically represented data, and properly
accounting for uncertainties arising from a digital proba-
bility distribution function. We have outlined our method
for the development and validation of this formative as-
sessment. Evidence for validity of the CDPAwas collected
through interviews with students and through expert re-
view, and was demonstrated with descriptive statistics
which showed that outcomes increased with level of ex-
pertise. The difficulty, discriminatory power, and reliability
of the CDPA have all been considered, and the results of
five different descriptive statistical tests are provided in
Tables III and IV. These results indicate that our instrument
is sufficiently reliable for the purposes of probing how well
students actually handle data, as well as for comparing the
effectiveness of various classroom instructional ap-
proaches from one year to the next. Our focus now shifts
to the perpetual task (see, for example, Ref. [6]) of helping
our students to score better on the CDPA.
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TABLE IV. Summary of statistical test results for the CDPA.

Test statistic Range Reasonable lower bound CDPA value (N ¼ 255)

Item difficulty index, P ½0; 1� � 0:3 0.39

Item discrimination index, D ½�1; 1� � 0:3 0.43

Point-biserial coefficient, rpb ½�1; 1� � 0:2 0.21

Ferguson’s delta, � ½�1; 1� � 0:9 0.94

Test-retest stability (Pearson) ½�1; 1� � 0:7 0.80
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APPENDIX: CONCISE DATA PROCESSING
ASSESSMENT

A copy of the instrument, the Concise Data Processing
Assessment, is included below for teachers and researchers
to use however they see fit (see Figs. 1–10). As explan-
ations are provided for the multiple-choice options of each
question, we recommend that the real name of the instru-
ment not be used with students. Some of the captions also
include discussion about potential or perceived weaknesses
to the question itself and scores should be considered as an
upper bound on a student’s facility with data. For details
concerning conventions for calculating and reporting un-
certainties, please refer to Ref. [41].

FIG. 3. Item 3 assesses a student’s ability to interpret data
displayed as a straight line on a semilog plot. The answer is
most efficiently reached through applying knowledge that straight
lines on semilog plots reflect exponential behavior, along with a
basic knowledge of logarithm algebra and dimensional analysis.
The distractors include (a) a straight line, ignoring the logarithm
entirely, (b) the common problem of students attempting to work
this out algebraically but failing to correctly manage the intercept
in the calculation, and (d) the correct functional form but with
incorrect units of the coefficient in the exponential. This question
contains a hint to the correct answer in the form of physics content
rather than pure knowledge of functions and graphs; that is,
students might be helped by remembering that population growth
is very often described by an exponential function.

FIG. 1. Item 1 assesses whether or not students know that the
measurement with the larger uncertainty should carry less weight
in the answer to the question. A weighted mean could be used,
but the difference in uncertainty is large enough that a student
could also arrive at the correct answer by simply discarding the
poorer measurement. The distractors include (a) use of the
unweighted mean, (c) discarding the more precise measurement,
(d) using a value of 105:5 mL=s, which is the value centered in
the gap between 90þ 12 mL=s and 110� 1 mL=s, and,
(e) added to balance the options. The concern might be raised
about whether students worry about systematic error, and in the
method of student B, in particular. This concern reflects a
particular kind of expert point of view, but is not one that we
believe to be valid from the student perspective. (Over the course
of our interviews, we have not encountered any evidence of a
student worrying about systematic error for this question; that is
not to imply that it does not happen, only that it does not appear
to be common.)

FIG. 2. Item 2 probes a student’s judgment of an appropriate
use of significant figures. The distractors include (a) the product
with no rounding of significant figures, (b) the product rounded
to the same precision as the multiplicand, and (d) the product
rounded to an intermediate precision.

FIG. 4. Item 4 assesses a student’s ability to interpret data
displayed as a straight line on a log-log plot. The answer is most
efficiently reached through applying knowledge that straight lines
on log-log plots reflect power-law behavior (with the power given
by the slope), along with a basic knowledge of logarithm algebra
and dimensional analysis. The distractors include (a) the common
problem of treating the intercept on the graph incorrectly in their
algebraic conversion of the logarithm, (b) in which the logarithms
are ignored entirely and the formula for a straight line is given, and
(d) the correct functional form but with incorrect units for the
coefficients. This question contains a hint to the correct answer in
the form of physics content rather than pure knowledge of func-
tions and graphs; that is, students might be helped if they are
cognizant of the Stefan-Boltzmann law.
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FIG. 5. Item 5 tests the student’s ability to interpret uncertainties displayed graphically and how they should be employed in
weighting a straight line fit. The distractors include (a) the problem where students ascribe greater importance to the prominence of the
data with larger error bars, (c) comes from striving to have an equal number of points above and below the line as well as touching the
error bars of the least important, but most prominent, data, and (d) which is close to a correct weighting, but still gives too much weight
to the poorest data. A chi-square statistic of the numerical data clearly shows that fit (b) is best. These data might seem contrived but
can actually be produced under very natural circumstances. For example, a semilog plot of the voltage decay across a capacitor in a RC
circuit [i.e., lnðVÞ versus t] results in data and error bars of this sort.

FIG. 6. Item 6 is a further test of interpretation of graphically represented uncertainty and data fitting. The distractors include
(b) which appears to hit two points ‘‘exactly’’ and balances three points each above and below the line, as well as coming very close to
four prominent points arranged close to a straight line, (c) which touches the maximum number of data points as possible within their
error bars, and, (d) which possesses an equal number of data points above and below the line. A chi-square statistic of the numerical
data clearly shows that fit (a) is best. It is possible that students select the correct answer to this question for the wrong reason, i.e.,
because they believe a line of best fit should pass through the first and last data points in a data set (what the University of Cape Town
group would likely classify as ‘‘point reasoning’’); however, we have not encountered any evidence with our students that those (very
few) who select the correct answer for this question are doing it for incorrect reasons. To eliminate this weakness, a next iteration of
this question should make the second to last point have the extremal minimum uncertainty.
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FIG. 10. Item 10 assesses the student’s ability to propagate
uncertainty through a simple division, either by knowing
the appropriate technique for handling multiple uncertainties
or with a judgement that one of the uncertainties is completely
dominant. The distractor options include (a) which arises
from dividing the uncertainty in the numerator by the
measured quantity in the denominator, (b) which arises from
dividing the uncertainty in the numerator by the uncertainty in
the denominator, (c) which arises from addition of the uncer-
tainties, and (e) which arises from multiplication of the uncer-
tainties.

FIG. 8. Item 8 probes the student’s ability to identify a power
law in a column of numbers. The distractor options include (b)
and (c) which both present the correct power law but mishandle
the units, and, (d) which again checks on the tendency to default
to exponential decay. This question contains a hint to the correct
answer in the form of physics content rather than pure knowl-
edge of functions and graphs; that is, students might be helped by
remembering that the inverse-square law generally applies when
some conserved quantity is radiated outward radially from a
point source.

FIG. 7. Item 7 tests the student’s ability to identify a power law
in graphically displayed data. The distractor options include the
tendency to think that any rapidly falling function is exponential
decay, with (a) incorrect and (b) correct dimensional units in the
exponential, and (d) which gives the correct power law but
mishandles the units. This question contains a hint to the correct
answer in the form of physics content rather than pure knowl-
edge of functions and graphs; that is, students might be helped by
recalling the ideal gas law.

FIG. 9 (color online). Item 9 assesses both the understanding
of rounding error in a digital instrument and the propagation of
that error through a simple multiplication. The distractor options
include (b) which arises from ignoring the uncertainty in the
mass of a single rod, and then attaching an uncertainty of
0.01 mg to the meter, (c) attaches a 0.01 mg uncertainty to the
initial measurement, rather than a 0.005 mg rounding uncertainty
(note that some experts will do this since real meters often have
instrumental uncertainty greater than the rounding error),
(d) ignores uncertainty entirely, and, (e) which does not treat
the rounding uncertainty symmetrically.
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[3] S.M. Coelho and M.-G. Séré, Pupils’ reasoning in practice
during hands-on activities in the measurement phase, Res.
Sci. Technol. Educ. 16, 79 (1998).

[4] D. L. Deardorff, Introductory Physics Students’ Treatment
of Measurement Uncertainty, Ph.D. thesis, North Carolina
State University, 2001.

[5] R. F. Lippmann, Students’ Understanding of Measurement
and Uncertainty in the Physics Laboratory: Social
Construction, Underlying Concepts, and Quantitative
Analysis, Ph.D. thesis, University of Maryland, 2003.

[6] R. Lippmann Kung and C. Linder, University students’
ideas about data processing and data comparison in a
physics laboratory course, NorDiNa 4, 40 (2006).

[7] L. C. McDermott, M. L. Rosenquist, and E.H. van
Zee, Student difficulties in connecting graphs and
physics: Examples from kinematics, Am. J. Phys. 55,
503 (1987).

[8] R. J. Beichner, Testing student interpretations of kinemat-
ics graphs, Am. J. Phys. 62, 750 (1994).

[9] N. Perez-Goytia, A. Dominguez, and G. Zavala,
Understanding and interpreting calculus graphs: Refining
an instrument, AIP Conf. Proc. 1289, 249 (2010).

[10] E. Schulman and C.V. Cox, Misconceptions about astro-
nomical magnitudes, Am. J. Phys. 65, 1003 (1997).

[11] J. Bynner, Literacy, numeracy and employability:
Evidence from the British birth cohort studies, Lit.
Num. Stud. 13, 31 (2004).

[12] R. K. Thronton and D. R. Sokoloff, Assessing student
learning of Newton’s laws: The Force and Motion
Conceptual Evaluation and the Evaluation of Active
Learning and Lecture Curricula, Am. J. Phys. 66, 338
(1998).

[13] D. Hestenes, M. Wells, and G. Swackhamer, Force
Concept Inventory, Phys. Teach. 30, 141 (1992).

[14] P. V. Engelhardt and R. J. Beichner, Students’ understand-
ing of direct current resistive electrical circuits, Am. J.
Phys. 72, 98 (2004).

[15] D. P. Maloney, T. L. O’Kuma, C. J. Hieggelke, and A.
Van Heuvelen, Surveying students’ conceptual knowledge
of electricity and magnetism, Am. J. Phys. 69, S12
(2001).

[16] L. Ding, R. Chabay, B. Sherwood, and R. Beichner,
Evaluating an electricity and magnetism assessment
tool: Brief electricity and magnetism assessment, Phys.
Rev. ST Phys. Educ. Res. 2, 010105 (2006).

[17] C. Singh and D. Rosengrant, Multiple-choice test of
energy and momentum concepts, Am. J. Phys. 71, 607
(2003).

[18] S. B. McKagan and C. Wieman, Exploring student
understanding of energy through the Quantum
Mechanics Conceptual Survey, AIP Conf. Proc. 818, 65
(2006).

[19] S. B. McKagan, K.K. Perkins, and C. E. Wieman, Design
and validation of the Quantum Mechanics Conceptual
Survey, Phys. Rev. ST Phys. Educ. Res. 6, 020121 (2010).

[20] www.phy.uct.ac.za/people/buffler/edutools.html.
[21] National Research Council, Knowing What Students

Know: The Science and Design of Educational
Assessment, edited by the Committee on the Foundations
of assessment, J.W. Pellegrino, N. Chudowsky, R. Glaser,
and Board on Testing and Assessment Center for
Education Division of Behavioral and Social Sciences
and Education (National Academy Press, Washington,
DC, 2001).

[22] L. C. McDermott and E. F. Redish, Resource Letter:
PER-1: Physics Education Research, Am. J. Phys. 67,
755 (1999).

[23] S. L. Sheridan and M. Pignone, Numeracy and the medical
student’s ability to interpret data, Effect. Clin. Pract. 5, 35
(2002).

[24] L.M. Schwartz, S. Woloshin, W. C. Black, and H.G.
Welch, The role of numeracy in understanding the benefit
of screening mammography, Ann. Intern. Med. 127, 966
(1997).

[25] A. Buffler, S. Allie, F. Lubben, and B. Campbell, The
development of first year physics students’ ideas about
measurement in terms of point and set paradigms, Int. J.
Sci. Educ. 23, 1137 (2001).

[26] W.K. Adams and C. E. Wieman, Development and vali-
dation of instruments to measure learning of expert-like
thinking, Int. J. Sci. Educ. 33, 1289 (2011).

[27] American Educational Research Association, American
Psychological Association, and the National Council on
Measurement and Education, Standards for Educational
and Psychological Testing (American Educational
Research Association, Washington, DC, 1999).

[28] R. Bell and J. Lumsden, Test length and validity, Appl.
Psychol. Meas. 4, 165 (1980).

[29] M. Burisch, Test length and validity revisited, Eur. J. Pers.
11, 303 (1997).

[30] B. Simon and J. Taylor, What is the Value of Course-
Specific Learning Goals?, J. Coll. Sci. Teach. 39, 52
(2009).

[31] Typically, having the course instructor interview their own
students is avoided. At the time these interviews were
conducted we simply did not know any better.

[32] R. B. D’Agostino and E. E. Cureton, The 27 Percent Rule
Revisited, Educational and Psychological Measurement
35, 47 (1975).

[33] D. Doran, Basic Measurement and Evaluation of Science
Instruction (NSTA, Washington, DC, 1980), p. 99.

[34] E. E. Ghiselli, J. P. Campbell, and S. Zedeck,Measurement
Theory for the Behavioral Sciences (W.H. Freeman and
Company, San Francisco, CA, 1981), p. 116.

[35] M. J. Allen and W.M. Yen, Introduction to Measurement
Theory (Waveland Press, Long Grove, IL, 1979),
p. 123.

[36] P. Kline, A Handbook of Test Construction: Introduction to
Psychometric Design (Methuen, London, 1986), p. 143.

[37] L. Crocker and J. Algina, Introduction to Classical and
Modern Test Theory (Holt, New York, 1986), p. 34.

[38] G. A. Ferguson, On the theory of test discrimination,
Psychometrika 14, 61 (1949).

DEVELOPMENT OF THE CONCISE DATA . . . PHYS. REV. ST PHYS. EDUC. RES. 7, 010114 (2011)

010114-13

http://dx.doi.org/10.1080/0950069930150406
http://dx.doi.org/10.1080/0950069930150406
http://dx.doi.org/10.1080/0263514980160107
http://dx.doi.org/10.1080/0263514980160107
http://dx.doi.org/10.1119/1.15104
http://dx.doi.org/10.1119/1.15104
http://dx.doi.org/10.1119/1.17449
http://dx.doi.org/10.1063/1.3515213
http://dx.doi.org/10.1119/1.18714
http://dx.doi.org/10.1119/1.18863
http://dx.doi.org/10.1119/1.18863
http://dx.doi.org/10.1119/1.2343497
http://dx.doi.org/10.1119/1.1614813
http://dx.doi.org/10.1119/1.1614813
http://dx.doi.org/10.1119/1.1371296
http://dx.doi.org/10.1119/1.1371296
http://dx.doi.org/10.1103/PhysRevSTPER.2.010105
http://dx.doi.org/10.1103/PhysRevSTPER.2.010105
http://dx.doi.org/10.1119/1.1571832
http://dx.doi.org/10.1119/1.1571832
http://dx.doi.org/10.1063/1.2177024
http://dx.doi.org/10.1063/1.2177024
http://dx.doi.org/10.1103/PhysRevSTPER.6.020121
www.phy.uct.ac.za/people/buffler/edutools.html
http://dx.doi.org/10.1119/1.19122
http://dx.doi.org/10.1119/1.19122
http://dx.doi.org/10.1080/09500690110039567
http://dx.doi.org/10.1080/09500690110039567
http://dx.doi.org/10.1080/09500693.2010.512369
http://dx.doi.org/10.1177/014662168000400203
http://dx.doi.org/10.1177/014662168000400203
http://dx.doi.org/10.1002/(SICI)1099-0984(199711)11:4%3C303::AID-PER292%3E3.0.CO;2-%23
http://dx.doi.org/10.1002/(SICI)1099-0984(199711)11:4%3C303::AID-PER292%3E3.0.CO;2-%23
http://dx.doi.org/10.1177/001316447503500105
http://dx.doi.org/10.1177/001316447503500105
http://dx.doi.org/10.1007/BF02290141


[39] P. Kline, Handbook of Psychological Testing (Routledge,
London, 2000), p. 31, 2nd ed.

[40] P. Kline, The New Psychometrics: Science, Psychology
and Measurement (Routledge, London, 1998), p. 29.

[41] It is important to recall that different research areas
use different conventions for reporting uncertainty.

In the CDPA, we use x��x to represent a mean
(x) and an uncertainty in the mean (�x). Interested
readers might find ‘‘Guidelines for Evaluating and
Expressing the Uncertainty of NIST Measurement
Results’’ especially helpful, http://physics.nist.gov/Pubs/
guidelines/.

JAMES DAYAND DOUG BONN PHYS. REV. ST PHYS. EDUC. RES. 7, 010114 (2011)

010114-14

http://physics.nist.gov/Pubs/guidelines/
http://physics.nist.gov/Pubs/guidelines/

