Classes will be taught by faculty in blocks of 3-5 lectures per topic. The class meets Tues 4-5:15PM and Friday 1-2:15PM in room A350. First class is January 14. There will be a total of 28 classes. Like all graduate classes you take, you need to achieve a grade of B or better in order for the course to count toward your Ph.D.

Grading will be based on classroom attendance and participation (10%) as well as the average of your scores on the two take-home exams (90%) given over weekends at the ends of Mar. 16 and May 4.

Exams will be designed as problem solving exercises graded by the instructors. Classes are expected to be highly interactive, alternating “seminar/lecture style” and paper discussion similar to last semester. The instructor may call on anyone to lead the discussion of the data.

Please also note that all reading materials can be gotten by clicking the appropriate links OR may be found on the "Module" assigned to the instructor.

Below are the topics to be covered:

Schedule of Classes:

Robin Dowell 1/14 – 1/28

<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture Topic</th>
<th>Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/14/20</td>
<td>Basic Genomics</td>
<td>Class Slides</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Readings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gerstein et. al, What is a gene, post ENCODE?</td>
</tr>
<tr>
<td>01/17/20</td>
<td>Genomics - How many genes and what is a gene?</td>
<td>Discussion: What fraction of the human genome is functional?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Readings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defining functional DNA elements in the human genome, by Kellis et. al.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Getting “function” right by Brunet and Doolittle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An upper limit on the functional fraction of the human genome by Graur</td>
</tr>
<tr>
<td>01/21/20</td>
<td>Basic Statistics</td>
<td>Class Slides Jan 21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Readings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Importance of being uncertain Replication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Significance, P values and t-tests</td>
</tr>
<tr>
<td>01/24/20</td>
<td>Making sense of distributions and graphs from journal articles</td>
<td>You must identify a paper that contains a graph (bar graph, line plot, or similar). Prepare a single slide on the figure/graph (email to Dr. Dowell before start of class). Be prepared to discuss what is presented in the figure (the data, error bars, the conclusion) and evaluate the QUALITY of the figure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Readings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visualizing samples with boxplots</td>
</tr>
<tr>
<td>01/28/20</td>
<td>Using statistics to compare samples</td>
<td>Class slides - Jan 28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Readings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Designing comparative experiments</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comparing samples –</td>
</tr>
<tr>
<td></td>
<td></td>
<td>part I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>part II</td>
</tr>
<tr>
<td>Date</td>
<td>Topic</td>
<td>Readings</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>01/31/20</td>
<td>Nature of Genetic mutations, Pleiotropism and genetic redundancy in developmental genetics</td>
<td>(see Readings for 02/04/20)</td>
</tr>
</tbody>
</table>
Kevin Jones 02/14 - 02/18

02/14/20
Early mammalian development, transgenics and knockouts, neural development
Background Readings
https://www.ncbi.nlm.nih.gov/books/NBK26818/ (Links to an external site.)
Making transgenics and knockouts…
https://www.ncbi.nlm.nih.gov/books/NBK26939/ (Links to an external site.)
https://www.ncbi.nlm.nih.gov/books/NBK21632/ (Links to an external site.)
https://www.ncbi.nlm.nih.gov/books/NBK10094/ (Links to an external site.)
Neural development…
https://www.ncbi.nlm.nih.gov/books/NBK26814/

2/18/20
Application of knockout technology in sophisticated ways and “the value of persistence”
Readings
Chen & Maniatis Review
First paper - retinal knockouts – Lefebvre et. al Development (2008)- Figs. 1, 4, 5
Second paper - Axon avoidance - Lefebvre et. al Nature 2012)- Figs. 1-4

Jennifer Knight 02/21 - 02/25

02/21/20
Active Learning/Scientific Teaching Approaches and Evidence of efficacy.
Readings
Scientific Teaching - book excerpts
Increased Structure and Active Learning Reduce the Achievement Gap in Introductory Biology

02/25/20
Metacognition and learning
Reading
Metacognition in Upper-Division Biology Students: Awareness Does Not Always Lead to Control

Mike Klymkowsky 02/28 - 03/10

02/28/20 03/03/20
Readings
Watt. 2016: Engineered Microenvironments to Direct Epidermal: Stem Cell Behavior at Single-Cell Resolution (Links to an external site.)
- Ladoux et al 2016: Front–Rear Polarization by Mechanical Cues: From Single Cells to Tissues (Links to an external site.)
- Lebreton et al., 2018: Molecular to organismal chirality ... conserved myosin 1D (Links to an external site.)
- Klymkowsky 2019: Filament and phenotypes

03/06/20 03/10/20
Readings
Klymkowsky 2019 Conceptual simplicity and mechanistic complexity (Links to an external site.)
Li & Elowitz 2019: Communication codes in developmental signaling pathways (Links to an external site.)
Goentoro & Kirsch 2009: Evidence that fold-change not absolute level of β-catenin dictates Wnt signaling (Links to an external site.)
Akieda et al 2019: Cell competition corrects noisy Wnt morphogen gradients to achieve robust patterning in the zebrafish embryo (Links to an external site.)

EXAM WILL BE GIVEN OVER THE WEEKEND OF Mar 13 covering Dowell, Han, Klmkowsky, Jones
Lee Niswander 03/13 -03/20

03/13/20

Limb Development as a model of embryonic patterning, signal integration, 3-D tissue organization (Lecture)
Read before March 13 lecture

03/17/20

Evo-devo and molecular mechanisms driving changes in limb morphology (Class Discussion)
Read and be prepared to discuss

03/20/20

Neural crest biology. Part of the class will include lecture and part will be paper discussion.
Please read the following sections in the Okuno paper linked below:
- Introduction: read pages 1 and 2
- Results – read the titles of each section, but then only read these sections below
- Read section: Clinical features of enrolled CHARGE patients and generation of patient-derived iPSCs
- Read section: Defective scattering of CHARGE iPSC-NCCs and Figure 4
- Read section: Migratory disabilities in CHARGE iPSC-NCCs and Figure 5
- Read Discussion and Figure 8

Okuno, H. et al. CHARGE syndrome modeling using patient-iPSCs reveals defective migration of neural crest cells harboring CHD7 mutations. Elife 6, 1438 (2017).

Ken Krauter 03/31/20

03/31/20

Attempt to explain “Modern” gene mapping in the post-genome era

Readings – optional but read if you’re interested

Brieger et al., (2019). Genes for Good: Engaging the Public in Genetics Research via Social Media. American Journal of Human Genetics 105:65–77. *(paper speaks about modern usage of social media to study population genetics – written by Goncalo Abecasis who is a leader in the field and has David Brazel, a student from my lab in IQ Bio and MCDB).*

Liu et al. (2019). Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet 51:237-244. *(paper using HUGE numbers to achieve GWAS significance to study addiction that have failed previously)*

Bergstrom et al. (2020) Insights into human genetic variation and population history from 929 diverse genomes. Science 367, 1339-1352. *(paper describes a comprehensive look at ALL HUMAN GENETIC DIVERSITY using deep sequencing of 1000 human genomes from across the planet)*

Class Slides Core_Genetics_2020.pdf
Ding Xue 04/04 – 04/16

04/04/20
Genetic basis of programmed cell death
In this lecture, I will discuss how genetic screens and subsequent genetic and functional analyses led to the identification of crucial genes involved in central cell-killing pathway.
PowerPoint5

04/07/20
Paper presentation/discussion
The paper discussions will include the followings: (1) the background of the research, (2) the important questions addressed by the paper, (3) all figures and tables and the rationales behind these experiments, (4) discussion of key experiments, (5) conclusions from the results, and (6) additional or future experiments that can be pursued. Each paper should be read and discussed by all students. I will randomly pick a student for one of the figure/table discussions/presentations or students can volunteer to lead the one of these discussions/presentations.
*Reading

04/10/20
Biochemical basis of apoptosis.
In this lecture, I will discuss how setup of a robust in vitro cell free system and biochemical fractionation and purification can lead to the identification of crucial proteins involved in apoptosis and the potential underlying mechanisms. I will also discuss these two complementary approaches and the pros and cons of each approach.
PowerPoint6

04/14/20
Paper presentation/discussion
*Reading

Greg Odorizzi – 04/17 – 04/28

Here is the Zoom Link

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Slides</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/17/20</td>
<td>Endocytosis and lysosomes (Odorizzi lecture)</td>
<td>Slides</td>
</tr>
<tr>
<td>04/21/20</td>
<td>Research article presentation (students)</td>
<td>A Flat BAR Protein Promotes Actin Polymerization at the Base of Clathrin-Coated Pits</td>
</tr>
<tr>
<td>04/24/20</td>
<td>Autophagy (Odorizzi lecture)</td>
<td>Slides</td>
</tr>
<tr>
<td>04/28/20</td>
<td>Research article presentation (students)</td>
<td>ATG8-Binding UIM Proteins Define a New Class of Autophagy Adaptors and Receptors</td>
</tr>
</tbody>
</table>

FINAL EXAM WILL BE GIVEN OVER THE THREE-DAY PERIOD
OF Apr 30 - May 3 (Thurs. 5PM -Sun. 11AM)
Covers Odorizzi, Niswander, Xue, Krauter