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Abstract

Our goal is to develop an AI Partner that can provide sup-
port for group problem solving and social dynamics. In multi-
party working group environments, multimodal analytics is
crucial for identifying non-verbal interactions of group mem-
bers. In conjunction with their verbal participation, this cre-
ates an holistic understanding of collaboration and engage-
ment that provides necessary context for the AI Partner. In
this demo, we illustrate our present capabilities at detecting
and tracking nonverbal behavior in student task-oriented in-
teractions in the classroom, and the implications for tracking
common ground and engagement.

Introduction
Our goal is developing an AI partner that can provide ben-
eficial information or suggestions to groups of collaborators
in real time. Essential to this process is an accurate interpre-
tation of two dimensions of the AI partner’s environment:
the working group’s knowledge of the topic, and the current
social dynamics of the group. Multi-modal analysis offers
unique analysis of vital non-verbal cues (Dey and Puntam-
bekar 2023). Also, the more complex and novel the envi-
ronment, the less reliable automatic speech recognition is.
Multi-channel input is crucial for useful input to AI partners.
A demo video is at https://youtu.be/WzajCzOYggg.

The Task Our Institute for Student-AI Teaming (iSAT),
aims to develop an AI Partner that can intervene positively in
collaborative problem solving groups of students (D’Mello
et al. 2024). Student group productivity can be heavily in-
fluenced by social dynamics (Moulder, Duran, and D’Mello
2022). Social dynamics can be positive or negative based
on the behavior and level of engagement of each individual
member (Adams-Wiggins and Dancis 2022). Social cohe-
sion is positive social dynamics manifesting as high levels
of engagement for all group members culminating in con-
structive progress towards the group’s goal. Negative social
cohesion can be either low levels of engagement of the group
with little progress towards the goal or unconstructive inter-
actions. Automatic speech recognition is a vital part of iden-
tifying both positive and negative social situations. How-
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ever, as the amount of topics, participants, and background
noise expands, ASR accuracy decreases (Cao et al. 2023b),
increasing reliance on multimodal analysis, especially with
speaker cohorts such as children with minimal training data.
Also, many non-verbal interactions are simply inaccessible
to ASR and critical to capture via multi-modal analysis.

Tracking gestures such as pointing can be indispensable
in building real-time understanding of a group’s common
knowledge (Khebour et al. 2024b; Tu et al. 2024). Tracking
each individual’s posture over time, in particular leaning in
or leaning out, is a powerful indicator of a group’s engage-
ment level (Adams-Wiggins and Dancis 2022). Joint visual
attention is critical to contextualize both common knowl-
edge and group engagement. All together these modali-
ties help pinpoint intervention opportunities and avoid un-
constructive interruptions (Cao et al. 2023a). We illustrate
multi-modal analysis in both dimensions: 1) a knowledge
support analysis with our Fibonacci weights exercise; 2)
contrasting levels of engagement only observable via multi-
modal analysis for our simulated classroom environment.

Our Setup
The physical task space consists of a table with task-relevant
objects on it and 3 participants seated around it. The task
is recorded using an Azure Kinect RGBD camera, and an
MXL AC-404 ProCon microphone. The Kinect automati-
cally tracks 32 joints per body, covering head, torso, and
limbs, returning 3 position and 4 orientation values for each.

Gaze detection uses the direction of participants’ noses
as a proxy. Using the joints of bodies extracted by the Azure
Kinect SDK, we take the average position of both ear joints,
which results in a point roughly behind the nose, and use a
vector connecting this point and the nose joint to indicate
gaze direction. We extend this vector (purple) into 3D space
to see which objects participants’ gazes are landing on.

Posture detection determines the participants’ positions
(left, middle, right) using the x-coordinate of the pelvis of
each body. Each participant’s position and orientation infor-
mation is then flattened. The vectors are stacked and then
input into a two-layer feedforward neural network. We train
three such models, one for each participant position.

Gesture recognition primarily concerns pointing detec-
tion. We use a lightweight 2-stage method from VanderHo-
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Figure 1: Object detection in Weights Task

even, Blanchard, and Krishnaswamy (2023, 2024) with fea-
tures extracted from the video using MediaPipe (Lugaresi
et al. 2019). First we detect if a gesture is in the “stroke”
phase (following Kendon (1997)) and then classify the ges-
ture’s shape. As with gaze, to infer the target objects of a
pointing gesture, we calculate a “pointing frustum” (Kranst-
edt et al. 2006) from the extended digit into 3D space (blue
and orange in the video). Objects intersecting this frustum
are considered “selected” (highlighted green).

Real-time object detection in the video is performed us-
ing a FasterRCNN ResNet-50-FPN model (Lin et al. 2017),
initialized using the default ResNet-50-FPN weights from
TorchVision, then trained over annotations of object bound-
ing boxes for 10 epochs using SGD with learning rate 1e−3,
momentum 9e− 1, and weight decay 5e− 4. Batch size was
32 and input size was 3×416×416.

Video Content
Our two scenarios (Figs. 1 and 2) prioritize different as-
pects of multimodal information processing: knowledge
support often includes the evaluation of specific objects and
classroom discussions do not. The context for knowledge
support is equally dependent on joint visual attention, ges-
ture and domain specific object detection. For social cohe-
sion, joint visual attention to speakers and posture are more
valuable.

Scenario 1: Fibonacci Weights Task To better evaluate
the accuracy and utility of object detection, we developed
a situated collaborative task wherein participants infer the
weights of a set of differently weighted blocks with the use
of a balance scale (Khebour et al. 2024a). The increases in
weight adhere to the Fibonacci series. A series of lab exper-
iments provided video data for annotation and training pur-
poses (see Fig. 1). The expectation is that object detection
provides valuable input for AI Partners offering knowledge
support. With minimal amounts of training data we can port
to similar new objects specific to new domains.

Scenario 2: Simulated Classroom Project Planning
The simulated classroom content we are demoing is a project
planning scenario from Lesson 4 of the Sensor Immersion
Curriculum Unit developed by the SchoolWide Labs project
(Biddy et al. 2021). In the lesson each student comes into
the group as the sole expert on one of three specific sen-
sor types. The students answer factual questions about the
capabilities of their sensors and brainstorm about potential

Figure 2: Contrasting engagement levels in simulated
project planning

beneficial projects involving multiple sensors in real-world
environments. An AI Partner (Cao et al. 2023a) guides and
supports these conversations, via a chat window.

Deciding which problem to address at any given time is a
compromise between what can be detected, theories of be-
havior based on behavioral/cognitive models, and defined
lesson goals. Non-verbal Multimodal analysis is primarily
useful for determining whether social dynamics are positive
or negative, relative to the specific domain under investiga-
tion. Our AI partner has several knowledge support and so-
cial cohesion states it attempts to recognize, as defined and
vetted by educational researchers (Zhang et al. 2024). An ex-
ample of a state, Dominated Discussion, is the detection of
a single group member talking for 30 seconds or more. Our
demo illustrates the necessity of using multi-modal analy-
sis to accurately identify whether the dominated discussion
results in disengaged participants (Fig. 2).

Conclusion and Future Work
We have demonstrated the importance of integrating non-
verbal behavior recognition into the modeling and interpre-
tation of multi-party dialogues when there is an interven-
tion objective. With an eye on portability, our next focus
for object detection will be devices common to most set-
tings such as tablets, laptops and phones. We expect that our
approach to modeling social cohesion will port to any AI
partner included in a working group of 3 or more, given a
document summarizing the specific topic and a task specific
model of engagement (Moore 2016; Kofod-Petersen, We-
gener, and Cassens 2009). This could include business, gov-
ernment, health, or education settings, such as board meet-
ings, working task forces, training exercises, etc. An oppor-
tunity also exists for decreasing the time intensive labor of
video annotation tasks for qualitative research purposes.
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