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Figure 1: Left: a dyad collaborates during the jigsaw activity. Right: The ‘Student’ view of the JIA web app interface, where the 
group answers the jigsaw questions and receives interventions from JIA. 

Abstract 
Conversational agents have been used to support student learning 
for some time, but the emergence of Large Language Models (LLMs) 
poses a novel opportunity to enhance their capabilities in collabora-
tive settings. LLM-powered agents can provide timely interventions 
in collaborative conversations when a teacher is unable to assist the 
students. However, the use of LLMs in such tools raises many ethical 

This work is licensed under a Creative Commons Attribution 4.0 International License. 
CHI ’25, Yokohama, Japan 
© 2025 Copyright held by the owner/author(s). 
ACM ISBN 979-8-4007-1394-1/25/04 
https://doi.org/10.1145/3706598.3713349 

questions and concerns, especially for use with young, impression-
able populations. In this work, we present the human-centered 
design and evaluation of an LLM-based agent aimed to facilitate 
small group collaboration in middle- and high-school classrooms. 
Fifty-eight groups of dyads and triads (145 participants), aged 12-17, 
collaborated in a jigsaw activity and were assigned to be assisted 
by our agent or not. The results showed decreased self-reported 
ratings of social loafng and increased use of language related to 
respectful collaboration in interactions with the agent compared to 
those without. 
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1 Introduction 
Whether it’s surgeons in an operating room, a construction crew 
fxing a breached dam following a storm, or teachers developing 
new curriculum units for a K-12 classroom, the workforce of the fu-
ture will be increasingly driven by teams working together to solve 
complex problems. Yet, many employers have noted that workers 
exhibit defcits and difculties collaborating in the workplace [93]. 
In fact, the PISA 2015 international collaborative problem solving 
(CPS) assessment among 15-year-old students across 52 economies 
found that less than 30% of students demonstrated success on even 
low complexity problems [60], compelling experts to proclaim a 
“global defcit” in collaboration skills [28, 33]. Researchers have 
suggested that collaboration defcits partially stem from a lack of 
adequate training on collaboration skills [28]. However, assigning 
students to work in groups does not necessarily ensure they will 
work collaboratively [52] and simply asking students to communi-
cate and interact does not lead to deep, meaningful learning [58, 86]. 
These challenges are exacerbated by the signifcant demands placed 
on teachers in classroom settings, where they must juggle several 
tasks at once in hectic and noisy learning environments. They 
monitor student progress during collaborative activities, provide 
student groups with personalized guidance, and support important 
knowledge-building group conversations. Moreover, they must do 
so across multiple groups of students and at the same time [8, 50, 91]. 
Under such conditions, it can be difcult for teachers to track when 
a group struggles to construct shared knowledge through collab-
oration. We propose a solution to this problem: an AI agent that 
monitors small group collaborations and intervenes at moments 
when it is necessary to support knowledge sharing and collabora-
tion. 

Specifcally, our Jigsaw Interactive Agent (JIA), shown in Fig-
ure 1, supports diverse student groups as they collaborate on Jigsaw 
classroom activities, a type of curriculum activity designed to foster 
group collaboration and knowledge sharing. In the jigsaw method, 
students are put into small groups, and each is assigned a diferent 
but related topic to study [2]. Each student independently becomes 
an "expert" in their assigned topic. These “experts” are then re-
grouped so that each new group includes one expert from each 
topic. They then share their knowledge, allowing the group to 

work collaboratively and deepen their understanding of the subject 
matter. In the current study, we use the jigsaw method as it is an 
established pedagogical practice and is a prime example of a col-
laborative problem-solving activity deployed in both middle- and 
high- school settings. 

The design and implementation of supportive agents are ham-
pered by several interdependent challenges. Although the feld of 
Computer Supported Collaborative Learning (CSCL) has long envi-
sioned the future of collaborative learning using technology-based 
support systems like in [22, 26, 77], many studies investigating AI 
applications focus on cognitive outcomes and not facilitating the 
knowledge sharing or collaboration processes crucial to learning 
[84]. This is due in large part to a disconnect between the developers 
of AI systems and the domain experts with a deep understanding 
of key values, user goals, ethical considerations, and targeted out-
comes for an AI partner for collaborative learning. The use of AI in 
K-12 classroom settings is a polarizing topic, with ethical AI design 
and responsible innovation considerations being crucial. Key con-
cerns include the privacy of personal data [14, 98], fears of future 
dependency on AI [42], and the lack of a universal set of regulations 
for its use [80]. Thus, the question of how to design a system that 
can be trusted for use in sensitive contexts, such as a classroom, 
is one of the most prominent challenges facing researchers and 
designers today. Consider the code of conduct that both teachers 
and students abide by, such as harboring an appropriate, inclu-
sive, and respectful learning environment. It is difcult to instill 
this tacit knowledge into AI systems [10] as “human reasoning is 
embodied, situated, in a social context and involves actions, often 
improvised, in the world, the complexity of which formal models 
cannot replicate” [11]. 

With the growing concern regarding AI’s potential to exploit 
and mislead, there has been a recent shift towards Human-Centered 
AI (HCAI), which emphasizes the importance of creating AI tools 
centered around human expertise and feedback [11, 74]. Addition-
ally, with the rapid advancements in AI, it is essential to innovate 
responsibly by not only taking a human-centered approach with 
key stakeholders and domain experts included, but also to have 
these design teams carefully consider the unintended consequences 
of such research [79]. More recently, Capel and colleagues (2023) 
articulated this point: 

"It is undeniable that AI and HCI need each other 
and that HCAI research can beneft from stronger 
collaborations across felds and eforts to understand 
each other’s work and values... domain experts can 
highlight considerations around values and potential 
consequences that may not be obvious to AI designers, 
giving them greater infuence in HCAI focused design. 
Given the multiplicity of interests, varieties of users, 
business interests and domain interests at play in any 
situation, this is no small challenge." [11] 

Aligning with this sentiment, in this work, we take a responsible, 
interdisciplinary, and human-centered approach to the design and 
evaluation of our large language model (LLM)-based conversational 
agent. Guiding this work are the key principles of Stilgoe et al.’s 
responsible innovation framework: refexivity, anticipation, inclu-
sion, and responsiveness [79]. Throughout each stage of the design 
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process, we carefully incorporate the feedback and teachings of 
experts in Natural Language Processing (NLP), Human-Computer 
Interaction (HCI), CSCL, and learning sciences who play the role 
of subject matter experts (SMEs) due to their direct experience 
working with students in classrooms on the jigsaw activities within 
which JIA operates. 

To achieve our high-level goal, we frst created a confgurable, 
web-based environment where participants in small groups work 
on a jigsaw activity that was adapted from an existing STEM cur-
riculum, called Sensor Immersion [72]. This curriculum has been 
successfully implemented in diverse classrooms across school dis-
tricts nationwide. To understand when and how a partner should 
intervene, we conducted studies using SMEs (i.e., CSCL researchers 
and learning scientists with direct experience working with stu-
dents in classrooms on Sensor Immersion) in a Wizard-of-Oz (WoZ) 
paradigm. These Wizard Subject Matter Experts (WoZ-SMEs) deliv-
ered real-time interventions to the group as JIA. 

Using video data from those studies, we applied a pedagogical 
annotation schema evaluating each moment that support was of-
fered by the WoZ. We annotated participants’ behaviors before 
an intervention to learn more about the collaborative, team-level 
state that prompted the WoZ to intervene, as well as what type 
of intervention was ofered (e.g., validation, task-related support). 
Using these annotations, we conducted factor analysis grouping co-
occurring annotations into three groups, which were then labeled 
by our CSCL experts into three collaborative states that occurred 
before an intervention was sent (i.e., Parallel or Limited Interaction, 
Contributing to Shared Problem Space, and Unproductive Persever-
ance). We also transcribed and analyzed the participants’ discourse 
before interventions were sent, as well as at randomly selected 
times when no intervention was sent, using several automated dis-
course classifcation models relating to collaboration. The discourse 
model results were used as feature vectors, each labeled with a col-
laborative state, to train a decision tree model to predict these states 
from participants’ dialogue. The resulting decision tree was used 
to create transparent rules that form the basis of JIA’s dialogue 
policy which detects a state from the discourse. These states and 
some recommended actions are ultimately fed as part of a prompt 
to an LLM that outputs a real-time intervention to the students 
as they collaborate. Incorporating these types of dialogue action 
constraints to an LLM has been proven to increase its adherence to 
a set of guidelines and the helpfulness of the model in a teacher-like 
interaction [63, 67, 82]. Following creation of the dialogue policy, 
a human-in-the-loop capability (HITL) was integrated into JIA’s 
architecture, enabling human experts to review JIA’s suggested 
prompts, before sending the prompts on to participants. 

Finally, we ran an evaluation study investigating the efcacy of 
our agent at promoting knowledge sharing and group collaboration 
as well as its efect on user experiences working with the agent. 
We performed a between-groups study with comparisons made 
between JIA with human-in-the-loop capability (JIA-LLM-HITL), 
a control condition with no intervention/agent (Control), and the 
previously described WoZ-SME condition. 

Evaluation results show that the JIA-LLM-HITL condition fos-
tered more thoughtful, respectful, and engaged communication 
between participants when compared with participants in the WoZ-
SME condition who displayed more emotional expression but less 

analytic and respectful interactions. Participants in the Control 
condition used more 1st person singular language (I, me, my, mine) 
than JIA-LLM-HITL and WoZ-SME groups, indicating less collabo-
rative eforts in the absence of JIA. The self-report survey results 
also showed that participants in the WoZ-SME group had signif-
cantly less social loafng compared to the Control group. However, 
there were no signifcant diferences between the Control and JIA-
LLM-HITL groups, or between the JIA-LLM-HITL and WoZ-SME 
groups for other self-report metrics including psychological safety 
and trust in agent. 

The remainder of this paper is organized as follows: Section 2 
describes responsible innovation and HCAI approaches guiding our 
primary research goals and key activities, as well as related work 
in collaborative learning through problem solving and pedagogical 
agents to support these activities. Section 3 describes the human-
centered activities taken to design and develop JIA, with Section 4 
presenting the LLM and prompting methods used. Section 5 de-
scribes the software architecture of JIA. Section 6 describes the 
evaluation study results and interpretation. We discuss our fndings 
in Section 7, followed by limitations in Section 8, and conclusions 
and future work in Section 9. 

2 Related Work 

2.1 Responsible Innovation 
While the idea of responsible innovation (RI) is not a novel concept, 
Stilgoe et al.’s framework, an efort funded by the UK Research 
Councils, is a scoping yet succinct list of guidelines that apply to all 
felds of research [79]. The authors outline the four driving princi-
ples of RI as anticipation, refexivity, inclusion, and responsiveness. 
To innovate responsibly, scientists and researchers must 1) antici-
pate the consequences and gains of the ever-evolving technological 
progress, 2) be refexive and consider the moral responsibilities of 
our work, 3) be inclusive and promote research that extends out to 
the wider public, and 4) be responsive and adapt to the fuctuation 
of public views and consistent growth of science and discovery. 
A more recently proposed framework specifcally addresses the 
profound implications of research in AI and highlights the need 
for transparency in this ever-evolving landscape of innovation [9]. 
While RI calls for open discourse and refection, AI challenges this 
through its opacity—poor transparency, explainability, and account-
ability. Thus, there is a heightened need for both prospective and 
retrospective transparency throughout all stages of innovation. We 
leveraged both frameworks to guide the design and evaluation 
of the conversational agent, and we revisit these choices in the 
discussion (Section 7). 

2.2 Human-Centered Design & Evaluation of AI 
Concerns over the potential societal impacts of AI have caused 
researchers to take more human-centered approaches toward the 
design and evaluation of AI systems. In their recent review of HCAI, 
Capel & Brereton explore the claim of human-centeredness and 
how it afects the interaction between the human and AI and the 
resulting impacts [11]. Specifcally, they identify several areas of 
emerging and overlapping HCAI research, including Interaction 
with AI and Ethical AI. Interaction with AI enables humans to 
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directly engage with the AI learning process. This includes the sub-
area of Contestable AI, where humans may contest the decision of 
AI to augment its learning process. This sub-area requires multidis-
ciplinary skilled teams that draw together diverse technical, design, 
and domain-specifc skills. Capel and Brereton note that these inter-
actions with AI have been slow to emerge but have great potential 
for HCAI. Ethical AI seeks accountability regarding fundamental 
human values and rights, and advocates for more transparent de-
sign of AI. Its overarching claim to human-centeredness is that 
it considers the rights and values of the people who are working 
with the AI or are impacted by the AI, particularly within sen-
sitive contexts [11]. In their review, the authors identify several 
design and evaluation methods used in the current HCAI litera-
ture including data-enabled design as well as Wizard-of-Oz and 
Human-in-the-loop paradigms. Data-enabled design utilizes data 
in the early stages of design to better understand context and user 
needs [30]. Further, design is an iterative practice of using data 
to inform the construction of an intelligent system, testing it in 
the real world, and adapting the design until the process becomes 
self-sustaining [47, 59]. For example, a form of data-enabled design 
includes engaging stakeholders and subject matter experts early in 
the design process, as encouraged by many in the HCI community 
[3, 30]. One such way to engage these outside entities is techniques 
like Wizard-of-Oz (WoZ), which has been deployed in wider human-
computer interaction research for decades [17]. In a WoZ paradigm, 
participants believe they are working with a computer-based entity, 
which is actually controlled by a human confederate [44]. More 
recently and related to our study, WoZ paradigms have been used 
in the design and evaluation of pedagogical conversational agents 
[43, 73]. 

Another human-centered approach includes Human-in-the-Loop 
(HITL) experimental designs. HITL is an umbrella term for a myriad 
of methods where human feedback is used to inform, train, and 
improve learning of AI agents [12, 18]. One of the earliest and most 
frequently used forms of human advice involves the use of expert-
generated rules as the backbone of intelligent systems. Rule-based 
systems (also known as expert systems) are one of the simplest 
forms of AI, using rules as the representation for knowledge coded 
into the system [34]. For example, SMEs can develop a set of if-then-
else rules to be programmed into intelligent systems [34]. Although 
these rule-based systems are simpler in nature than other learning 
algorithms (e.g., deep learning), they have the added benefts of 
transparency and explainability. Agent decisions can be aligned 
with best practices through the theoretically-grounded, empirically-
validated work in the domain represented by the SMEs. In this work, 
we take a human-centered approach by employing data-enabled 
design as well as WoZ and HITL paradigms in the design and testing 
of JIA. 

2.3 Collaborative Learning through Problem 
Solving 

CSCL research aims to understand how students engage in meaning-
making, construct knowledge, and solve problems together by par-
ticipating in a joint activity [22, 39]. This activity is usually mediated 
by technology and may be supported through pedagogical practices, 
such as the jigsaw method. CSCL environments are grounded in 

the sociocultural perspective, which posits that learning is facili-
tated through social interactions [95]. Therefore, examining how 
students interact during a joint activity is critical to understanding 
their collaboration. This includes the examination of students’ cre-
ation of a shared problem space [4, 69], how they contribute to this 
space, and build on each other’s ideas [71, 83], to solve problems 
together [21]. As noted previously, this work is largely focused on 
the specifc CSCL activity of collaborative problem solving (CPS), 
as assessments have shown defciencies in these skills worldwide 
[60]. 

However, assigning students to work in groups does not always 
ensure they will work collaboratively [52], and asking students to 
simply communicate and interact doesn’t lead to deep, meaningful 
learning [58, 86]. While dialogue is informative and can reveal 
cognitive processes like consensus building and confict resolution, 
many of these processes may not occur without guidance [23]. 
Even with guidance, students may not interact with prompts unless 
they elicit a cognitive or metacognitive response [99]. Thus, it 
is imperative that an agent designed to facilitate collaboration is 
able to 1) understand the group’s cognitive state via their dialogue 
and 2) deliver an intervention that is truly encourages groups to 
collaborate and learn from one another. 

2.4 Team-Level State Detection via Dialogue 
Dialogue is arguably the richest indicator of collaboration and cog-
nitive processing at the team level (i.e., team cognition) [15]. Many 
of the cognitive processes implicated in collaborative learning in-
cluding shared knowledge building and problem solving can studied 
through social discourse [36, 81]. With the growth of NLP tools to 
evaluate discourse, we can deduce information about a team’s cog-
nitive processing through trained discourse models. For example, 
Sun et al.’s framework of collaborative problem skills (CPS) [81] 
been used to annotate utterances and train a BERT-based classif-
cation model to classify these skills during live discourse [65, 78]. 
Similarly, Breideband et al. developed a RoBERTa-based NLP model 
to evaluate discourse in relation to shared norms (i.e., being respect-
ful) between teachers and students to guide classroom collaboration 
[8]. In addition to these CSCL-based discourse models, we can also 
explore discourse more generally with text analysis tools. For exam-
ple, many text corpora have been used to develop dictionaries that 
count words in psychologically meaningful categories. A notable 
example is Linguistic Inquiry and Word Count (LIWC), a dictionary 
featuring over 100 word categories including social, afective, and 
cognitive processes [6, 85]. Using more robust tools like LIWC al-
lows for more generalizable insights that complement the fndings 
from the CSCL-specifc models, deepening our understanding of 
the collaborative interactions. 

For a conversational agent to support collaborative learning, it 
must be able to deduce information about the team’s cognitive state, 
to know when and how to intervene accordingly. While NLP models 
and techniques can provide a wealth of information about cognitive 
processes that occur during collaboration, inferring the collective 
cognitive state at the team level remains a more complex challenge. 
This difculty arises because team-level states often emerge from 
nuanced interactions and shared dynamics that are not easily cap-
tured through speech alone [16]. Thus, in the development of JIA’s 
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dialogue policy, we used both annotated data of team behaviors and 
NLP indicators to model states (with the help of CSCL experts) in 
which JIA should intervene. In the next section, we discuss several 
examples of conversational agents developed to intervene during 
collaboration to augment student performance and learning. 

2.5 Pedagogical Conversational Agents to 
Support Collaborative Learning 

Recent advancements in NLP, particularly the emergence of many 
publicly available LLMs, have made the development of realistic and 
helpful conversational agents possible. Pedagogical conversational 
agents [35] encompass a wide variety of systems in which the user 
interacts with an agent in a learning environment. Conversational 
agents [45] refer to the class of NLP systems that engage with a 
user in a back-and-forth dialogue. Prior work in this space has 
shown that agent interactions can improve students’ motivation, 
engagement levels, and in some cases individual and group learn-
ing outcomes [25, 75, 87]. Recent surveys on pedagogical agents 
have distinguished these systems from one another based on imple-
mentation goals, the impact of the system on learning outcomes, 
and pedagogical roles of the agent [48]. Frequently, the agents are 
deployed in an online learning setting to interact with students via 
a web-based interface [89]. Some systems are designed to engage 
with students like a one-on-one tutor [97], whereas others are built 
to facilitate conversations between groups [88]. These studies have 
demonstrated the ability of pedagogical agents to improve students’ 
self-regulation skills, understanding of subject matter, and collab-
oration [49]. Only a handful of studies have specifcally focused 
on assessing CPS skills and providing interventions during remote 
collaborative gameplay [24, 78]. There is much work to be done 
in this space, particularly with the recent boom of LLMs, provided 
these innovations are developed ethically and responsibly. 

3 Human-Centered Design of JIA 
Our high-level goal is to create and implement a dialogue policy that 
is i) tightly aligned with theoretical and empirical work in collabora-
tive learning and content support, ii) has a transparent, explainable, 
and justifable mapping between the higher-level dialogue policy 
states and actions and the actual underlying measures/models that 
are inferring a given state and recommending an action. Figure 2 
provides a high-level view of the design activities undertaken to 
develop JIA with an eye toward transparent, responsible innovation. 

3.1 Data Collection in Support of JIA 
development 

Key activities include 1) a data collection where WoZ-SMEs ob-
served participants collaborating on a jigsaw activity (Figure 3), 
intervening in ways to support group knowledge building and col-
laboration, 2) annotated the data to deduce collaborative states of 
participants occurring prior to WoZ-SME interventions, and paired 
those annotations with, 3) NLP-based indicators of collaborative 
states using the Multimodal Intelligent Analyzer (MMIA), 4) used 
data from steps 3 and 4 to train a decision tree model to classify 
group’s collaborative states, which ultimately is used to generate 
a rule-based dialogue policy, which is used to prompt the Mistral 
LLM. 

Figure 2: This fgure depicts the main activities that were 
undertaken to design JIA at a high level. This includes an-
notation of WoZ-SME study data, factor analysis of those 
annotations to deduce collaborative states, and deriving dia-
logue policy rules via a trained decision tree using dialogue 
features which we describe in detail next. 

Figure 3: While students collaborate on the jigsaw activity in 
groups of 2-3 students, a WoZ-SME observes the collaboration 
remotely via video conferencing and sends messages in real-
time as JIA. 

3.2 Jigsaw Activity 
In this study, participants completed a jigsaw activity based on the 
Sensor Immersion curriculum unit which has been implemented 
with 54 teachers and more than 5000 students across three school 
districts. The unit has fve lessons, which can take 5 or more classes 
to implement, depending on the teacher. In the curriculum unit, 
students learn about basic programming concepts, using a drag and 
drop block programming environment in MakeCode, where they 
learn how to wire several hardware sensors and how to design a 
program (in MakeCode) to take in data from each sensor and show 
information on a LED display using programmatic logic. One of 
the lessons within Sensor Immersion is a jigsaw activity, where 
each student becomes an expert in a specifc MakeCode sensor 
(environmental, moisture, or sound) after completing individual 
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tutorials on how to code and test their sensor. After developing this 
expertise, students are grouped together to fll in a paper worksheet, 
which includes questions about each sensor (knowledge sharing), 
as well as questions that ask students to brainstorm scenarios where 
they might combine all three sensors to help ‘solve’ a real-world 
problem (brainstorming/collaboration). 

We adapted the jigsaw portion of the Sensor Immersion curricu-
lum for investigation in these lab data collections. For the jigsaw 
activity, we designed a fexible, web-based app with a separate 
page for each question and editable text box. Behavioral data such 
as amount of time spent on each question and written text were 
logged using Amazon DynamoDB [76]. In the ‘Student’ view inter-
face, participants collaborate on a jigsaw activity which includes 
three questions relating to knowledge sharing (e.g., “What data can 
your sensor collect?") and a fnal question relating to brainstorm-
ing (i.e., “Brainstorm several problem ideas which can be solved 
using your group’s sensors”). The interface has a textbox to type 
in their answers (Figure 1), as well as a chatbot interface in which 
WoZ-SMEs would send messages as JIA. Participants could select a 
button labeled ‘Ask JIA for help’, in which a message saying, ‘Help 
me JIA!’ would be sent to the WoZ-SME. In the ‘Wizard’ view, WoZ-
SMEs viewed the question and text written by participants in real 
time, as well as a chat interface in which they could send messages 
as JIA. More details on the software architecture connecting the 
web app, dialogue data, and JIA are in Section 5. 

3.3 Annotation of WoZ Support Movements 
To better understand the collaborative state which prompted a 
WoZ-SME to send a message, we annotated video data from the 
WoZ-SME sessions using a pedagogical schema, MOSAIC-AI. The 
original MOSAIC coding protocol was developed to evaluate the 
behaviors before and after a supportive intervention provided by 
teachers or peers during collaborative activities in the classroom 
[20, 37, 38]. The protocol examines student behaviors one minute 
before and after the intervention, to provide more context about 
the interaction, i.e., why the support was provided, who initiated 
and provided the support, and how the support was taken up. For 
the minute before and after an intervention, annotators watch the 
video data and label each behavior they observe depending on how 
long they observed it for, on a scale from 1 (none of the time) to 5 
(all of the time). 

The original MOSAIC protocol also allows researchers to iden-
tify the type of supportive intervention delivered (e.g., encourage-
ment/validation, explanation about the task). Specifcally, we used 
an adapted protocol, MOSAIC-AI, that more accurately captures 
human-AI interactions, rather than student-teacher or peer-to-peer 
interactions. This adapted protocol was revised from the original 
MOSAIC schema to 1) evaluate the support ofered by an AI agent, 
rather than a teacher or peer, 2) include behaviors observed in 
the video data and exclude those not observed in the controlled 
lab setting (i.e., announcement by teacher), 3) include students’ 
collaborative state by examining their dialogue, and 4) provide 
more information about the appropriateness of the intervention 
and students’ reactions to it. 

For every intervention message sent by the WoZ-SME, the mo-
ment before and after was annotated using the MOSAIC-AI schema. 

Across the 20 WoZ-SME sessions, there were 143 interventions de-
livered, amounting to approximately 286 minutes of video data that 
were annotated. The WoZ-SMEs annotated a group of sessions that 
were randomly assigned to them, excluding any sessions where 
they were delivering interventions. All WoZ-SMEs were trained in 
annotating the support moments following the MOSAIC-AI schema. 
The frst session was annotated by all WoZ-SMEs and discussed 
together to remove any bias and disagreements on interpreting the 
MOSAIC-AI schema. 

3.4 Factor Analysis of MOSAIC-AI Annotations 
To understand the pre-intervention behavior, we used all MOSAIC-
AI annotations from the minute before an intervention delivered 
by the WoZ-SME. The possible annotations regarded the students’ 
general and collaboration behaviors (See Table 1), dialogue states, 
and negotiation status. Dialogue state was a binary variable that an-
notators rated, 0 being productive discussion, 1 being unproductive 
discussion. Negotiation status similarly was coded 0 for no negotia-
tion and 1 for negotiation present. For each annotation label (e.g., 
‘Students are walking through their answers’), the corresponding 
scores from 1-5 were used to performed factor analysis, in order to 
cluster co-occurring behaviors together. The factor analysis resulted 
in three factors that combined students’ general and collaboration 
behaviors, dialogue states, and negotiation status. The Bartlett’s 
test results show that p < 0.001, Chi-square = 305.07. The value 
of Kaiser-Meyer-Olkin is 0.56, larger than 0.5 indicating that the 
data is acceptable for factor analysis [41]. All the variables used to 
conduct the factor analysis derive from the adapted MOSAIC anno-
tations of 20 experimental WoZ-SME sessions. We considered data 
from all times when the WoZ-SME intervened to support the group. 
We consulted with CSCL experts who qualitatively categorized the 
three factors into ‘collaborative states’ based on the characteristics 
of the variable loadings, drawing from CSCL literature to fnd simi-
lar states. This resulted in a mapping from MOSAIC item loadings 
to factors that were labeled with CSCL states, as detailed in Table 2. 

The frst factor is labeled as the collaborative state of Parallel or 
Limited Interaction. The variables students being of task (0.51), no 
collaboration in group (0.75), and the Group’s dialogue state (0.64) 
loaded positively on this component, and Students ofering or ad-
vancing ideas (-0.42), and students build of others’ ideas or paraphrase 
(-0.35) loaded negatively on this component. Together, these de-
scribe a state where students are likely not collaborating well, i.e., 
they are not working on the task together, and there is a lack of 
interaction with other group members. Similar states have also 
been described in other studies, such as, limited verbal interaction 
between group members, students rejecting others’ ideas without 
further discussion [5], or not building on each others’ ideas [68]. 
These group members are likely not working well together [52] 
and thus are not collaborating well. 

The second factor to be labeled as a collaborative state is: Con-
tributing to Shared Problem Space. The variables Students are walk-
ing through their answers (0.68), and Students are sharing information 
(0.89) loaded positively on this component, and No collaboration in 
group (-0.39) loaded negatively on this component. These indicate 
that students are sharing their knowledge with other team members 
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Behavior Collaboration 

On task or Of Task Sharing Information 

Stuck due to content-related issue Question Asking 

Stuck due to collaboration issue Ofering or advancing ideas 

Stuck due to procedural issue Building of others’ ideas or paraphrasing 

Walking through answers Talking about how they work together 

Express need for direction No collaboration 

Table 1: Example of behavior and collaboration annotation categories from the MOSAIC-AI schema. Each behavior and 
collaboration category was rated on a Likert scale from 1 (observed none of the time) to 5 (observed all of the time for the 
moment preceding an intervention by JIA). 

Factor 

Students are walking through their 
answers 
Students are on task 

State 1: Parallel or Lim-
ited Interaction 

State 2: Contributing to 
Shared Problem Space 

0.68 

State 3: Unproductive 
Perseverance 

-0.38 

Students are working and then get 
stuck 
Students are of task 0.51 

0.64 

Students are sharing information 0.89 

Students ask questions 0.37 

Students are ofering or advancing 
ideas 
Students build of others’ ideas or 
paraphrase 
No collaboration in group 

-0.42 

-0.35 

0.75 -0.39 

Group’s dialogue state 0.64 

Group’s negotiation status 0.39 

Table 2: States, factors, and loadings yielded by factor analysis. Only loadings ≥ |0.3| are displayed. The scores of the MOSAIC-AI 
annotation categories were used as factors to group collaborative states, which were then labeled by our CSCL experts. 

and contributing to the collaborative task and aligns with charac-
teristics of successful collaborations as demonstrated in previous 
research. 

Unproductive Perseverance, as the third factor and collaborative 
state, had positive loadings from Students are working and then get 
stuck (0.64), Students ask questions (0.37), and the Group’s negoti-
ation status (0.39) and negative loading from Students are on task 
(-0.38). This state describes scenarios where students may be stuck 
and trying to overcome their difculties or challenges (possibly 
without success) by asking questions of each other and negotiating, 
as observed in other studies [32, 56, 90]. If students are stuck for 
too long, it may be challenging for them to stay on task, as was 
observed in our study. 

3.5 Modeling Indicators of Collaborative States 
and Creation of Feature Vectors 

We collected discourse data via microphones that was then tran-
scribed and analyzed in real time using a Multimodal Intelligent 
Analyzer (MMIA), following the work of [8]. The MMIA was de-
signed specifcally to evaluate collaboration in small groups. The 
MMIA allows fexible integration of individual analysis models in-
cluding Automatic Speech Recognition (ASR), diarization, and a 
suite of automatic classifcation models including Of-Topic/Task 
[31], Collaborative Problem Solving (CPS) skills [65], and Commu-
nity Agreement models (respect, committed to community, moving 
thinking forward) [8], which we describe next. Data is processed 
through the MMIA in 10s chunks. 
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For this study, data was transcribed using OpenAI’s Whisper 
medium.en model [66] and diarized using an XVector model as im-
plemented in the SincTDNN class in pyannote.audio library [7, 64] 
to extract speaker embeddings. Of-Topic and -Task are both binary 
classifcation models of utterances relating to a classroom-specifc 
topic or activity [31]. These models result in a probability score from 
0 (on-topic/task) to 1 (of-topic/task) per 10s chunk. The CPS clas-
sifcation model is based on a theoretically grounded, empirically 
validated CPS framework [81], which consists of three facets: shared 
knowledge construction, negotiation/coordination, and maintain-
ing team function. The BERT-based model assigns probability scores 
from 0 to 1 according to each facet per utterance [65]. Importantly, 
this BERT model of CPS was trained on a wide array of classroom 
audio data of students working with Sensor Immersion, as well as 
other curricula. Finally, the community agreements model labels 
utterances with scores related to being respectful, showing com-
mitment to community, and moving the group’s thinking forward. 
For each agreement, a separate pre-trained RoBERTa model (also 
trained on Sensor Immersion classroom data) outputs a probability 
in the range [0, 1] for each 10s chunk of data. The model assigns 
scores to utterances during the 10s that may be considered an exam-
ple of one of the community agreements, with probabilities greater 
than 0.5 signaling a positive match [8]. 

For each minute (six 10-second chunks) preceding an interven-
tion message from the WoZ-SME, MMIA speech data is extracted 
and labeled with a state using the above factor loadings. To do so, 
each 10s chunk was given three ‘collaborative state scores’ that 
were computed using factor loadings (from Table 2) * MOSAIC 
item score1. Whichever collaborative state score was greatest dic-
tated the collaboration state label for that chunk. Additionally, we 
extracted chunks of data from each session during times that an 
intervention was not delivered, as it is important to develop a set 
of rules that suggest when to intervene and when to not interrupt 
the collaboration. These chunks of data were labeled as ‘Collabo-
ration’ and these were times where dialogue was productive, not 
warranting any intervention. 

This resulted in four target labels of collaborative state: 1) Paral-
lel or Limited Interaction, 2) Contributing to Shared Problem Space, 
3) Unproductive Perseverance, and 4) Collaboration (where no in-
terventions were sent). For every 10s chunk, a feature vector was 
created including the classifcation model scores and the resulting 
collaborative state label. Next, the feature vectors were used to train 
a decision tree to derive dialogue policy rules for each collaborative 
state, as described next. 

3.6 Decision Tree Classifcation to Derive JIA’s 
Dialogue Policy 

We wished to design a dialogue policy using a data-enabled ap-
proach using the dialogue features, combined with labeled ex-
pert human feedback. Thus, a decision tree was trained using the 
MATLAB Classifcation Learner app. We employed fve-fold cross-
validation and 10% of the data was set aside for testing. The feature 
set included three CPS scores, three community agreement scores, 

1For example, the state score for Contributing to the Shared Problem Space would 
be calculated as follows: (Students are walking through their answers Score * 0.68) + 
(Students are sharing information Score * 0.89) + (No Collaboration Score * -0.39). 

of-task and of-topic scores, and verbosity (number of words spo-
ken) for each 10-second window of time, with four classes predicted 
(the three collaborative states via factor analysis & the additional 
"Collaboration" state). 

The number of feature vectors for each class were imbalanced, 
with 59% of features being labeled "Collaboration", 35% of features 
labeled "Contributing to Shared Problem Space", 4% of features la-
beled "Parallel or Limited Interaction" , and 2% of features labeled 
"Unproductive Perseverance". In our study, the latter two states 
occurred less often. There were more instances of when JIA did 
not need to intervene or did so by encouraging participants while 
they contributed to the shared problem space. To address class 
imbalance, the training data was balanced using the Synthetic Mi-
nority Over-sampling Technique (SMOTE) [13]. SMOTE generates 
synthetic samples for the minority class by interpolating between 
existing minority instances, thereby enhancing the model’s ability 
to generalize and perform well on imbalanced datasets. "Parallel or 
Limited Interaction" and "Unproductive Perseverance" were treated 
as the minority classes and oversampled because, although rare, 
these are critical states for JIA to recognize and address. The deci-
sion tree was confgured as an optimizable tree with a maximum 
of 30 splits, and grid search was used as the optimizer within the 
Matlab Learner application. We report the results of the decision 
tree in Table 3 and the test confusion matrix in Figure 4. 

Metric Result 

Training Accuracy 62.8% 
Test Accuracy 62% 

Parallel or Limited Interaction AUC 0.8324 
Contributing to Shared Problem Space AUC 0.6818 

Unproductive Perseverance AUC 0.8891 
Collaboration (No Intervention) AUC 0.7345 

Table 3: Decision Tree Results. This table summarizes the 
performance metrics of the trained decision tree model used 
to derive JIA’s dialogue policy. Training and test accuracy 
indicate the model’s ability to classify collaborative states 
based on dialogue features. AUC values for each class refect 
the model’s discrimination ability across the collaborative 
states." The relatively high AUC for minority classes demon-
strates the efectiveness of oversampling using SMOTE, de-
spite their infrequent occurrence. These results support the 
model’s capability to identify critical collaborative states for 
intervention. 

When we consider that we have four class values to predict, 
random guess would achieve 25% performance. However, the test 
accuracy of 62% and relatively high AUC values suggest that the 
model can distinguish between the classes, especially "Unproductive 
Perseverance" (AUC = 0.8891) and "Parallel or Limited Interaction" 
(AUC = 0.8324). These two states are particularly critical, as they 
represent moments when students were struggling signifcantly and 
required intervention from JIA. Prioritizing the accurate detection 
of these states ensures that the system can intervene efectively to 
support students during these challenging moments. 

https://medium.en
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Figure 4: Test Confusion Matrix. The matrix illustrates the 
model’s performance on the test set, which comprised 10% 
of the dataset held out during training. The distribution of 
true labels versus predicted labels indicates that "Contribut-
ing to the Shared Problem Space" was the most frequently 
misclassifed category. 

While the AUC for "Contributing to Shared Problem Space" was 
lower (0.6818), this may refect an overlap in feature patterns be-
tween this class and others, leading to misclassifcations. As show in 
the test confusion matrix (Figure 4), the model frequently predicted 
"Contributing to Shared Problem Space" as "Parallel/Limited Inter-
action" (89 instances), "Unproductive Perseverance" (77 instances), 
or "Collaboration" (54 instances). This suggests signifcant feature 
overlap among these states, particularly in verbosity and other 
shared collaboration metrics. We discuss how future work could 
work on refning features to better distinguish between states in 
Section 8. 

3.7 Dialogue Policy Rule Implementation 
To extract dialogue policy rules from the resulting tree, we begin at 
the root node and create rules using the following decision and leaf 
nodes. Due to paper space restrictions, we show a pruned version 
displaying only 5 splits in Figure 5 and the full decision tree is in 
Appendix ??. 

3.7.1 Implementation of a Timekeeper Function. Our rule-based 
dialogue policy derived from the decision tree outputs an updated 
state every 10 seconds. Even with the promising accuracies reported 
in Table 3, a state prediction every 10 seconds will produce many 
misclassifed false positives, causing too many interventions to be 
sent, resulting in detrimental interruptions. Thus, we implemented 
an additional timekeeper function to act as a ‘gatekeeper’, to ensure 
that too many interventions are not sent. To guide the timekeeper 
function development, we looked at the timings of interventions 
made by our WoZ-SMEs. In the WoZ-SME studies, a total of 143 
interventions were sent throughout 20 sessions. Most of the sup-
port was provided during the brainstorming activity (Q4) (51.05%), 
followed by knowledge sharing questions: Q2 (23.78%), Q1 (16.78%), 
and Q3 (8.39%). The average time between every two interventions 
sent by the WoZ-SME across all sessions was 3 minutes 25 seconds 

Figure 5: A pruned version of the decision tree. The tree clas-
sifes collaborative states based on dialogue features such 
as CPS metrics, CoBi agreements, of-topic/task scores, and 
verbosity. The decision tree was confgured as an optimizable 
tree with a maximum of 30 splits, with the pruned version 
highlighting key decision points that inform JIA’s interven-
tions. The complete decision tree is provided in Appendix ??. 

Figure 6: Timekeeper of states to ensure misclassifcations by 
the decision tree models do not cause excessive interventions. 
For every one minute of utterances (six 10s chunks), the most 
common state in the queue is what is prompted to Mistral. 

(SD=00:01:21). On average, around 7 interventions (Mean=7.15, 
SD=3.56) were sent to the students per session. 

Based on the analysis of intervention timing from the WoZ-
SME studies, we implemented a timekeeper function so that while 
states are generated every 10s, the most common state over the 
last minute is considered in the Mistral prompt (Figure 6). The 
timekeeper is an n-length queue (where n=6) that stores the last 
n states. Then, we take the mode of that queue; and, if there are 
multiple modes, we take whichever is most recent. Currently, the 
timekeeper is updated every 10s when a new chunk is added, and 
the oldest chunk is discarded. Mistral is prompted every 10s using 
the mode of the timekeeper. 

4 Controllable Response Generation and 
Mistral Prompt Design 

Within NLP, response generation is a complex task that involves 
taking the most recent utterance in an interaction, the surrounding 

https://Mean=7.15
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context, and providing an appropriate response. LLMs that have 
been trained on large amounts of conversational data have shown 
great promise in this space, able to engage users in interactive 
dialogues online. However, they are by nature trained to generalize 
well to a variety of conversation topics– which can make them ill-
suited to domains that require highly specifc responses, including 
the classroom setting. To better ft conversational models to this 
context, it is necessary to constrain the output based on a particular 
set of criteria or to leverage controllable response generation. In 
the case of the JIA system, the model is constrained by the dialogue 
policy. The fow of the dialogue system is as follows: every ten 
seconds the dialogue agent receives a chunk of data to process and 
respond to, this chunk includes the most recent student utterances 
and the dialogue state. This data is included in a prompt that is then 
sent to the LLM, Mistral [40]. The output from the model is then 
returned to the user via a web interface as detailed in Figure 7. 

The conversational agent is backed by Mistral AI’s 7B instruction-
fnetuned language model [40]. In a 2023 shared task focused on 
generating teacher-like responses, prompt-based models were no-
tably high performers [82]. The winning system, NAISTeacher [94], 
was backed by GPT-3.5 Turbo [61]. However, the GPT family of 
models is not suitable for this use case for several reasons, the least 
of which being that it is a paid service. OpenAI explicitly states in 
Section 6 of their privacy policy that their service is not intended 
for children under the age of 13; if the service itself is not available 
to the target demographic, then it would be inappropriate to use the 
service in a context wherein they would interact with [62]. Further-
more, the data collected in this study is protected under the Institute 
Review Board, making it ineligible for use with a service that may be 
collecting prompt data. In addition to these ethical concerns, there 
is also a constraint on the compute resources since the system needs 
to be able to run on a laptop to be practical for classroom use. For 
these reasons, we sought out a high-performing open-source lan-
guage model that would not stress the limited computational power. 
Mistral-7B outperforms other LLMs of comparable size, including 
Meta’s Llama 2 [92], on a variety of language task benchmarks 
such as Hellaswag for commonsense reasoning and GSM8K for 
solving math word problems [96, 100]. Our choice to use Mistral 
over tools such as GPT-3.5 Turbo is another example of prioritizing 
responsible innovation over sheer computing or algorithmic power. 

The two main techniques we use are dynamic prompt segments 
[63], where we can turn segments of the prompt on and of ac-
cording to available data, and prompting templates [53], where we 
insert our own calculated features (e.g., states) directly into the 
prompt at execution. Please see Appendices ?? and ?? for the full 
text of our prompt templates. The active segments of our prompts 
are as follows: 

(1) Preamble: Assigns the model an identity and primes it for 
further instructions. 

(2) Setting & Role: Describes the classroom environment, lists 
behavior appropriate for an educational assistant, and pro-
vides current question text. 

(3) Formatting: Restricts the length and content of output string. 
(4) Context: Presents a recent conversation history and instruc-

tions for how to use it. 

Figure 7: System Architecture. (1) Students type their re-
sponse into the textbox of the JIA web app. (2) Data from the 
JIA web app and real-time speech analytics are saved to Dy-
namoDB. (3) Dialogue state is determined from the decision 
tree results. (4) The dialogue state is used to prompt Mistral 
for a suggested message, which is then sent to the ‘Partner’ 
view of the JIA web app. 

(5) Assignment: Assigns the model its task, including which 
state action to take. 

(6) State Action: State actions are presented with three compo-
nents: (1) a description of the current state, (2) the conse-
quences of allowing that state to persist, and (3) suggested 
interventions for advancing the conversation. 

Within the state action, we provide a suggested intervention based 
on the current state. To suggest an appropriate intervention type ac-
cording to the collaborate state detected, we used both the collabora-
tive state scores (described in Section 3.5) and MOSAIC annotations 
about the intervention type. We performed Pearson correlations 
between these state scores and intervention types (e.g., validation, 
explanation about the task) from the MOSAIC-AI schema to see 
which intervention type was most correlated to each collaborative 
state (full correlation matrix in Appendix ??). For the state of lim-
ited/parallel interaction, the suggested intervention was to direct 
their participation to the task (0.14, p<0.005). While students were 
contributing to the shared problem space, the suggested response to 
was to connect their discussion to a higher-level goal (0.14, p<0.005) 
or to ask a question (0.19, p<0.005). Finally, when in unproductive 
perseverance, the suggested response was to give an explanation or 
direction on task (0.30, p<0.005) or ask a question of the group (0.21, 
p<0.005). 

5 The JIA LLM-Based Agent and Addition of a 
Human-in-the-Loop Component 

Real-time communication between the students and JIA was facili-
tated by a WebSocket layer built on top of AWS Lambda, using a 
DynamoDB database [76] to keep track of active connections and 
participants. Likewise, data and state updates from either the stu-
dent or the partner, including answers, messages, and the current 
question, were recorded in real time and written to a DynamoDB 
database (Figure 7). 

The system architecture shown in Figure 7 depicts our fully 
functional automated JIA. However, with our commitment to using 
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Figure 8: The ‘Partner’ view of the JIA interface. Left: Human 
observes student’s writing in real time. Middle: The chatbot 
interface where messages are sent between students and JIA. 
Right: Suggested messages from Mistral populate the queue 
with options for the SME (i.e., ’human’ in the loop) to accept, 
reject, modify, or ignore each message. 

humans-in-the-loop (HITL) and responsible innovation [79], we 
opted to build out the capability for a human expert to moderate the 
interventions being sent to the group from JIA. The JIA-LLM-HITL 
interface is presented in Figure 8. For each suggested message from 
the JIA LLM-based agent, the SME has the choice of accepting, 
rejecting, modifying, or ignoring messages. ‘Accept’ would directly 
send the message to participants, while ‘Reject’ would delete the 
message from the queue and mark it as ‘reject’. Modify would allow 
the SME to modify the message before sending and Ignore would 
remove the message and mark it as ‘ignore’. 

6 Evaluation of the JIA LLM Agent with 
Human-in-the-Loop 

We know that the "gold standard" for an agent that supports group 
knowledge sharing and collaboration in a jigsaw activity is likely 
to be the subject matter expert (WoZ-SME), who has experience 
supporting students in classrooms on that jigsaw activity. A key 
goal is to develop a JIA-LLM based agent with HITL (JIA-LLM-
HITL) that will achieve similar utility; both in its efectiveness and 
in its impact on user experiences, to the WoZ-SME agent. We expect 
that both human and LLM versions of JIA will outperform a control 
condition with no support provided to students. 

We hypothesize that when compared against the Control condi-
tion, our Jigsaw Agent (JIA-LLM-HITL) and our WoZ-SME agent 
will lead to 

• H1a) improved communication patterns in the group dis-
course 

• H1b) improved user experiences, with a focus on more posi-
tive afect and perception of team processes (team cohesion, 
trust in AI). 

Furthermore, we posit that the WoZ-SME condition will outperform 
the JIA-LLM-HITL on most, if not all, of these measures, with the 
WoZ-SME condition yielding 

• H2a) improved communication patterns in the group dis-
course 

• H2b) improved user experiences, with a focus on more posi-
tive afect and perception of team processes (team cohesion, 
trust in AI). 

6.1 Experimental Design 
We designed an experiment to investigate the hypotheses above. 
The experiment is a between-groups design with three conditions 
(Control, WoZ-SME, and JIA-LLM-HITL). Participants were chil-
dren aged 12-17 recruited from Boulder, CO and the surrounding 
areas via recruitment fyers posted locally and on social media. 
Studies took place in a university research laboratory. All children 
and parents signed assent and consent documents approved by the 
university’s institutional review board. 

Participants were recruited to participate in the lab study as 
dyads and triads. After signing informed consent forms, they flled 
out self-report surveys reporting their demographics and computer 
literacy levels. Next, they worked together on the jigsaw activity 
described in Section 3.1, which included participants each learn-
ing about a specifc sensor (sound, moisture, environmental) via 
individualized tutorials before working as a group on a shared com-
puter to answer the open-ended jigsaw questions. The total study 
(including consent, assent, pre- and post-experiment surveys, and 
the jigsaw activity) took about 2 hours to complete. 

Conditions included: 
(1) Control condition (‘Control’): Participants worked on the 

jigsaw activities without any supports provided. 
(2) WoZ subject matter expert as JIA condition (‘WoZ-SME’): 

This condition included the human SMEs playing the role of 
JIA (WoZ-SME), as frst described in Section 3.1. 

(3) JIA LLM Agent with HITL condition (‘JIA-LLM-HITL’): Par-
ticipants worked with JIA developed in Section 5, which in-
cludes the HITL capability (Figure 8) where our SMEs played 
the role of the human in the loop. The HITL was advised to 
‘Reject’ messages that they would not send, because it didn’t 
make sense, wasn’t appropriate timing, or any other reason. 
‘Ignore’ was instructed to be used when the message was 
appropriate and could have been sent, but the timing was 
not appropriate. The HITL could also ’Accept’ messages to 
send them directly to the students or ’Modify’ the message 
before sending it. 

Fifty-eight groups of dyads and triads (145 participants), aged 
12-17, participated in this study. The self-report survey data for 
groups in each condition are in Table 4. We collected data from 10 
dyads and 11 triads in the control condition, 21 groups total (32 
males, 19 females, 1 non-binary, 1 prefer not to say), and for the 
JIA-LLM-HITL condition, we collected data from 9 dyads and 8 
triads, 17 groups total (28 males, 14 females). For the WoZ-SME 
condition, we collected data from 10 dyads and 10 triads, 20 groups 
total (26 males, 22 females, 2 non-binary). Across the 17 JIA-LLM-
HITL sessions, there was an average of 6.29 accepted, 5.53 rejected, 
3.29 ignored, and 1 modifed response from the SME (which we 
discuss in Section 7). 

6.1.1 Dependent Measures. The dependent measures included self-
report surveys administered before and after the study and speech 
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Category Details Control (n=53) HITL (n=42) WoZ (n=50) 

Group Type Dyads 10 9 10 
Triads 11 8 10 
Total Groups 21 17 20 

Gender Male 32 28 26 
Female 19 14 22 
Non-binary 1 – 2 
Prefer not to say 1 – – 

Grade 6th 4 2 7 
7th 11 8 11 
8th 12 11 20 
9th 7 6 6 
10th 4 9 3 
11th 10 4 2 
12th 4 2 1 
Prefer not to say 1 – – 

Ethnicity White 
Asian/Asian American or Pa-

41 
6 

32 
5 

38 
8 

cifc Islander 
Latin@/Hispanic 2 2 – 
White & Latin@/Hispanic 1 2 2 
White & Asian/Asian American 3 1 2 
or Pacifc Islander 

Main Language at Home English Only 
English and Other* 

38 
9 

37 
5 

45 
4 

Non-English** 5 – 1 
Prefer not to say 1 – – 

Computer Literacy Novice computer programmer 19 24 22 
Never computer programmed 17 12 20 
Computer programmer 16 6 8 
Expert computer programmer 1 – – 

Table 4: Demographics, Language, Ethnicity, and Computer Literacy Across Conditions. *Includes English combined with 
Spanish, Russian, Thai, Mandarin, Bulgarian, French, Hindi, or Arabic. **Includes Catalan, Mandarin, Russian, Tamil, and Tulu. 

transcripts. Self-report measures included pre- and post-experiment 
survey data. Post-experiment survey measures included psycholog-
ical safety [27], trust in teammate(s) and agent [57], positive group 
interaction and social loafng [51] and team processes [54, 55]. Au-
dio was collected with Yeti microphones for the group and lapel 
microphones for individualized audio. For reduced latency, this 
data was transcribed using faster-whisper 2  (medium), which was 
derived from OpenAI’s Whisper and operates 4x faster for the same 
accuracy while using less memory. We used ECAPA diarization 
[19] to further improve accuracy. 

6.2 Discourse Results Comparison 
Several of our hypotheses are investigated through analysis of the 
collaborative discourse using automated text analysis tools, which 
we report here. For all ffty-eight sessions, the transcripts were 
truncated to only include data from the collaborative jigsaw ac-
tivity. Based on how much each group discussed, the length of 
these transcripts varied. On the truncated transcripts, we applied 

2https://github.com/SYSTRAN/faster-whisper 

LIWC-22, which is a word-counting dictionary providing the per-
centage of words associated with a given psychologically relevant 
construct (e.g., afect-, authentic-, and analytic-related language) 
[6]. All LIWC category scores were averaged over each session. 
We also averaged the results of automatic discourse classifcation 
models (CPS, on/of topic, and CoBi agreements). 

We conducted a one-way ANOVA to compare the efects of three 
conditions (Control, JIA-LLM-HITL, WoZ-SME) on all LIWC and 
discourse classifcation results. Signifcant diferences were found 
in LIWC variables such as afect, authentic, analytic, positive tone, 
use of frst-person singular pronouns, and all or none thinking, as 
well as community agreements of respectful collaboration (CoBi-
Respect), and pushing our thinking forward (CoBi-Thinking). 

6.2.1 LIWC Results. More specifcally, we report the signifcant 
results from post-hoc Tukey HSD tests using LIWC on dialogue: 
First, the WoZ-SME condition demonstrated signifcantly higher 
levels of afect-related language compared to JIA-LLM-HITL (mean 
diference = 3.17, p = 0.0417), indicating that participants in the WoZ-
SME condition exhibited more emotional language or sentiment. 

https://2https://github.com/SYSTRAN/faster-whisper
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Further, the WoZ-SME condition demonstrated signifcantly higher 
levels of positive tone language compared to JIA-LLM-HITL (mean 
diference = 3.53, p = 0.0218). Regarding analytic thinking, defned 
as a metric of logical, formal thinking, participants in WoZ-SME 
used signifcantly more analytic language than those in JIA-LLM-
HITL (mean diference = 8.49, p = 0.007), refecting deeper cognitive 
processing and confrming H2a of improved communication in 
WoZ-SME groups. 

The JIA-LLM-HITL condition showed interesting diferences 
of language use in comparison to the other conditions. JIA-LLM-
HITL groups used signifcantly more all or none language ("all", 
"none", "never", "always") than WoZ-SME groups (mean diference 
= 0.72, p =0.0298). JIA-LLM-HITL groups used more words per 
sentence (WPS) than WoZ-SME and Control groups. JIA-LLM-HITL 
participants were also more authentic in their communication than 
both Control (mean diference = 5.98, p = 0.0228) and WoZ-SME 
groups (mean diference = -6.92, p = 0.0078), suggesting a more 
genuine or spontaneous style in the JIA-LLM-HITL groups. Finally, 
Control groups used 1st person singular pronouns ("me", "myself", 
"I") signifcantly more than JIA-LLM-HITL groups (mean diference 
= 2.40, p = 0.0005), indicating more individualized eforts rather 
than collaborative. 

6.2.2 CoBi Discourse Classification Results. Regarding respectful 
collaboration (CoBi-Respect), the JIA-LLM-HITL groups were found 
to exhibit signifcantly higher levels of respect compared to both 
Control (mean diference = 0.0599, p = 0.0033) and WoZ-SME (mean 
diference = -0.0641, p = 0.0018) groups. Pushing our thinking for-
ward (CoBi-Thinking) was also notably higher in JIA-LLM-HITL 
groups compared to Control groups (mean diference = 0.0438, p < 
0.001) and WoZ-SME groups (mean diference = -0.0456, p < 0.001), 
indicating more collaborative and thoughtful dialogue in JIA-LLM-
HITL groups. 

These detailed post-hoc statistics further emphasize that the 
JIA-LLM-HITL condition fostered more thoughtful, respectful, and 
engaged communication, with the WoZ-SME condition display-
ing higher emotional expression but less authentic and respectful 
interactions. 

6.3 Self-Report Survey Results 
To investigate self-report survey diferences across the three condi-
tions (Control, JIA-LLM-HITL, and WoZ-SME), we frst averaged 
self-report scores of social loafng, psychological safety, positive in-
teraction, team processes, and trust in teammate for each group. We 
used the Shapiro-Wilk test to assess whether the data was normally 
distributed. Social loafng, psychological safety and team processes 
were confrmed to be normally distributed with p-values exceeding 
the 0.05 threshold. 

We proceeded with a one-way ANOVA with the normally dis-
tributed measures to examine whether there were statistically sig-
nifcant diferences in the group means across the three conditions 
(see Table 5). The analysis revealed a statistically signifcant difer-
ence between the groups for the measure of social loafng (F = 3.69, 
p = 0.031). However, no signifcant diferences were found for the 
other measures: psychological safety (F = 0.36, p = 0.701) and team 
processes (F = 0.74, p = 0.482). 

Measure H-statistic p-value 

Social Loafng 3.69 0.031* 
Psychological Safety 0.36 0.701 
Team Processes 0.74 0.482 

Table 5: One-Way ANOVA Results for the self-reported sur-
vey measures of social loafng, psychological safety, and team 
processes. 

There was only a signifcant diference found for social loafng 
(p = 0.031), suggesting that this measure varies signifcantly across 
the three conditions. To further explore the signifcant fnding 
for social loafng, we conducted a Tukey HSD post-hoc test to 
determine which specifc groups difered from each other. The 
results showed that there is a statistically signifcant diference in 
the means between the Control and WoZ-SME groups (p = 0.0369), 
with the WoZ-SME group having less social loafng compared to the 
Control group. This somewhat confrms H1b, with less indication 
of social loafng in the WoZ-SME condition. However, there are 
no signifcant diferences between the Control and JIA-LLM-HITL 
groups or between the JIA-LLM-HITL and WoZ-SME groups. 

For survey measures that were not normally distributed (positive 
interaction, trust in teammate), we conducted a Kruskal-Wallis H 
test to compare the diferences across experimental conditions. The 
results revealed no signifcant diferences between the experimental 
conditions for positive interaction average (H(2) = 0.72, p = 0.699) 
or trust in teammate (H(2) = 0.21, p = 0.899). 

To investigate participants’ trust in the agent, we were only able 
to compare the JIA-LLM-HITL and WoZ-SME conditions as the 
Control condition did not have an agent, thus results are presented 
for those two conditions. For both the WoZ-SME and JIA-LLM-
HITL conditions, participants rated their trust in the agent. Because 
these measures were not normally distributed, we used the Mann-
Whitney U test to compare trust ratings between the two conditions. 
The test revealed that there was no signifcant diference in trust in 
agent ratings between the JIA-LLM-HITL and WoZ-SME conditions 
(U-statistic = 917.5, p-value = 0.282). This indicates that participants’ 
trust in the agent was similar across both conditions, rejecting H2b 
that the WoZ-SME would result in greater trust in the agent than 
JIA-LLM-HITL. 

7 Discussion 
The proliferation of LLMs in society poses a new opportunity to 
promote productive collaboration by designing pedagogical agents 
to support students in the classroom. However, the use of LLMs in 
this context raises serious ethical questions and concerns. The goal 
of this work was to explore how to create a responsible and efective 
pedagogical agent by incorporating expert human feedback. In this 
section, we discuss the results from our evaluation study, review 
the key activities rooted in responsible innovation and HCAI un-
dertaken, and further discuss how incorporating LLMs in future 
work could utilize the same HCAI approaches and framework. 

Our results show that the JIA-LLM-HITL condition fostered more 
thoughtful, respectful, and engaged communication than those 
interacting with a WoZ-SME. Specifcally, LIWC analyses on the 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Doherty et al. 

groups’ communication showed lower emotional expression but 
more authentic and respectful interactions in their communication 
patterns when they were supported by the JIA-LLM-HITL agent. 
This is certainly a promising sign, indicating that the JIA-LLM-
HITL agent produced quality dialogue that was both authentic and 
respectful. These diferences in CoBi and LIWC results may be 
due to the formal responses ofered by the LLM vs. the WoZ-SME. 
For example, the WoZ-SMEs more often encouraged participants 
when they collaborated efectively, whereas the JIA-LLM-HITL 
agent more often ofered detailed, task-related information to move 
the groups’ thinking forward. To more closely mimic the WoZ-
SME interventions, future work could revise the prompt for each 
collaborative state and also instruct the model to give succinct 
responses when possible. While the discourse between conditions 
difered, participants’ self-reported trust in the agent was similar 
for the WoZ-SME and the JIA-LLM-HITL conditions, indicating 
that both the human-written and LLM-generated responses (with 
human input) were trusted by participants. 

Notably, participants in the WoZ-SME group reported signif-
cantly less social loafng compared to the Control group, but there 
were no signifcant diferences between the Control and JIA-LLM-
HITL groups or between the JIA-LLM-HITL and WoZ-SME groups. 
This suggests that the WoZ-SME likely picked up on social loafng 
nuances in the group that the JIA-LLM-HITL did not detect. While 
the SME observed the group over video conferencing during the 
task for both JIA-LLM-HITL and WoZ-SME conditions, in the WoZ-
SME condition, they were able to quickly type a response if they 
picked up on a nonverbal behavior indicating social loafng (e.g., 
slumped back in chair, not engaged). On the other hand, the LLM 
did not have this visual information to consider and thus did not 
pick up on social loafng as quickly or efciently relying solely on 
speech. In the future work section, we revisit these fndings to dis-
cuss future work in longitudinal classroom environments that may 
be better suited to see efects where our one-session lab experiment 
did not. 

Throughout the JIA-LLM-HITL condition, the SME most often ac-
cepted the suggested messages rather than reject, modify, or ignore. 
However, they rejected an average of 5.53 messages per session. We 
found that the SMEs disagreed with some of the LLM-generated 
responses because they made assumptions (hallucinations) about 
the task that were not true (e.g., the LLM would talk about light 
sensors, however this was not a sensor that students learned about 
during the task) or relevant (e.g., suggest that the students look 
back at the written material, which was not an actual option dur-
ing the study). Only 1 message, on average, was modifed by the 
SME before being sent, suggesting that most suggestions required 
little adjustment or were either fully accepted or dismissed. The 
most common reason for modifcation was to shorten the LLM-
generated response, as they often were superfuous and failed to 
mimic a human’s succinctness. 

Regarding responsible innovation [79] and the need to include 
prospective and retrospective transparency in AI development [9], 
we take several important steps. We frst review our process using 
the four dimensions of anticipation, refexivity, inclusion, and re-
sponsiveness by taking a human-centered approach. We adhered to 
the dimensions of anticipation (anticipating the consequences and 
gains of the ever-evolving technological progress), refexivity (to be 

refexive and consider the moral responsibilities of our work), inclu-
sivity (to promote research that extends out to the wider public), and 
responsiveness (being responsive and adapting to the fuctuation 
of public views and consistent growth of science and discovery) 
via our HCAI approach to the development of JIA. Specifcally, 
we anticipated the consequences of introducing an AI partner in 
classrooms by carefully selecting an appropriate LLM and testing 
several prompting templates before fnalizing the one presented 
here. Throughout the design process of JIA, we continuously con-
sidered the moral responsibilities of designing a pedagogical agent 
including ensuring inclusivity and accessibility for diverse learn-
ers and fostering a respective learning environment. Finally, we 
were responsive to public views towards AI and LLMs by carefully 
choosing a transparent LLM with safeguards in place. 

By way of our HCAI approach, we ensured that SMEs engaged di-
rectly in the development of our dialogue policy and LLM response 
generation, for the means of both prospective and retrospective 
transparency. The SMEs frst played the role of the WoZ-SMEs in 
our early development studies, and employed MOSAIC annotation 
schema to identify groups’ collaborative states for the AI agent to 
monitor that were meaningful to teachers and learning scientists. 
Once the collaborative states were labeled, the SMEs also helped 
to craft the prompt template for each state based on CSCL liter-
ature. This choice to keep our dialogue policy and LLM prompts 
transparent and explainable to learning scientists is a key aspect 
showcasing this commitment to responsible innovation. However, 
it important to note the tradeof between balancing the decision 
tree’s accuracy with deriving collaborative states and subsequent 
features using a pedagogical schema (MOSAIC). It was important 
to involve the SMEs in several steps of the design process and to 
transparently label the states so that the fnal model is accessible to 
several disciplines, but this came at the cost of lower model accu-
racy. We note this as a limitation and discuss how the model could 
be improved in Section 8. 

This study demonstrates an approach of designing a LLM-based 
conversational agent for use with children, that is dedicated to 
responsibility and ethics. With the recent boom of LLMs and mixed 
feelings from the public about them, it is vital for researchers to 
be transparent when developing AI tools with such models. Trans-
parency not only builds trust but also promotes greater accessibility 
and accountability in the adoption of these technologies. This work 
highlights how the responsible innovation framework can guide 
the ethical and transparent integration of LLMs, setting a precedent 
for future applications in educational and collaborative AI tools. 

8 Limitations 
We note several limitations in our work regarding the experimental 
design and interpretability of the decision tree model. First, these 
studies were conducted in a single two-hour long laboratory session 
per group, while the jigsaw activity from the sensor immersion 
curriculum is usually included in 5 class lessons. Our single ses-
sion design may have limited our ability to consider key learning 
outcomes, knowledge sharing, and collaboration that would occur 
more naturally between student groups and their AI supports over 
the course of time in classroom settings. Future longitudinal studies 
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should be considered to better assess the efects of JIA’s support in 
longitudinal settings. 

Second, our data collections occurred with one group at a time, 
in a controlled lab setting, with students of diferent ages. While 
this approach allowed us to reach a higher sample size, it does not 
guarantee transfer to the noisiness of the naturalistic classroom 
environment, nor the traditional classroom context where students 
are typically around the same age. However, the 2017 NEAP Re-
port on assessing CPS skills discusses how heterogeneous naturally 
teams naturally in classrooms with a wide variation in background 
knowledge, culture, maturity, and social skills [29]. Further, the 
2015 PISA framework of CPS states that students must be prepared 
to work efectively within heterogeneous groups of familiar and 
unfamiliar members in real life [60]. We aimed to design JIA to aid 
these heterogeneous groups build their CPS skills through knowl-
edge sharing and learning. Future work should move beyond the lab 
environment and test these tools in authentic classroom settings, 
where factors such as diferent group dynamics may infuence the 
outcomes. Additionally, future work could separately study groups 
of middle-school or high-school students to better understand how 
JIA extends to each population and adapts accordingly. 

Third, our HITL capability was only used for the human SMEs 
to provide oversight over the LLM-based JIA agent. There is a 
missed opportunity here to utilize the HITL evaluative feedback 
(e.g., accept, reject) as evaluative feedback that could be directly 
incorporated into the learning algorithms, opening the door for 
forms of interactive machine learning interactive reinforcement 
learning [1, 46]. Indeed, the HITL evaluative feedback interface was 
designed with human evaluative feedback in mind, and we will be 
incorporating that important component into future work. 

We also note several limitations regarding the ML model per-
formance. While decision trees are inherently interpretable and 
well-suited for our initial exploration, they are not the only inter-
pretable machine learning models available. The test accuracy of 
62% is relatively low for practical applications, especially in the con-
text of JIA’s real-time intervention requirements. The imbalanced 
training dataset, coupled with feature overlap among classes, con-
tributed to a lower AUC for certain classes, such as "Contributing 
to Shared Problem Space" (AUC = 0.6818). To address these issues, 
future work could collect more labeled data for the minority classes 
and refne feature engineering to reduce overlap among classes. 
Future work could explore more complex yet interpretable models 
(e.g., Random Forests, Logistic Regression) to improve model per-
formance, therefore increasing the reliability and trustworthiness 
of JIA’s dialogue system. 

9 Conclusions & Ethical Considerations 
In this work, we presented the human-centered design and evalua-
tion of an LLM-based agent to facilitate small group collaboration 
in middle- and high-school classrooms. We evaluated our agent 
with one-hundred and forty fve participants aged 12-17, grouped 
into ffty-eight groups of dyads and triads, and placed in groups 
representing four conditions. These studies yielded promising re-
sults showing that when students interacted with a an LLM-based 
agent combined with a human-in-the-loop they had highly engaged 
and thoughtful conversations, more so than when they interacted 

with the WoZ-SME. The results also showed (via self-report sur-
veys) that participants in the WoZ-SME group had signifcantly less 
social loafng compared to the Control group. This indicates that 
participants’ trust in the agent was similar for the WoZ-SME and 
the JIA-LLM-HITL conditions. These results show the potential of 
designing AI supports for small groups in classrooms through re-
sponsible innovation and HCAI processes that value and integrate 
input from key domain experts from classroom contexts. The need 
for these transparent and meaningful collaborations between AI de-
velopers and key domain experts has been noted, and identifed as 
non-trivial. Our work provides a roadmap to showcase how design 
processes can indeed be undertaken that adhere to these visionary 
goals, resulting in efective, ethical, and transparent AI. 

Ethical considerations must continue to be carefully reviewed 
in future work. In particular, researchers should take into account 
how LLMs are used in classrooms where student privacy is para-
mount and LLM hallucinations can cause potential harm. With this 
in mind, our own future work will consider the use of conjecture 
mapping to further instantiate key tenets of the responsible innova-
tion framework. Conjecture mapping is a tool that can be leveraged 
to implement the responsible innovation framework, by outlining 
a set of potential uses and misuses of AI partners that are driven 
by theory. Within the learning sciences, conjecture maps [70] are 
an established method for representing explicit linkages between 
proposed interventions, mediating processes, and intended out-
comes. The path forward for LLM-based conversational agents to 
support students’ to develop key collaboration skills is an exciting 
one, but with great power comes great responsibility. The work 
presented here is intended to continue the important work in the 
HCAI community to pave a path toward responsible innovation 
of LLM-based conversational agents in classrooms, to support stu-
dents to develop the crucial collaboration skills necessary in the 
21st century workforce. 
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