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Abstract
Researchers have demonstrated that Automatic Speech Recogni-
tion (ASR) systems perform differently across demographic groups
(i.e. show bias), yet their downstream impact on spoken language
interfaces remains unexplored. We examined this question in the
context of a real-world AI-powered interface that provides tutors
with feedback on the quality of their discourse. We found that the
Whisper ASR had lower accuracy for Black vs. white tutors, likely
due to differences in acoustic patterns of speech. The downstream
automated discourse classifiers of tutor talk were correspondingly
less accurate for Black tutors when presented with ASR input. As a
result, although Black tutors demonstrated higher-quality discourse
on human transcripts, this trend was not evident on ASR transcripts.
We experimented with methods to reduce ASR bias, finding that
fine-tuning the ASR on Black speech reduced, but did not eliminate,
ASR bias and its downstream effects. We discuss implications for
AI-based spoken language interfaces aimed at providing unbiased
assessments to improve performance outcomes.
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1 Introduction
Educators’ discourse significantly impacts student learning out-
comes in the classroom [112]. For example, frameworks such as
academically productive (or Accountable) talk [68] emphasize high-
impact discourse moves that promote rigorous thinking and build-
ing a learning community, such as encouraging students to explain
their responses or relating the content to their everyday experi-
ence. Unfortunately, a significant amount of expertise is required
for teachers to successfully implement these advanced pedagogi-
cal approaches. When left to their own devices, teachers tend to
default to less effective practices, such as lecturing or superficially
engaging students with closed-ended questions (e.g., “yes/no”, “do
you understand?”) rather than open-ended questions that inspire
dialogic thinking [74].

High-quality professional learning can help teachers develop
their teaching skills [9, 79]. Education reformers have advocated
for a radical transformation in teacher professional development
from one-off conference-style presentations to more job-embedded
approaches [45], emphasizing the importance of feedback through
classroom observation. Such observations can provide teachers
with a clear and deep understanding of their performance and
progress [45, 47]. Unfortunately, scaling human classroom obser-
vation is challenging due to high costs and logistical complexities.
As a result, teachers often receive infrequent feedback on their
instructional practices, often less than once a year [53].

In response to these challenges, researchers have explored au-
tomated AI-based systems that could help scale classroom obser-
vations towards improving teacher practice with reduced cost. Ex-
amples include talk moves [100], Teacher Talk Tool [48], and the
commercial start-up TeachFX (www.teachfx.com). These systems
allow teachers to record audio files of their classroom discourse
and receive feedback on various dimensions of practice such as the
use of academically productive talk, types of questions, and student
to tutor talk ratio [16, 23, 80].
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Beyond classroom teachers, automated feedback systems have
also been used to improve the quality of human tutoring, an in-
creasingly popular approach to address pandemic-related learning
losses [52, 98, 113]. For example, the Human-tutor Coaching Tech-
nology (HTCT) platform provides automatic feedback based on
the quality of tutorial discourse during small group tutoring ses-
sions [12]. Because a majority of the tutors in these programs are
paraprofessionals with minimal pedagogical training, there is an
even more urgent need for AI-based approaches to support their
ongoing professional development [15].

With the renewed interest in AI driven by the advent of tools
like ChatGPT, it is likely that such automated feedback systems will
be increasingly used to scale professional learning in educational
settings. It is thus imperative that the systems are sufficiently ac-
curate given their potential real-world impact on student learning
outcomes [19, 95]. These systems typically use automatic speech
recognition (ASR) to convert audio of classroom or tutorial record-
ings to text, followed by natural language processing (NLP) tools
(e.g., large language models [LLMs]) that classify the text into differ-
ent dimensions of pedagogical practice [49], which are visualized
to provide actionable feedback (Figure 1 ). Providing accurate feed-
back on the quality of practice is an important component that
underlies the success of these systems.

One major challenge to providing accurate feedback is the qual-
ity of ASR since classrooms are noisy environments with multi-
party chatter, background noise, and other disruptions [24]. To
this end, researchers have been contending with methods to im-
prove the quality of ASR in classroom contexts with varied success
[10, 14, 96, 97]. However, in addition to overall accuracy, the differ-
ential performance of automated feedback systems across demo-
graphic groups (i.e., bias) remains unexplored. This is particularly
problematic given that bias in the accuracy of commercial ASR
systems has been reported with respect to factors such as race
[17, 51, 73, 108], dialect [103], and gender [42, 102]. For example,
a recent study found that commercial ASR systems made about
twice as many errors when transcribing speech of African Ameri-
can speakers compared to white speakers [51]. As a result, African
American and non-native English speakers have expressed dissatis-
faction and mistrust in ASR technology and attribute these issues
to frequent misunderstandings and interruptions in the systems’
output [18, 36, 67, 108, 111].

These growing concerns about racial bias exhibited by ASR mod-
els are exacerbated by the long history of anti-Black racism in the
US. Black teachers in the US make up just 6% of the entire teacher
population [72], with reports highlighting a continuous decline over
the years [105]. Studies have found that Black teachers sometimes
feel undervalued and disrespected in their teaching profession [21],
which often pushes them to leave the profession. In the words of a
Black teacher, “It feels like we’re coming up short. It feels like we’re
not meeting the criteria, and so, we exit the field altogether” [21].
Also, African American Vernacular English (AAVE) and its regional
variations [39] used by some Black speakers has been considered
non-standard and inappropriate for educational use [22]. Given
the delicate positions of Black teachers, it is essential that deployed
educational tools do not negatively impact these groups of teachers.

Our research explored these concerns by examining racial bias in
ASR and downstream automated feedback systems used in educa-
tional settings. Our key contribution lies in exploring bias through-
out the computational pipeline as shown in Figure 1. We started by
examining racial bias in a popular open-source ASR engine applied
to real-world educational discourse (Research Question [RQ] 1), a
gap that has not been explored in previous research. Because ASR
in these systems serves as an input for automated feedback rather
than being an end in itself, we investigated the extent to which bias
in ASR has cascading impacts on bias in downstream discourse clas-
sification (RQ 2). In addition, we explored two methods to mitigate
bias and its effects (RQ 3).

We conducted our research as part of a research-practice partner-
ship [5] with ANON, a non-profit provider of high-dosage tutoring
focused on low-income school districts in the US. The ANON tutor-
ing system includes an interface that provides automated feedback
on the quality of the tutorial discourse for formative improvement
(i.e., not for evaluative purposes). We utilized audio recordings
of authentic small group tutoring sessions from Black and white
tutors to address our research questions.

2 Background and Related Work
2.1 Defining and measuring bias
Bias in the context of Machine Learning (ML) models can be defined
as systematic misrepresentations or errors that favor certain groups
[28]. Researchers have proposed different approaches to measure
bias and fairness in ML and AI [106], with the majority focusing on
establishing equitable performance for all subgroups [32, 66, 104].
Empirically, ML bias manifests when a model produces different
scores for individuals belonging to different subgroups (e.g., race,
gender) despite having the same human-verified (ground-truth)
scores [104]. However, ML bias would not occur if the ground-truth
scores were indeed different, and the model essentially reproduces
that difference. Another type of bias – accuracy bias – occurs when
a model’s accuracy is different for a given subgroup aside from
differences in scores. Bias would also occur if the rates of favorable
(or unfavorable) outcomes differed for protected classes (groups
that are legally protected from discrimination) [32, 66]. Whereas
it is commonly assumed that bias in ML is solely a function of the
training data, Booth et al. [11] provide a theoretical framework
of how ML bias can arise as a result of contamination in different
stages of a ML pipeline. For example, bias could emerge when
methods used to compute features used by the ML models are
themselves biased or when the features subtly encode protected
features like gender or race [11].

2.2 Racial bias in Automatic Speech
Recognition (ASR)

Automatic speech recognition (ASR) systems convert spoken lan-
guage into text [61]. Traditionally, these systems consisted of sepa-
rate acoustic and language modeling components [54, 61]. In mod-
ern end-to-end ASR systems, both components are jointly trained
using end-to-end learning from large volumes of transcribed audio
[101].
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Figure 1: The automated feedback pipeline. The input is tutor speech (Audio Input), which is passed through an Automatic
Speech Recognition (ASR) model, producing a text transcript (Audio Transcript). Next, the transcript is passed through a
Discourse Classification Model, which classifies the texts into different discourse moves. Finally, the tutor’s usage of each
discourse move is presented as Discourse Visualizations. Our ResearchQuestions (RQs) examine bias in the ASR (RQ1), its
downstream effect on Discourse Classification (RQ2), and fine-tuning (in the case of the ASR system) and ASR augmented
training (in the case of the classification model) as ways of mitigating bias (RQ3).

Several studies have examined racial bias in ASR, highlighting
significant disparities in accuracy across various demographic fac-
tors [18, 30, 36, 51, 63, 73, 91]. Koenecke et al. [51] reported an
average error rate for Black speakers (35%), nearly double that of
white speakers (19%) in five commercial ASR systems. They found
that acoustic factors were primarily responsible for the racial bias,
as a significant performance gap persisted even when Black and
white individuals spoke identical phrases [51]. A related kind of
bias is accented language bias [37, 38, 58, 103], with studies indicat-
ing consistent underperformance on minority dialects and accents.
For example, Slaughter et al. [91], investigated bias in the popular
Whisper ASR and found that the model’s embeddings exhibit bias
based on race, gender, nationality, and physical disabilities. Martin
and Tang [63] explored the habitual ”be” of AAVE, a grammatical
feature used to express regular actions or states (e.g., ”She be tired
after school,” meaning “She is usually tired after school” [34]) and
found that ASR systems struggle with these AAVE features.

Human-Computer Interaction (HCI) researchers have qualita-
tively analyzed the challenges faced by Black and African Ameri-
can speakers when interacting with commercial ASRs [13, 18, 36].
For example, Harrington et al. [36] highlighted the difficulties
older Black speakers encountered in accessing health-related in-
formation via Google Home, requiring them to engage in a form
of “cultural code switching.” Likewise, Cunningham et al. [18]
noted that African American speakers often engage in a form of
“invisible labor” by adjusting their natural speech patterns to make
the technology work. They attributed these challenges to a lack
of inclusivity in the language model design and datasets, which
fail to adequately represent the linguistic features of more diverse
speakers [18].

Similarly, Feng et al. [27] highlight several reasons for bias in
ASR, suggesting that a primary cause is the underrepresentation of
minority groups in the training data. Other reasons could be tran-
scription bias from human annotators, pronunciation variability
within and across groups, or the quality of the recording equipment

[27]. Thus, the most common approach to de-biasing ASR mod-
els involves diversifying the speech datasets [73, 93] or additional
fine-tuning (i.e., adjusting model weights) using smaller datasets
of minority speakers [31, 109] or synthetic data from a generative
model [88], although whether these techniques suffice to eliminate
bias and its harms remains an open question.

3 Novelty, Contribution, & ResearchQuestions
(RQ)

We investigate ASR bias in automatic feedback interfaces used in
authentic educational settings, specifically high-impact tutoring
sessions. While previous studies have independently explored bias
in different components of conversational AI systems, their in-
terconnection (Figure1 above) is yet to be examined. Our main
contribution is to address this gap by instantiating aspects of Tay
et al.’s [104] conceptual model of ML bias, which emphasizes the
importance of examining bias at multiple levels of the ML pipeline.
Our research was guided by three research questions (RQs).

• RQ1: To what extent are contemporary ASR systems biased
against Black (compared to white) tutors, and what is the
source of the bias? We addressed this question by applying
Whisper ASR [82] (one of the most prominent open-source
ASRs) to tutorial data. We also expanded on Koenecke et
al.’s approach [51] to investigate whether the source of bias
emerges from the spoken content (what was said) or the
acoustics (how it was said).

• RQ2: To what extent does ASR bias impact downstream
discourse classification? We investigated this question by
examining differences (for Black vs. white tutors) in the
accuracy and scores produced by a RoBERTa [59] encoder
model trained to classify academically productive talk in
tutorial discourse.

• RQ3: What are the most effective ways to mitigate ASR bias,
and does this have an impact on downstream classification?
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To address this question, we fine-tuned the Whisper ASR
on demographically diverse datasets and contrasted it with
an ASR-augmented training strategy to mitigate bias in the
discourse classification models.

This current research is novel in three significant areas: First,
to the best of our knowledge, this is the first study that links racial
biases in ASR to corresponding biases on downstream classifica-
tion tasks. A second novel aspect pertains to the use of different
strategies to reduce bias, including debiasing the ASR itself, or mak-
ing the discourse classifier more robust to ASR errors. Previous
research has mainly focused on either documenting racial bias in
ASR [51, 63, 103] or mitigating it [31, 109], and emphasizes a single
stage of the pipeline. By examining different approaches aimed at
multiple stages of the pipeline, we aim to provide more compre-
hensive recommendations. Our work is also novel as we examined
the impacts of ASR bias in authentic educational settings. This
expands evidence of ASR racial bias to a new domain, extending ex-
isting works that finds racial bias in healthcare [36], sociolinguistic
interviews [51], and everyday speech [63, 103]. Lastly, our research-
practice partnership with ANON ensures that our research findings
have immediate real-world effects, by providing guidance on how
to interpret model results (RQs 1 and 2) while also improving the
underlying models (RQ3) used to enhance thousands of tutorial
sessions.

4 Research context and data
4.1 Research Context
We (the research organization) partnered with ANON, a large non-
profit provider of tutoring services to Title I schools in the U.S. (i.e.,
public schools with predominantly low-income and historically
marginalized student populations). This partnership emerged from
shared mutual goals of the research organization – to leverage ad-
vances in technology to address important societal needs – with
those of ANON, which aims to help historically marginalized stu-
dents increase their mathematics achievement scores at no cost.
ANON partners with another non-profit organization to recruit re-
cent college graduates for a “service year” of employment as tutors.
Tutoring occurs in small groups of 2-5 students during the school
day, where students are physically present in a classroom while
tutors work remotely via a virtual tutoring interface.

The interface records video and audio from the tutor and stu-
dents. The videos are primarily collected for security purposes (i.e.,
to ensure safety of students who are minors during the tutoring
sessions with adult tutors), and secondly for quality improvement
of the tutoring program (but not evaluative) purposes. To this latter
point, tutors are paired with dedicated coaches who review record-
ings of their tutoring sessions along with AI-generated feedback for
in-depth analysis of tutors’ strengths and areas for improvement.
Recording and feedback coaching cycles are a routine component
of the program, which reduces (though does not eliminate) percep-
tions of being surveilled.

Policies for recording video and audio and notification of stake-
holders were established by the individual school districts within
federal, state, and district-specific requirements. These data were
collected by ANON under agreements with the individual districts.
ANON then de-identified the data and shared deidentified audio

(but not video) and transcripts with the research team under a Data
Usage Agreement signed by both organizations. The overall re-
search project of developing AI-based professional learning was
approved by the research organization’s Institutional Review Board
(IRB), of which the present study focuses on the detection and ame-
lioration of racial bias in ASR to improve the equity of benefits for
tutors and students.

4.2 Analysis of Tutorial Discourse
Tutoring discourse was analyzed using the Academically Productive
Talk (APT) framework [68], which outlines six tutor discourse
moves (talk moves) that promote student learning and equitable
participation: (1): Keeping everyone together (e.g. “What did Eliza
just say her equationwas?”); (2)Getting students to relate to another’s
ideas (e.g. “Do you agree with Juan that the answer is 7/10?”); (3)
Restating (building off a prior response, e.g. “Add two here”); (4)
Pressing for accuracy (e.g. “Can you give an example of an ordered
pair?”); (5). Revoicing (e.g. “Julia told us she would add two here.”);
and (6) Pressing for reasoning (e.g. “Why could I argue that the slope
should be increasing?”) [100].

The research teamworkedwith ANON to develop an AI-powered
interface that provides formative feedback on tutors’ usage of the
talk moves. The recordings are automatically transcribed with
Whisper ASR [82] (detailed in Section 5) and input to a discourse
classifier (detailed in Section 6), which outputs model-estimated
occurrences of talk moves from each utterance, which are then
presented as feedback in interfaces similar to Figure 2. Because this
feedback is used to guide tutor learning, it is essential that it is both
accurate and unbiased, which is the focus of the present work.

4.3 Data
We obtained 164 recordings from 65 tutors of 9th grade Mathemat-
ics small group tutoring sessions, alongside tutor-provided demo-
graphic data consisting of race descriptions, personal pronouns,
and graduation year. These recordings were transcribed by both
human annotators and with OpenAI Whisper large-v2 [82], an ASR
that is publicly available, which enables replication. The Whisper
ASR is also used by the automatic feedback interface, meaning that
insights gained from this study could inform practice through the
creation of more inclusive models or providing guidance on the
usage of the models.

A majority of the tutors self-reported their race as Black or
African American (henceforth, Black – 30.8%), or white (26.2%)
with personal pronouns of She/Her/Hers (60.0%) or He/Him/His
(30.8%). There were insufficient number of tutors from other racial
and pronoun categories, so we focused on Black and white tutors.
Due to our methodology of matching utterances on confounding
variables (Section 4.4), we excluded tutors who opted out from
providing personal pronouns or did not provide their graduation
year, which resulted in 88 tutoring sessions from 34 unique tutors.
We extracted a total of 18,379 tutor utterances from the transcripts
spanning 17.41 hours of recordings.

4.4 Propensity Matching
Koenecke et al. [51] provided a systematic method to quantify ASR
bias while addressing extraneous variables, which we replicated
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Figure 2: Screenshot of the tutor feedback interface showing visualizations of the usage of Talk Patterns, Talk Moves, and
Conversation Word Cloud

here. Specifically, their method relied on propensity-scorematching
[62] a widely-used statistical technique that estimates the effect of
an independent variable on a dependent variable by matching cases
on potential confounding variables (covariates) that may predict the
independent variable [85]. ASR accuracy (dependent variable) may
vary due to other confounding factors such as speaker’s gender
[51], age [89], and noise [73], in addition to race (independent
variable). Therefore, we employed propensity-score matching [62]
to balance these confounding factors by creating a subset of audio
snippets from white and Black tutors with comparable distributions
of personal pronouns, age, duration, and audio quality (i.e., signal-
to-noise ratio (SNR) in the acoustic channel), thereby enabling us
to isolate the effect of racial disparities while controlling for these
confounding factors.

Propensity scores were computed at the utterance level (using
the Python version 3.10.9 package PsmPy [50]) by fitting a logistic
regression model that regressed race on the following confounding
factors: an indicator variable for tutor personal pronouns, gradu-
ation year (as an approximation for age), natural log (to address
outliers) of the utterance length (measured in seconds), and SNR.
Nearest neighbor matching without replacement was performed
on the computed propensity scores, using a caliper size of 0.01
(which is 0.2 * the standard deviation of the propensity scores [1]).
The matched data set comprised 12,572 utterances reflecting 11.96
hours of audio: 6,286 by 18 Black speakers (50%He/Him/His) and an
equal number of utterances by 16 white speakers (38% He/Him/His).
Successful matching was verified by checking the propensity logit
distributions and by ensuring that the resulting distributions of co-
variates were approximately equal between races. This Propensity
Matched dataset was the main dataset used in the analyses.

4.5 Talk Move Coding
Talk move labels were annotated by expert coders, who demon-
strated high levels of inter-rater reliability (Cohen’s kappa > 0.8).
The coding scheme was developed with experts in math education
and APT [68]. The annotations are based on the human transcript
of a recording and are provided at the utterance level, though coders
use the surrounding context for disambiguation. We coded a por-
tion (11,983 utterances) of the full dataset for talk moves with 2,949
(24.6%) utterances coded as at least one talk move with the follow-
ing distributions: Pressing for Accuracy (11.2%), Keeping Everyone
Together (8.1%), Revoicing (3.5%), Pressing for Reasoning (0.7%),
Restating (0.6%), Relating (0.5%), and None (75.4%). We used the
same propensity-matching approach as above to select 7,292 total
utterances1: 3,647 by 13 Black speakers and 3,645 utterances by 13
white speakers from the 68 recordings, totaling 7.1 hours.

4.6 Statistical modeling
We used linear mixed effects (LME) models to statistically analyze
our data to account for repeated observations and nesting (i.e.,
clustering) of recordings within tutors. Specifically, we regressed
our dependent variables (DVs - see below) on the interactions be-
tween race and personal pronouns with nested random intercepts
of recordings within tutors, using the lme4 package [2] in R ver-
sion 3.6.3 [81]; more complex random effects structures resulted
in convergence errors due to a lack of variance. Post-hoc analyses
of significant interactions indicated different results for each race
(main effects) by personal pronouns (moderator), which were ex-
plored using emmeans [86]. We used two-tailed tests with a p < .05

1There were two duplicate utterances from white speakers, resulting in an unequal
number of utterances in this dataset.
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cutoff for significance. A sample statistical model is shown below:

�+ ∼ '024

[�;02: |,ℎ8C4 ]×%4AB>=0; %A>=>D=B [ (ℎ4�4A�4AB |�4�8<�8B]
+(1|)DC>A : '42>A38=6) + (1|)DC>A )

5 RQ1: ASR bias and sources of bias
We investigated racial bias in the Whisper ASR, disentangling the
source of the bias in the system to either the acoustic or linguistic
components of the model. Generally, Word Error Rate (WER) is
used to evaluate the performance of ASR systems [73], i.e. the ratio
of word-level edit operations (substitutions, deletions, insertions)
needed to transform a human (reference) transcript to the ASR
(hypothesis) result, divided by the number of words in the reference:

"0C2ℎ �AA>A '0C4 = (BD1BC8CDC8>=B + 34;4C8>=B + 8=B4AC8>=B)
÷(A4 5 4A4=24 F>A3 2>D=C)

The alignment of reference and hypothesis was computed following
text normalization to remove non-spoken annotations, spell out
numbers, expand contractions, strip punctuation, and convert text
to lowercase. Because WER is unbounded and can reach very large
values where many insertions are present (as we see in the case of
repetitive insertions of a single word or phrase, which Whisper is
known to be prone to [14]), such extreme values can inflate scores.
For this reason, the Match Error Rate (MER) [70], which is bounded
from -0 to 1, was used as a summary error metric for ASR accuracy.
However, we also include WER statistics for comparison to other
work and examined bias in each type of ASR edit operation (i.e.,
error) separately

"0C2ℎ �AA>A '0C4 = (BD1BC8CDC8>=B + 34;4C8>=B + 8=B4AC8>=B)
÷(8=B4AC8>=B + A4 5 4A4=24 F>A3 2>D=C)

5.1 Overall ASR Errors and Bias
Table 1 provides descriptives of WER, MER, and different error
types by race on the Propensity Matched dataset (left). The linear
mixed effects model that regressed MER on the race × personal pro-
nouns interaction revealed a significantly higher error rate for Black
tutors (p=0.009). There were significantly more deletion (p=0.004),
and substitutions (p=0.019) errors for Black tutors, however the
increase in insertions was not significant (p=0.173). In general, the
ASR WER for Black tutors was higher (by 24%) than their white
counterparts, which replicates prior research [51]. There were
no significant differences by personal pronouns nor a significant
interaction between race and personal pronouns.

Because the distributions were zero-inflated (33% of utterances
were transcribed perfectly, and each error type only occurred in
approximately one-third of utterances), we fit logistic regression
models to examine whether the presence/absence of errors in each
utterance varied by race, personal pronouns, and their interaction.
We found that the odds of at least one error were significantly
higher for Black tutors (odds ratio [OR] =1.87, p=0.014), and specif-
ically, the odds for at least one deletion or at least one substitution
error was significantly higher for Black tutors (deletion: OR=1.74,
p=0.006; substitution: OR=1.47, p=0.019). There was also an inter-
action with personal pronouns for deletion errors, which indicated
at least one deletion per utterance was more likely for Black than

white tutors, but only for speakers preferring He/Him/His personal
pronouns (OR=1.74 vs 0.93 for She/Her/Hers).

5.2 Sources of Bias
We investigated whether bias could be attributed to the linguistic
(what was said) versus the acoustic (how it was said) components
of the ASR system, building off the approach of [51].

5.2.1 Acoustic Components of Bias. To isolate bias in the acoustic
component of the ASR system, we selected a subset of matched
n-grams (short phrases) that were spoken by both Black and white
tutors. Thus, any differences in accuracy for these phrases can
be attributed to differences in the acoustic component since the
language is fixed. Following the approach of [51], this matching
was limited to phrases of at least two words. We also ensured
that the speakers of the matched n-grams had the same personal
pronouns and were of similar age (approximated by graduation
year). Unlike [51], we further verified that the SNR of the matched
utterances was approximately equivalent, i.e., within 6dB (with
the minimum discernible difference by a human listener as 3dB;
[65]). Matching on the human transcripts resulted in 3,042 pairs
of utterances between 2 and 9 words and 0.1 and 8.7 seconds in
length.

Since the Whisper decoder implicitly contains a language model
and sequence decodingmakes use of the linguistic context surround-
ing an n-gram, it is possible that differences in ASR performance
between matched n-grams still has a residual contribution from
the rest of the utterance. To control for this, we isolated the au-
dio of each n-gram within the original utterance, then transcribed
the extracted n-grams with Whisper. Specifically, we used forced
alignment [55] as implemented in TorchAudio, using the HuBERT
ASR model [40] to extract frame-wise probability distributions over
tokens in order to derive the most likely temporal alignment of
each n-gram to the audio and used this to extract the corresponding
n-gram audio.
As shown in Table 1 (right side), we found that the overall MER
(p=0.038) and deletion rate (p<0.001) were indeed significantly
higher for Black tutors even when controlling precisely for lan-
guage by analyzing matched n-grams. There was no significant
racial difference for the insertion and substitution rates. Post-hoc
analysis on the significant race and personal pronouns interaction
revealed that deletions were significantly more likely for Black tu-
tors than for white with He/Him/His personal pronouns (21% vs
15%, p<0.001), but equivalent between races for She/Her/Hers (19%
vs 18%, p=0.844 for Black and white respectively). Thus, bias was
largest for Black tutors with He/Him/His personal pronouns, likely
due to deletion errors.

5.2.2 Language Components of Bias. Following the approach of
[51], we hypothesized that the lower ASR accuracy for the Black
tutors may be a result of word usage outside of the fixed vocabulary
of the ASR’s languagemodel. Using the propensity matched dataset,
we collected all unique tokens (words) that were transcribed by the
ASR as an approximate reconstruction of the model’s vocabulary,
and likewise for ground-truth human transcripts. From this set, we
then computed the proportion of words in the human transcripts
that had been transcribed in the reconstructed ASR vocabulary. We
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Table 1: Mean error rates by race for the Propensity Matched and N-gram matched datasets.

Propensity Matched N-gram Matched

Measure White Black White Black
Word error rate (WER) 0.39 0.48 0.52 0.58
Match error rate (MER) 0.24 0.31 0.41 0.46
Deletion rate 0.10 0.13 0.17 0.19
Insertion rate 0.18 0.21 0.15 0.16
Substitution rate 0.10 0.14 0.20 0.23

found that 87% of the words transcribed by humans were available
in the ASR vocabulary for Black tutors with a similar rate (88%) for
white tutors.

Next, we investigated the average perplexity that language mod-
els assign to the utterances for both groups. The perplexity of an
utterance is defined as the exponentiated average of negative log-
likelihood over tokens, each conditioned on the preceding tokens
[46]. This quantifies how surprised themodel is to encounter a given
string of words. Utterances with lower perplexity are thus more
easily predicted (i.e., transcribed) by the language model. Because
Whisper does not have a separate language model from which we
can compute perplexity based on language alone, we assumed that
the distributions of other recent language models from the same
OpenAI family, might align well with that used in Whisper and
thus used GPT-2 to derive perplexity scores. We filtered out utter-
ances with only a single word as we found the perplexity metric is
inflated for such utterances. We found that perplexity was lower
(i.e., less surprising speech based on the GPT-2 language model) for
the human transcripts of Black tutors than white tutors (propensity
scores of 981 and 1,125 respectively), and likewise for Whisper
transcripts (866 and 968). Thus, any differences in language use
among races, did not manifest in more surprising utterances for
Black speakers according to a LLM trained on a broad corpus.

Overall, our results suggested that the language use of Black
tutors was not more out-of-distribution or unexpected than for
white tutors, indicating that language use does not explain the ASR
performance gap.

6 RQ2: effects of ASR bias on downstream
discourse classification

We explored the extent to which ASR bias affects downstream classi-
fication by examining how using ASR input influences the accuracy
and scores generated by a RoBERTa encoder model [59] trained
to classify tutor talk moves usage. We chose to use RoBERTa over
more recent LLMs because this model is deployed in the automated
feedback interface used for professional coaching in our application
domain.

6.1 Training the Talk Moves Discourse
Classifier

We completed two rounds of fine-tuning of a RoBERTa classifier
to predict seven classes of talk moves (six moves plus None) in a
multi-class classification setting following the approach of [100].
The training process involved standard fine-tuning of the RoBERTa

model, wherein the base transformer layers were initialized from
the pre-trained model, and the final layer was replaced with a fully
connected layer to output probabilities for the seven classes. We
used cross-entropy loss as the objective function for training. The
first round of fine-tuning consisted of tuning with an out of domain
dataset, comprising 567 human-annotated K-12 mathematics lesson
transcripts. Similar to our data, this dataset was derived from video
recordings, including lessons with either whole-class discussions
and/or small group work, in addition to online lessons [99]. We
fine-tuned this RoBERTa model a second time in a cross valida-
tion setting on the 11,983 labelled utterances (prior to propensity
matching).

We employed 10-fold cross-validation where in each iteration,
eight folds were used as a train set, one was used as a develop-
ment set, and one was held out for testing. The model was trained
over five epochs, saving checkpoints of the model throughout the
training process. The model checkpoint with the highest accuracy
on the development set was used to generate predictions on the
held-out test set. The predictions from each of the 10 test sets were
combined. Previously cited (better-performing) models harnessed
larger context windows (e.g., seven previous and seven future ut-
terances) and/or previous student utterances. However, since our
focus is on single utterances of tutor speech, we opted for a less
accurate yet more appropriate single-utterance model to investigate
our research questions.

Using the talk moves Propensity Matched subset of this data,
consisting of 7,292 matched utterances, we then investigated differ-
ences between races in the occurrence rate and classification errors
of talk moves.

6.2 Bias in the Talk Moves Model
6.2.1 Talk Moves Model Accuracy. We first investigated whether
talk moves model accuracy (left side of Table 2 ) differed by race
when using human-transcribed input compared to ASR input. Us-
ing human-transcribed input to the talk moves model, the F1 score
(a measure of classification accuracy) was 0.66 for Black tutors and
0.64 for white tutors. However, there was a larger decrease in F1
scores when moving from human to ASR transcripts for Black tu-
tors (from .66 to .51, a 0.15 decrease) compared to white tutors (from
.64 to .54, a 0.10 decrease). To test this statistically, we regressed
model accuracy (1 [accurate] or 0 [inaccurate]) on the interaction
between race and personal pronouns for both human and ASR
transcripts via two logistic regression models. Results revealed sig-
nificantly higher odds of making a classification error for Black vs.
white tutor utterances for ASR transcripts (OR=1.50; p=0.013), but
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Table 2: Talk Moves model error rates and occurrence rates using human and ASR transcripts

Model Accuracy(Macro F1 Scores) Model Predictions(% Talk Moves)

White Black White Black
Ground Truth - - 23.3 27.1
Human Transcript 0.64 0.66 22.2 25.5
ASR Transcript 0.54 0.51 19.8 20.2

there was no equivalent difference for human-transcripts (OR=1.31,
p=0.170), suggesting bias against Black tutors is likely due to the
ASR accuracy bias noted in RQ1.

6.2.2 Talk Moves Occurrence. Having found lower model accu-
racy for the talk moves model when provided with ASR inputs,
we proceeded to examine how this affected classification rate of
utterances as containing a talk move (vs. None; right side of Ta-
ble 2 ). Starting with the ground-truth human scores, we found
that talk moves were actually coded at a higher rate (27%) in Black
tutor’s utterances, compared to 23% of the time in white tutor’s
utterances, though this difference only approached significance
(OR=1.52; p=0.091) with a logistic mixed effects regression model
that regressed the presence [1] or absence [0] of talk moves on the
race × personal pronouns interaction. This relative advantage for
Black tutors was maintained when the talk moves model generated
predictions using the human transcript input (26% vs 22%; OR=1.56,
p=0.017), but was eliminated for ASR transcript input (20% occur-
rence rate for both races, modeled OR=1.31, p=0.126). Thus, ASR
bias adversely impacted the accuracy and scores of the underlying
discourse classifiers for Black tutors.

7 RQ 3: Mitigating bias
To mitigate the racial bias observed in RQ1 and RQ2, we imple-
mented two techniques for de-biasing the ASR and classification
systems for fair performance between both race groups.

7.1 Fine-tuning the ASR Model
We hypothesized that we could address the racial performance gap
in ASR by fine-tuning the Whisper ASR model with in-domain
data that had an equal representation of speech from white and
Black tutors. Thus, we selected an approximately equal number of
utterances from Black and white tutors (∼7,994 utterances each)
taken from the initial dataset (prior to matching on race, personal
pronouns, and graduation year). We excluded the talk move labeled
subset of utterances as these were used to evaluate performance.
We fine-tuned Whisper large-v2 for 10 epochs with a learning rate
of 1e-5 and a batch size of 32 using the transformers Python library
[110], coupled with a low-rank adaptation (LoRA) approach [41] to
reduce the trainable parameters to 15 million with int8 quantization
[20].

7.1.1 Fine-Tuning Results. Fine-tuning improved the WER on the
talk moves propensity matched dataset both for Black tutors (WER
of 0.44 reduced to 0.35) and for white tutors (from 0.32 to 0.28),
with a reduction in the racial gap from 37% to 26%. As can be seen
in Figure 3 , fine-tuning mainly decreased deletion and insertion

Figure 3: Error rates for the original (stock) Whisper and the
model fine-tuned using equal amounts of Black and white
tutor speech.

rather than substitution error rates. However, fine-tuning did not
eliminate the gap entirely.

Next, we fit four LME models to predict MER and the three er-
ror rates from the three-way interaction between race, personal
pronouns, and whether the model was fine-tuned or not. Of in-
terest was whether fine-tuning reduced error overall, and if there
was a significant interaction with race (i.e., whether the error rate
reduction was higher for Black than white tutors). Further interac-
tion with personal pronouns would indicate that the fine-tuning
was more effective for tutors using one set of personal pronouns
than the other. We found that fine-tuning significantly reduced
the overall MER (estimated MER decreased by 20% from 0.24 to
0.19, p<0.001), but there was not a significant interaction with race
suggesting that tutors of both races benefitted. However, when
looking deeper into specific errors, the deletion rate was also sig-
nificantly reduced (from 0.072 to 0.025, p<0.001) by fine-tuning and
this varied by race. Post-hoc analyses indicated that differences in
deletion errors between white and Black tutors, which was signifi-
cant before fine-tuning (0.081 vs 0.109 respectively; p=0.015) was
not statistically different for the tuned model (0.044 versus 0.060;
p=0.17).

Fine-tuning the ASR improved talk moves classification accuracy
on the resultant transcripts for the Black tutors and made no dif-
ference for the white tutors (left side of Table 3 ). For Black tutors,
the F1 score increased from 0.51 to 0.58. To test significance, we
regressed model accuracy for the fine-tuned transcripts on race ×
personal pronouns. We found the model’s error rate bias reduced to
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Table 3: Macro F1 scores for the talk moves classifier with and without debiasing strategies

Talk Moves Classifier

Original Model ASR-augmented training
Source of test transcript White Black White Black

Human 0.64 0.66 0.60 0.67
Baseline ASR 0.54 0.51 0.51 0.52

Fine-tuned ASR 0.54 0.58 - -

marginal significance (OR=1.39; p=0.053) on fine-tuned data com-
pared to the original Whisper transcripts (OR=1.50, as reported in
Section 6.2.1).

7.2 ASR-Augmented Classifier Training
Our second approach to mitigate bias focused on the talk moves
classification model using an ASR-augmented training technique
[100]. Specifically, we trained a RoBERTa classifier on both the
human and ASR transcribed versions of tutor utterances, essentially
doubling the training set; all hyperparameters, parameters, and
dataset splits were held constant with the human transcript-only
model detailed in Section 6.1. The idea was to help the model to
better understand ASR errors and become more resilient to them.
As noted in Table 3 (right side), ASR-augmented training had a
modest effect on racial bias in model accuracy, with a .03 decrease
in F1 score for white tutors, and an F1 increase of .01 for Black
tutors, but this represents less than a halving of the accuracy gap.
Thus, fine-tuning the ASR appears to be a more effective strategy
than ASR-augmented training of the classifier.

8 Discussion
We examined racial bias in automated feedback interfaces that aim
to promote data-driven, job-embedded professional development
for human tutors in a real-world context. Our focus was onASR bias
(RQ1), its downstream effects (RQ2), and efforts to mitigate it (RQ3).
In the remainder of this section, we discuss our main findings, and
their implications followed by a discussion of limitations and future
directions.

8.1 Main findings
Our analysis revealed significant demographic disparities in ASR
accuracy, with a notably higher error rate for Black tutors com-
pared to white tutors. Additionally, we found that bias particularly
manifested in higher rates of deletion errors for Black speakers.
This discrepancy persisted even when controlling for language con-
tent, as evidenced by higher error rates for Black speakers in the
matched n-grams. The lower ASR performance for Black speakers
could not be attributed to differences in their linguistic patterns
since they had lower perplexity scores compared to the white speak-
ers. Overall, the findings for RQ1 suggests that bias may be more
attributable to the ASR’s deficiency in modeling the acoustic than
the language component of Black tutors’ speech. These findings
corroborate the findings of Koenecke et al. [51], who reported a sys-
temic underperformance in ASR systems for Black speakers which
is due more to acoustic than linguistic factors, underscoring the
need for improved acoustic models across demographics [75, 77].

In RQ2, we found that the downstream effects of ASR errors
were evident in the decreased performance of a discourse classifi-
cation model for Black tutors when using ASR input as opposed to
ground-truth human transcripts. This suggests that the bias was
not inherent in the discourse classifier itself but was introduced
due to biased ASR inputs. The outcome of this introduced bias was
impactful. While Black tutors exhibited higher-quality discourse
(i.e. used more high-impact talk moves) according to expert coding,
this effect was obfuscated in the automated pipeline. Specifically,
the odds of detecting talk moves were higher for Black tutors than
white tutors when using human transcripts, but this advantage
diminished when using ASR-generated transcripts, underscoring
the need for improving ASR systems and downstream models to
ensure equitable performance across demographic groups.

To this point, our efforts to reduce ASR bias through fine-tuning
the Whisper ASR model and using ASR-augmented training were
partly successful (RQ3). Whereas fine-tuning the ASR on in-domain
datasets using an equal quantity of utterances from white and Black
tutors significantly reduced ASR error rates and improved talk
moves classification with larger effects for Black tutors, it did not
fully eliminate the bias. The second approach of ASR-augmented
training of the classifier was less effective. Thus, we can conclude
that fine-tuning on in-domain data appears to be a promising way
to reduce ASR bias and its effects, but more work is needed to fully
eliminate the bias.

8.2 Implications
In the US, racial disparities in academic performance and attainment
in Mathematics and other STEMmajors have been attributed to sys-
temic inequalities [33, 43, 44, 64, 78], uneven student-teacher racial
composition [56, 60], and the digital divide associated with socioe-
conomic status [25, 29]. Black teachers, who are underrepresented
in the teaching workforce [72], could face additional challenges,
including biases and ethical concerns relating to emerging AI tools
[6, 107]. Research has shown that inaccurate feedback on teachers’
performance can lead to stress, anxiety, burnout, diminished job
satisfaction, lower self-efficacy, and limited professional growth
[69, 114]. For instance, vague or inaccurate feedback can hinder
professional development and reduce overall teaching effectiveness
[114]. Advanced computing tools designed to support educators
may have the unintended consequence of amplifying these chal-
lenges if they embed or reflect existing biases. Numerous scholars
[3, 7, 35, 57, 75, 76, 83, 84, 87, 92] have recommended that edu-
cators, policymakers, and AI system developers adopt actionable
strategies—such as bias audits, co-design with diverse stakeholders,
implementing responsible AI principles, applying organizational
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justice theory, and developing inclusive AI training datasets as part
of solutions to the challenges of designing fair and unbiased AI
systems [3, 7, 35, 57, 75, 76, 83, 84, 87, 92]. In the education context,
when deployed with fidelity and adequate support (e.g., profes-
sional learning, technological resources, implementation support),
these systems could have positive effects on teacher job satisfac-
tion, foster professional growth, and increase retention among
Black teachers, ultimately helping to address racial imbalances and
systemic inequalities in US schools.

Our project takes one important step towards this goal in the
context of addressing bias in technology developed to enhance
the quality of high dosage tutoring for historically marginalized
students. Our finding of ASR bias in the context of an automated
feedback application has significant implications in the short- and
long- term. First, because the system is currently in use for forma-
tive feedback and coaching, the lower accuracy for Black tutors
has immediate consequences in their day-to-day work. Fortunately,
because the professional development process in the current system
is focused on improvement instead of evaluation and the automated
feedback is only shared with their assigned coaches (not the tutors
themselves), this has limited negative consequences. Nevertheless,
it is imperative that this differential accuracy in the automated feed-
back be communicated to coaches so they can factor in how they
track progress and provide support. One possibility is to consider
feedback visualizations that communicate the uncertainty of the
automated estimates adhering to the principle of transparency in
human-centered AI design [90]. In parallel, efforts to improve ac-
curacy, starting with replacing the default Whisper model with the
fine-tuned version with lower ASR bias, should also be considered.
This improved system will be more beneficial to coaches as it will
provide them with more reliable evidence to better mentor and
guide their assigned tutors. This will also help the professional de-
velopment of all tutors, especially Black tutors because the feedback
they receive will be more closely calibrated to their abilities.

The longer-term adverse consequences of bias could arise in sim-
ilar automated feedback systems including commercial platforms,
which may impact far more educators. Even more troubling are
use cases where the outputs of the automated models are used
for decision making. In the current case, the ASR-based models
underpredicted the occurrence of talk moves for Black tutors, so
any decision based on said models can be thought of as adversely
impacting them. Even though the present stakes are much lower,
the findings allude to the importance of assessing bias in any au-
tomated ML system, something that is still rarely done in practice
[26] despite calls to do so [3, 4, 6, 8, 75, 83]. Further, while higher
accuracy is usually desired in most AI systems, there remains the
possibility of harm arising regardless of accuracy depending on
how the recognized speech is used (e.g. violations of privacy fa-
cilitating increased surveillance) [71, 94, 115]. Lastly, accuracy is
not the only outcome of interest, but it should be calibrated across
other pertinent outcomes including reliability, fairness, privacy,
generalizability, explainability, and unintended consequences.

8.3 Limitations & Future Work
As with any research, our work has limitations. First, we analyzed
a single ASR system, so our conclusions might not generalize to

other ASR models, which is an item for future work. Likewise, we
used RoBERTa for discourse classification because this is what is
currently deployed in the target application, but replicating with
modern LLMs and newer training approaches would be desirable.

Our second limitation pertains to the data sources. Despite the
large number of utterances and statically significant findings, the
number of tutors (N = 34) may not adequately represent data from
each demographic, and the focus on two races limits generalizability.
Future research with a larger sample of tutors with more diverse
racial composition is recommended. There is likely bias in ASR
accuracy for student speech as well, which we did not address due
to a lack of data on student demographics and our focus on tutors,
but this remains an important item for future work.

Methodologically, we were limited by an inability to truly isolate
the language and acoustic components of the ASR, as they are inher-
ently intertwined in the decoder. In using perplexity from GPT-2
to infer whether Whisper’s coverage of language patterns differs
by race, we assumed that racial biases in Whisper’s language mod-
eling aligned with other state-of-the-art language models. While
the GPT-2 and Whisper models are owned by OpenAI, we are un-
certain whether they share the same language components. Future
work could involve using ASR models with accessible language
components. Furthermore, we also did not explicitly quantify the
use of AAVE speech in Black tutors as a source for the bias, which
is an important future direction.

We also had limited success in debiasing the ASR model by
fine tuning on in-domain speech, finding improved accuracy and
reduced bias, but did not eliminate bias overall. A more robust im-
provement in the racial accuracy gap may require a more extensive
de-biasing method and a varied dataset. Another avenue to pur-
sue involves explicitly training the ASR with a debiasing objective,
such as [88] which examined counterfactual generation of training
examples from different groups and counterfactual regularization
to minimize the difference in model prediction. Given our results
indicate that Whisper’s racial accuracy gap is driven by acoustic
differences, such an approach would be particularly appropriate
here.

8.4 Conclusions
Equality deems that at a minimum, automated systems perform
fairly for everyone, irrespective of their demographic background.
However, research has shown that this is not always achieved in
AI systems, with various reports of differential performance of
ASR across racial groups. Our study revealed significant ASR bias
against Black tutors compared to white tutors in an AI-powered
system used to provide automated feedback for professional learn-
ing. We traced the source of the bias in the ASR system primarily
to acoustic factors, finding that the biased ASR negatively impacted
the accuracy of the downstream classification model. As a con-
sequence, while Black tutors had superior usage of high-quality
discourse as measured by human coding of their discourse, this
advantage was erased due to ASR errors in the automatic feedback.
Finally, we found that the accuracy gap can be reduced, but not
entirely eliminated, by fine-tuning the ASR on more diverse in-
domain speech. Beyond bias, it is also likely that accuracy of the
automated approaches is inherently limited due to the nature of
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noisy speech in authentic environments, so it is imperative that
feedback interfaces and the accompanying professional learning
are robust to a modicum of inaccuracy. This would likely entail a
social-technical approach that leverages the strengths of machines
to sift through vast volumes of data in tandemwith those of humans
to draw insights from what the machine has to offer.
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