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Abstract. As extended reality becomes more ubiquitous, people will
more frequently interact with computer systems using gestures instead
of peripheral devices. However, previous works have shown that using
traditional gestures (pointing, swiping, etc.) in mid-air causes fatigue,
rendering them largely unsuitable or long-term use. Some of the same
researchers have promoted “microgestures”—smaller gestures requiring
less gross motion—as a solution, but to date there is no dataset of inten-
tional microgestures available to train computer vision algorithms for
use in downstream interactions with computer systems such as agents
deployed on XR headsets. As a step toward addressing this challenge,
we present a novel video dataset of microgestures, classification results
from a variety of ML models showcasing the feasibility (and difficulty)
of detecting these fine-grained movements, present a demonstration of
a novel keyframe detection method as a way to increase recognition
accuracy, and discuss the challenges in developing robust recognition
of microgestures for human-computer interaction.

Keywords: Human-computer interaction - Gesture recognition -
Microgestures

1 Introduction

Gesture recognition is a current focus of extensive ongoing research and devel-
opment in HCI and computer vision. As extended reality technology becomes
increasingly prevalent, it is anticipated that people will increasingly use gestures
as a means to interact with computer systems, rather than traditional periph-
eral devices. Previous research has shown that the use of hand gestures, such as
pointing and swiping, in mid-air can result in fatigue (“gorilla arm”) [7], making
them unsuitable for extended use. In order to address this issue, Way et al. [26]
have proposed the use of smaller hand motions, known as “microgestures,” which

C. Jung and S. Mannan—These authors contributed equally to this work.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Kurosu and A. Hashizume (Eds.): HCII 2023, LNCS 14011, pp. 499-518, 2023.
https://doi.org/10.1007/978-3-031-35596-7_32


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35596-7_32&domain=pdf
http://orcid.org/0000-0003-3787-6172
http://orcid.org/0000-0002-2232-4300
http://orcid.org/0000-0001-9715-4847
http://orcid.org/0000-0003-3234-6797
http://orcid.org/0000-0002-9741-1951
http://orcid.org/0000-0001-7878-7227
http://orcid.org/0000-0002-2653-0873
https://doi.org/10.1007/978-3-031-35596-7_32

500 C. Kandoi et al.

require less movement. These microgestures are intended to mitigate the issue
of fatigue and are adaptable to multiple situations such as human-object inter-
action and driving a car [4,6,17-19]. In addition, microgestures are suitable
replacements for general gestures if there are physical space constraints while
interacting with XR systems. Beginning with simple microgestures for commu-
nicating between human and computer, the study of microgestures has poten-
tial to facilitate delivery of complex information using microgesture sequences.
Despite the potential benefits of utilizing microgestures for human-computer
interaction, there exists no dataset of intentional' microgestures for the purpose
of training computer vision algorithms for downstream interactions with com-
puter systems, such as agents deployed on XR headsets. In order to address this
challenge, this paper introduces a novel video dataset of microgestures and inves-
tigates the performance of various machine learning models in classifying these
gestures. Additionally, we discuss challenges and considerations in developing
robust recognition of microgestures for human-computer interaction.

Our research aims to better understand the challenges posed to recognition
algorithms by microgestures, which are characterized by their subtle and fast
nature. These properties make the task of gesture classification difficult, creating
a challenge for those working in the field of vision-based gesture recognition for
use in HCI. In response to this challenge, we created the “Microgesture” dataset,
a novel dataset that combines both real and synthetic microgestures, providing
a valuable resource for gesture classification. The Microgesture dataset is the
largest dataset of its kind, containing both real and synthetically-rendered videos
for the task of hand gesture recognition. The dataset includes 3,234 RGB-D
videos captured in real-world scenarios from 10 different people, as well as 3,920
RGB videos generated synthetically. In addition, we developed a taxonomy of
49 semantically-distinct gestures with the goal of eventually improving human-
computer interaction inputs. We anticipate that the Microgestures dataset will
serve as a benchmark for future research efforts, providing a valuable resource
for the academic and wider research community.

Our specific contributions include:

— A novel video dataset consisting of real and synthetically-generated micro-
gestures.

— Classification results from a variety of computer vision models over this
dataset.

— A demonstration of a novel, computationally-efficient technique to increase
baseline accuracy through intelligent keyframe selection.

1 On occasion, research in the computer vision community has used “microgesture”
to refer to unconscious movements that indicate emotional state (e.g., [2]). We use
“microgesture” in the HCI sense, referring to some intentional movement intended
to convey information to a system.
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2 Related Work

In this section, we summarize some of the earlier, relevant work in modeling and
recognizing gestures, including key datasets and algorithms, and describe how
our methods differ from previously-existing methods.

2.1 Datasets

There are a number of publicly-available datasets in the field of vision-based ges-
ture recognition, including ChaLearn ISO/ConGD [25], Jester [15], EgoGesture
[29] IPN Hand [1], nvGesture [16], and HaGRID [8]. It is important to keep in
mind that these datasets lack synthetic data.

The Jester dataset [15] is the largest dataset containing 148,092 videos that
were collected from 1,300 different human subjects, covering 27 distinct actions,
totaling over 5 million frames. The authors propose that larger datasets are
necessary to recognize complex and subtle gesture features. We have the same
motivation for our dataset and create both synthetic and real data to give a wider
sample to recognition algorithms. The Jester authors also note the elimination
of the requirement for any external or wearable devices in their study, which we
also adopted in our research.

The IPN hand dataset [1] is a continuous gesture dataset which contains 4,000
gesture instances with more than thirty different representative scenarios at 640
x 480 pixels at 30 frames per second. The IPN dataset has been enhanced by
incorporating more features of real data to effectively train large deep learning
networks. Building on this concept, we generated synthetic data using HDR
(High Dynamic Range) images to add further diversity to the dataset.

EgoGesture [29] presents a dataset primarily focused on a first-person per-
spective, with over 24,000 gesture samples from 50 subjects, including 83 static
and dynamic gesture classes. The authors propose that hand gestures are intu-
itive and natural for communicating with computers, and a first-person perspec-
tive in XR technology offers a unique human-centered viewpoint. We believe
such approaches have the potential to revolutionize human-computer interac-
tions through the integration of microgestures.

The HaGRID dataset [8] aims to improve hand gesture recognition systems
for various industries through device-human interaction. The dataset consists of
552,992 Full HD RGB images including 18 hand gestures and a “no gesture”
class, with at least 34,730 unique scenes. While HaGRID focused on static hand
gestures, our study emphasized the examination of dynamic hand gestures.

The iIMiGUE dataset [13] for emotional AI research focuses on nonverbal
microgestures, with 32 gesture categories, 2 emotions, and 18,499 samples from
72 subjects, obtained from online video interviews. iMiGUE assesses a model’s
ability to identify emotions by considering microgestures as an integrated whole,
not just isolated prototypes in a sequence. This holistic approach matches our
method for recognizing hand microgestures (Sect. 4).

The nvGesture dataset [16] contains 25 gesture classes (1,532 samples) of
dynamic gestures from 20 subjects. The authors introduced nvGesture to address
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the challenge of detecting and classifying hand gestures in real-world human-
computer interaction systems.

Finally, Wolf et al. [27] proposed a taxonomy for categorizing microgestures
based on usability and scenarios, which provides a useful framework for design
and evaluation. This taxonomy is used in our research to design microgestures.

2.2 Algorithms

The Jester dataset [15] has been used to show the capabilities of gestures in
human-computer interaction and their potential applications in a wide range of
industries, such as automotive, gaming, home automation, and consumer elec-
tronics. In constructing their networks [15], the authors employed a methodology
using spatio-temporal filters as it effectively represented spatio-temporal data in
previous approaches, e.g., [20]. Their model was trained using a stochastic gra-
dient descent (SGD) algorithm, with a learning rate of 0.001, for a total of 100
epochs, and with no data augmentation being employed during the training
process. The final model achieved a top-level accuracy of 93.81%.

The IPN dataset [1] was designed to effectively detect and categorize the
input stream; to accomplish this, they employed two hierarchical model struc-
tures, incorporating multimodal (RGB+depth) 3D CNN models with HarD-
Net (Harmonic Dense Networks) to achieve state-of-the-art results. The video
sequences were segmented into isolated gestures using manually annotated begin-
ning and ending frames. For the real data used in our study, we used the same
methodology and manually annotated the beginning and ending frames.

In their study, the EgoGesture authors [29] adopted a multimodal approach,
utilizing both hand-crafted and deep-learned features to address two key tasks:
classifying gestures in separated data and identifying gestures in continuous data.
The authors demonstrated a high level of performance, achieving an 89.7% clas-
sification accuracy for segmented ego gestures in RGB-D data and a 0.718 Jac-
card index using the LSTM-C3D-LL6s8 method for spotting and recognition in
continuous data. For our research, we have chosen to focus on segmented data,
where we have extracted frames from both synthetic and real datasets.

The HaGRID authors [8] used SSDLite with MobileNetV3 for hand detec-
tion, with ResNeXt-101 as the best for gesture classification and ResNet-152 for
leading hand classification.

The iMiGUE authors [13] present a Seq2Seq-based unsupervised encoder-
decoder model for microgesture recognition without labeled data. TSM [12], a
supervised 2DCNN RGB modality, was used with a top 1 accuracy of 61.10%
and top 5 accuracy of 91.24%.

The nvGesture dataset [16] was collected in both real and simulated environ-
ments using a head-mounted camera in both RGB and depth modalities. The
proposed method, which combines color, depth, and optical flow, achieved 98.2%
accuracy.

In this study, we investigate the classification of microgestures, a challenging
task due to the fast and subtle nature of microgesture hand movements. Our
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proposed Microgesture dataset, to the best of our knowledge, is the first and
most extensive dataset of its kind for microgesture classification.

3 Microgesture Dataset

Figure 1 presents a visual overview of the different components of the Micro-
gesture dataset: real and synthetic images against different backgrounds and in
different orientations.

Fig. 1. The dataset includes the following specific types of data: (A) Sequences of
cropped real-world images capturing the gesture from beginning to end; (B) Sequences
of synthetic images depicting the same gesture against a black background; (C)
Sequence of synthetic images against a HDRI (High Dynamic Range Image) scene;
and (D) Sequence of synthetic images featuring various HDRI backgrounds, including
nature, night, urban, indoor, and outdoor settings, as well as different angles around
the Z-axis.

3.1 Data Collection

We followed the gesture semantics proposed by Kendon [9] and elaborated by
Lascarides and Stone [11], among others, and capture the pre-stroke, stroke
(semantic head), and post-stroke of each gesture in the microgesture dataset.
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Data collection consisted of two segments: recording participants making the
49 microgestures for the real dataset, and creating and rendering animations of
the 49 microgestures for the synthetic dataset.

To record participants, we used the Microsoft Kinect Azure camera to record
both RGB and depth (Fig.2) at a resolution of 1,920 x 1,080 for 30 frames per
second. Three Kinects were syncronized and positioned with a backdrop of a
green screen approximately 30-40cm away from the participant’s hand. Each
Kinect was angled at the central point where participants made the microges-
tures — this was done to maximize the amount of data being captured. Every
Kinect was between 30cm and 40cm away from the participants’ hand. We
included a 10s recording of a checkerboard at the beginning of each recording
session in the event anyone wanted to perform their own depth calibrations.

Prior to recording, participants were informed of the procedure to follow for
making the microgestures. Emphasis was placed on explaining the differences
between a microgesture over a gesture. Moving the arm or significantly mov-
ing the wrist would not qualify as a microgesture. For instruction on how to
make each microgesture, participants were shown the synthetic data and the
researcher performing the microgesture. Participants were allowed to practice
making each microgesture as the recording proceeded. When they were ready to
perform they would enter the starting position which was an open palm facing
the center camera. After the participant made a microgesture, we marked if it
was made correctly. The use of an “incorrect label” to remove gesture frames
that are performed incorrectly ensures that the final dataset only contains ges-
tures that are performed correctly. The frequency of incorrect gestures indicated
the difficulty performing that gesture caused participants. Overall the data col-
lection, Index finger swipe right, Index finger swipe down, and Indez finger swipe
left had 21, 15, and 15 mistakes respectively. Each participant was recorded for
about 45 min which allowed for 1-4 rounds of making each microgesture. Partic-
ipants were randomly assigned to start with their left or right hand and would
switch between rounds.

To create the synthetic data, a 3D model of a hand was created using Blender
3D software. All 49 gesture animations were then played on the rigged hand,
and the videos were generated with 2,000 x 2,000 resolution and 30 frames per
second. The background was created using a black image and five High Dynamic
Range Image (HDRI) scenes that were randomly provided to the software as a
background of hand gestures. These five HDRI scenes were broken down into
five categories: night, urban, indoor, and outdoor, and each category has four
images for that scenario. The angle of the hand in each video was randomly
chosen around the Z-axis (in the coordinate system used, the Z-axis is up-down).
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Fig. 2. This image represents the three Microsoft Kinect cameras with a green screen
setup for real data collection. (Color figure online)

3.2 Data Statistics

For the real dataset we had 10 participants (60% were male and 40% were
female). We collected a total of 66 videos containing 49 gestures each. This
resulted in 66 instances of each microgesture and 3,234 total instances. From this
total, we excluded gestures that were incorrectly made by participants, leaving
us with 3,054 instances from which 184,107 frames were extracted.

For the synthetic dataset, 80 videos of each microgesture were created, all
evenly split between the left and right hands. The background for both the
left and right hands were split such that both had 20 videos with the black

Table 1. Comparison of existing gesture datasets, including ours.

Datasets Samples | Labels | Subjects | Scenes | Task

ChaLearn ISO/ConGD [25] | 47,9339 | 249 21 1 classification, detection
IPN Hand 4218 13 50 28 classification

Jester Dataset 148,092 |27 1376 N/A | classification
EgoGesture 24,161 |83 50 6 classification, detection
nvGesture 1532 25 20 1 classification, detection
HaGRID 552,992 | 19 34,730 | 34,730 | classification

iMiGUE 18,499 |32 72 N/A | classification
Microgesture (Ours) 301,707 | 49 10 21 classification
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background and 20 videos with the HDRI background. 3,920 total videos were
created from which 117,600 frames were extracted.

The number of frames per gesture in real data varies between 60 and 81
frames due to the different participant speeds when making the gestures, while
in the synthetic data each of the 30-frame gestures is captured at a consistent
speed. The data statistics of our dataset are represented in Tablel — we also
compare our gestures with other gesture datasets that are currently accessible
online.

3.3 Dataset Characteristics

We designed all 49 gestures in this dataset to be easy, fast, and low-effort (and
hence low-fatigue over the long term), since these are essential qualities for micro-
gestures to have when considering HCI applications. We classified the gestures
into 17 distinct groups by features of the gesture. We called this gesture cate-
gorization a two-level hierarchy. Level 1 of the hierarchy consists of the gesture
groups and level 2 includes the individual gesture types. Table2 describes the
taxonomy of all 49 gesture classes.

Table 2. Comprehensive table of all 49 gestures. The second column lists the 17 groups
of gestures, while the third column lists all 49 gestures. The second and third columns
are named as level 1 and level 2 gestures, respectively, in the two-level gesture hierarchy.

Level 1 Level 2
1 | Single tap index Tap on distal phalanx of index finger w/ thumb
2 Tap on middle phalanx of index finger w/ thumb
3 Tap on proximal phalanx of index finger w/ thumb
4 |Single tap middle |Tap on distal phalanx of middle finger w/ thumb
5 Tap on middle phalanx of middle finger w/ thumb
6 Tap on proximal phalanx of middle finger w/ thumb
7 | Single tap ring Tap on distal phalanx of ring finger w/ thumb
8 Tap on middle phalanx of ring finger w/ thumb
9 Tap on proximal phalanx of ring finger w/ thumb
10 | Single tap last Tap on distal phalanx of last finger w/ thumb
11 Tap on middle phalanx of last finger w/ thumb
12 Tap on proximal phalanx of last finger w/ thumb
13 | Double tap index |2x tap on distal phalanx of index finger w/ thumb
14 2x tap on middle phalanx of index finger w/ thumb
15 2x tap on proximal phalanx of index finger w/ thumb
16 | Double tap middle | 2x tap on distal phalanx of middle finger w/ thumb
17 2x tap on middle phalanx of middle finger w/ thumb
18 2x tap on proximal phalanx of middle finger w/ thumb

(continued)
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Table 2. (continued)

Level 1

Level 2

19 | Double tap ring | 2x tap on distal phalanx of ring finger w/ thumb
20 2x tap on middle phalanx of ring finger w/ thumb
21 2x tap on proximal phalanx of ring finger w/ thumb
22 | Double tap last | 2x tap on distal phalanx of last finger w/ thumb
23 2x tap on middle phalanx of last finger w/ thumb
24 2x tap on proximal phalanx of last finger w/ thumb
25 | Tap once Index finger single tap

26 | Tap twice Index finger double tap

27 | Move Index finger swipe up

28 Index finger swipe down

29 Index finger swipe right

30 Index finger swipe left

31 Select with index finger

32 | Numbers One

33 Two

34 Three

35 Four

36 Five

37 | Rotate (In air) | Rotate index finger anti-clockwise

38 Rotate index finger clockwise

39 | Rotate (Rub) Rub thumb on index finger anti-clockwise

40 Rub thumb on index finger clockwise

41 | Slide Slide thumb backward on index finger

42 Slide thumb forward on index finger

43 | Open/close Hand open

44 Hand close

45 | Zoom Zoom out using palm

46 Zoom out with index finger and thumb

47 Zoom in using palm

48 Zoom in with index finger and thumb

49 | Snap Snap

4 Model Training and Evaluation

507

To train models on the real dataset, using standard machine learning practice,
we considered two different ways of dividing the data into training, validation,
and test segments (splits): a split where all data from individual participants
were grouped together (a “participant-wise” split), and a split where they were
not (hereafter, a “traditional” or “gesture-wise” split). For traditional gesture-
based distribution, 80%, 10%, and 10% of gestures were allocated to the train,
validation, and test sets, respectively. Since the allocation was done by level
2 gestures, the dataset contained an equal portion of level 1 gestures for the
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train, validation, and test sets. The dataset of the traditional split was used
for fine-tuning various methods including SOTA models (see Table 3). With the
participant-wise data split, our goal was to show where and using which models
the trained visual features would applicable to general cases where the individual
person has never been seen before by the model. We assigned gestures belonging
to a male and female participant to the validation and test sets respectively,
and the gestures of the remaining participants were allocated to the training set.
The training on the participant-wise split was done for level 1 gestures only (see
Table4).

4.1 Random Classification

We first established a random chance classification baseline. For each video in the
test set, we assigned the predicted class randomly, and computed classification
accuracy and other metrics for these random predictions. We then averaged these
metrics across 10,000 iterations of randomly guessing to minimize any noise from
the random labeling.

4.2 Landmark-Based Model

Our second baseline approach uses 3D joint positions extracted from the videos
rather than raw visual features. Videos were preprocessed to extract landmarks
on the hands using MediaPipe [14]. MediaPipe is a two-stage pipeline that tracks
hands using 21 landmark points made up of X, Y, and Z coordinates. MediaPipe
processes each frame into an array of landmarks normalized relative to the image
dimensions. Figure 3 shows extracted landmarks superimposed on a video frame.
MediaPipe performs well for detecting hands on a frame by frame basis, and has
been used in many projects to aid in static single frame gesture classification,
however, not much work has been done to classify gestures that span multiple
frames, like exist in this dataset, and no works have explored microgestures.

We established a model baseline using this landmark-based approach by
selecting 10 frames starting at the 20th frame for every video in the dataset.
Extracted landmarks from the collected frames were then fed into a neural net-
work classifier (details in Sect. 4.4).

4.3 Computer Vision Models

We evaluated various computer vision models to determine the feasibility of
detecting microgestures with a computer vision method. Models were evaluated
on a both level 1 and level 2 of our gesture taxonomy. Following general practice
in gesture recognition, we focused on action recognition and gesture recognition
models which we fine-tuned for our dataset. The action recognition models we
evaluated were VideoMAE [22], Multiscale Vision Transformers (MViT) [3], 3D
ResNet [5], and C3D [23]. Note that we used pretrained weights for VideoMAE
and 3D ResNet whereas MViT and C3D were initialized with random weights
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Fig. 3. Extracted landmarks superimposed on video still.

(see 4.4). The gesture recognition models, based on Kopiikli et al. [10] used
a ResNeXt [28] architecture. These models were pretrained on two different
datasets: EgoGesture [29] and nvGesture [16], following the training details of
each respective work.

4.4 Training Details

We trained all models on the gesture-wise and participant-wise splits of our
dataset. To train the action recognition models, we used 1,000 epochs to fine-
tune/train VideoMAE, MVIT (base), 3D ResNet, and C3D with a batch size
of 8 for VideoMAE and 16 for the others. For all these models, we used an
SGD optimizer with a learning rate of le~*. The input images were resized
to I € R3X224x224 oxcept for when fine-tuning the gesture recognition models,
where the input size was I € R**112x112 116 29]. These models were checkpointed
every 5 epochs and the best-performing checkpoints were used for evaluation.

In addition, 480 epochs were used to fine tune the state of the art gesture
recognition models (batch size of 16 and a learning rate of le=* were used). 480
epochs was chosen to make a direct comparison to the best-performing check-
point of VideoMAE.

For the landmark-based model, we used a 2-layer feed-forward neural network
with 20 and 10 units, respectively, all with ReLLU activation, followed by a final
softmax classification layer. The model was trained for 100 epochs with an Adam
optimizer, a learning rate of 0.001, sparse categorical cross-entropy loss, and a
batch size of 16.

5 Results

Our results present precision, recall, macroaveraged F1, and top-k classification
accuracy for multiple models, including the landmarks-based classifier. We also
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contextualize the results by presenting the “random chance” baseline (Sect. 4.1).
Metrics were calculated using the Scikit-learn package, which first calculates
macroaveraged F1 over each class and then averages the F1 scores for all classes.?

5.1 Results on Gesture-wise Split

Table 3 compares all classification results. Ultimately, VideoMAE exhibited the
best performance over both vision and landmark-based models. The top-k accu-
racy of vision models indicate that the visual features of microgestures are
learnable with neural networks, indicating the potential to utilize microgestures
in HCI applications that use such models. Interestingly, the models that were
pretrained on EgoGesture and nvGesture exhibited similar performance to 3D
ResNet, which is based on action recognition, indicating that pre-training on
gesture may not provide particular benefits. For gesture-wise classification at
the more fine-grained level (level 2 in our taxonomy), C3D barely performed
better than random classification and the landmark-based model was on par
with or slightly worse than random, showing that classification at this level of
granularity is difficult enough to likely require a custom deep learning model
fine-tuned on the dataset.

5.2 Results on Participant-wise Split

As shown in Table4, the performance of most models on the participant-wise
split was lower than on the level 1 gesture-wise split. The exception is 3D
ResNet, which showed comparable performance. In addition, MViT and C3D
models showed a little performance gap from the random chance model, indicat-
ing these models are poor fits for microgesture classification. Generally, the drop
in accuracy when training and evaluating on different participants is expected
— such evaluations approximate how well a trained model could be expected to
generalize to an unseen participant.

6 Discussion

Figures4 and 5 show confusion matrices for all four action recognition models
trained on the gesture-wise level 1 and level 2 classes, respectively. Classifiers
generally performed similarly across both levels — for example, C3D (top-left)
made the most mistakes on both levels while VideoMAE (bottom-right) per-
formed best. Although both C3D and VideoMAE show similar results on the
UCF101 dataset (90.4% and 91.3%, respectively), VideoMAE substantially out-
performs C3D on our real dataset for both levels, indicating there are specific
design decisions that successful microgesture models will need to address [21-23].

2 As a result, classes with lower than average sample support and lower than average
F1 may cause overall macroaveraged F1 for a model to fall below both average
precision and recall.
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Table 3. Reported metrics: precision, recall, F'1, and top-k accuracy for all evaluated
model architectures. The level column indicated higher (1-17 classes) or lower (2-49
classes) levels of abstraction for the defined classes.

Level | Model Precision | Recall | F1 Top-1 | Top-3 | Top-5

1 Random 9.70 9.03 | 9.27|10.92 |— -
Landmarks 14.85 14.86 | 11.59|19.37 | 54.93 | 72.54
VideoMAE 74.38 73.67 | 72.72|75.74 | 94.49 | 97.79
MViT! 52.67 52.41 |51.60 | 52.86 | 83.57 | 92.50
3D ResNet 63.68 58.81 |60.36 | 61.79 | 92.50 | 98.21
C3D?! 31.77 32.27 |31.70 | 35.71 | 69.29 | 83.21

Kopiiklii et al. [10]2 | 54.57 53.99 | 53.03|54.93 | 85.92 | 92.61
Képiiklii et al. [10]3 | 57.75 56.38 | 56.03 | 59.15 | 88.03 | 92.96

2 Random 6.91 6.33 | 6.27| 6.34 | — -
Landmarks 3.79 7.21 3.63| 7.40 |20.78 |33.45
VideoMAE 67.58 64.90 | 64.79 | 65.07 | 90.44 | 96.32
MViT* 41.27 39.39 | 38.1639.29 | 67.50 | 77.14
3D ResNet 44.88 43.03 | 41.35|43.57 | 78.93 |91.43
C3D* 8.73 9.86 | 8.87| 9.64 | 25.00 |41.07

Kopiiklii et al. [10]? | 44.78 41.02 |40.45|41.20 | 73.24 |82.04
Kopiiklii et al. [10]3 | 55.18 48.67 | 48.19|48.59 | 72.89 |82.04

Table 4. Metrics for the 17 level 1 classes (participant-wise train-test split)

Model Precision | Recall | F1 Top-1 | Top-3 | Top-5
Random 14.84 17.48 | 15.11|14.18 | — -

VideoMAE 25.05 25.87 |20.2530.15 | 66.18 | 81.61
MViT?! 5.35 11.16 6.69 | 15.44 | 29.41 | 44.12
3D ResNet 63.24 55.14 | 56.27 | 57.35 | 89.71 | 95.59
C3D?! 12.37 18.18 | 13.05|18.38 | 43.38 | 57.35
Kopiiklii et al. [10]2 | 30.03 32.03 |27.67|34.04 | 68.09 | 78.01
Kopiikli et al. [10]3 26.42 34.97 |26.09|31.21 | 61.70 | 74.47

ITrained from scratch.
2Pretrained on EgoGesture.
3PreTrained on nvGesture.

Figure 6 shows confusion matrices plots for all four action recognition models
trained on the participant-wise split. We can see that all models had similar and
better performance for the single tap middle and number gesture classes, with
3D ResNet (bottom-left) making the fewest mistakes. In addition, 3D ResNet
was robust to Double tap index, Double tap middle, double tap ring, and double
tap last.

6.1 Misclassfications

Comparing the best-performing models, VideoMAE and 3D ResNet, for both
data splits, we can see what common microgestures are difficult for neural net-
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Fig. 4. Confusion matrices for level 1 gesture classes for the traditional split. From top
left: C3D, MViT, 3D ResNet and VideoMAE.

work models to distinguish. For the level 1 gesture-wise split, both models have
trouble identifying the tap twice and tap once classes. Looking at the fine-grained
microgestures from level 2, VideoMAE is unable to predict the slide thumb for-
ward on index finger (ID 42 — see Table2) microgestures, and 3D ResNet is
unable to predict the similar slide thumb backward on index finger (ID 41)
microgesture, perhaps indicating that these subtle distinctions, even down to
the finger level, are difficult for recognition models in general.

Looking at the confusion matrices from the participant-wise split (Fig. 6) we
can also see that 3D ResNet and VideoMAE have difficulty in identifying the
tap twice and slide gesture classes.
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Fig. 5. Confusion matrices for level 2 gesture classes for the traditional split. From top
left: C3D, MViT, 3D ResNet and VideoMAE.

6.2 Key Frame Selection for Landmarks

Recognizing more complex gestures is substantially easier if precise key frames
are identified prior to recognition, since this preemptively filters excess noise.
Since the landmarks-based approach performed poorly yet is fast to train, but
also used a constant frame selection across all videos, we wanted to investigate if
smarter selection of frames could improve this model’s performance. We devel-
oped a key frame annotation solution that locates key frames using a three stage
pipeline. First, a simple binary classifier recognizes the general static shape of a
gesture of interest (a “hold”). Next frames in a gesture video are grouped by rel-
ative changes in motion to create “segments.” Finally, we identify segments with
some percentage of frames in “hold” using another binary classifier. Using this
data, we can identify the start and end of the key frames, along with the start
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Fig. 6. Confusion matrices for level 1 gesture classes for the participant-wise split.
From top left: C3D, MViT, 3D ResNet and VideoMAE.

and end of the “peak” segment, which contain the most still frames in “hold”
and could be considered the peak of the key frames [24]. We hypothesized that
we could improve the overall performance of the landmark-based classifier over
multiple frames using these annotated values to select dynamic features on a
per-gesture basis.

To test this procedure, an additional experiment was run on a subset of the
Microgesture data. The gestures included in the subset were snap, two, index
finger swipe right, hand close, and zoom in with palm. We trained a feedforward
neutral network on the subset to retrieve key frames using the same hyperpa-
rameters defined in Sect. 4.4, using a leave-one-out split for each of the 10 par-
ticipants. Tables 5 and 6 show the average performance and standard deviation
of classification using the dynamic key frame selection compared to the static
method, run on the same 5 gestures [24]. The increase in performance using the
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dynamic method shows promise as a solution to improve the overall performance
of the landmark based model if trained using the dynamic key frames across the
entire dataset. This makes sense, since the microgesture movements are quite
small and the key frame identification eliminates excess noise.

Table 5. Average reported metrics: precision, recall, F1, and top-k accuracy. 10 frames
were gathered for both methods. Static collection started at frame 20 of each video.
Dynamic started at the unique key frame location for each individual video.

Method | Precision | Recall | F1 Top-1 | Top-3
Static 35.28 39.16 |33.86|41.48 |83.49
Dynamic | 66.35 66.48 |62.7869.10 |89.10

Table 6. Standard deviation of reported metrics: precision, recall, F1, and top-k accu-
racy.

Method | Precision | Recall | F1 Top-1 | Top-3
Static 23.99 20.36 |21.97|21.16 |9.78
Dynamic | 22.80 19.00 |22.00 |18.28 | 9.86

7 Future Work

Here, we presented a novel microgesture dataset to serve as a benchmark and to
encourage research into the use of microgestures interactive systems. However,
the current dataset has only minimal egocentric data (Sect. 3.1) and thus limits
the ability to adopt microgestures in XR contexts — microgestures are particu-
larly important for XR contexts where the user could conceivably interact with
the system throughout the day.

From an HCI perspective, future work should evaluate how effective our
set of microgestures are from both a fatigue estimation perspective and from
a usability perspective. In parallel, computer vision research should focus on
identifying which gesture types are most easily recognized by trained systems.
In this work, we showcase the feasibility of detecting various microgestures, but
future work can likely surpass these baselines since we did not explore custom
models.

Our novel technique for intelligent key frame selection increases both perfor-
mance and training efficiency — where training modern computer vision models
as we used can each take between 1-5 days, the classifier portions of the key
frame selection pipeline can be trained in a matter of minutes, and the entire
procedure approaches the accuracy of some of the top-performing vision models.
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This technique is discussed in more detail in [24], but was evaluated only on a
subset of the dataset. A larger evaluation is the subject of future work.

8 Conclusion

Microgestures represent a naturalistic and low-effort strategy for human-
computer interaction. However, prior to this work, microgesture datasets were
limited at best, especially from the perspective of what would be needed to
study them from an Al application perspective. Our novel microgesture dataset
includes video recordings of a hierarchy of microgesture types from a multitude
of participants. Further, it contains synthetic videos of gestures being performed
which can be augmented with various backgrounds or variations to improve the
robustness of the trained model.

Our experimental results, which compared random chance, landmark-based,
and computer vision models, show how well micoregestures can be recognized by
a computer vision system. While these results showcase the feasibility of detect-
ing microgestures, they also highlight the difficulties that need to be overcome
for an interactive system to capitalize on microgestures. We offer some solutions
to bolster this performance, such as our novel technique for intelligent key frame
selection that provides a substantial increase in recognition performance on the
landmark data. While this is just the start of the work that needs to be accom-
plished to integrate microgestures into HCI applications, we believe it provides
a solid foundation on which the HCI and AT research communities can build.
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