
https://doi.org/10.1177/21695067231192643

Proceedings of the Human Factors and 
Ergonomics Society Annual Meeting
2023, Vol. 67(1) 290–295
Copyright © 2023 Human Factors  
and Ergonomics Society
DOI: 10.1177/21695067231192643
journals.sagepub.com/home/pro

E3: Improving Educational Ecosystems

Introduction

Professional settings now increasingly require employees to 
work collaboratively to achieve institutional goals (Graesser 
et  al., 2018). Accordingly, collaborative problem solving 
(CPS) has been identified by the Organisation for Economic 
Co-operation and Development (OECD) as a skill implicated 
in the success of the global economy. CPS involves two or 
more agents working interdependently to solve a novel prob-
lem, by arriving at a set of steps to transform a given state 
into a goal state (Sun et  al., 2020). Given its interactive 
nature, CPS is a challenging construct to assess at the level of 
the individual, making it difficult to quantify using tradi-
tional methods in educational assessment. While numerous 
measurement frameworks have been proposed that identify 
CPS skills from task artifacts, such as chat logs or transcripts 
(e.g., OECD, 2017; Sun et  al., 2020), CPS quantification 
remains elusive due to the complexity of naturalistic social 
interactions. The present study utilizes one such measure-
ment framework—The Generalized Competency Model of 
CPS (Sun et al., 2020)—to develop a novel metric that quan-
tifies the extent to which an individual influences the group’s 
output. Future iterations of this proposed metric allow for the 
near-real-time assessment of teammates’ influence on col-
laborative team processes during learning and training.

An important assumption behind our approach is that the 
function and behavior of a team must be considered at both 

the individual and team levels. For example, social loafing—
the phenomenon wherein a teammate(s) shifts the burden of 
the work and responsibility to others—is commonly assessed 
in collaborative contexts. In constructive collaborations, all 
teammates contribute equally toward the team’s efforts and 
social loafing is minimized. Past work to explore this con-
struct has sought to understand precisely how an individual’s 
output changes as a function of being a member of a team in 
controlled laboratory situations (Latané et  al., 1979). 
However, to estimate the extent to which social loafing 
impacts teams working in dynamic, naturalistic collabora-
tions, metrics need to be extracted from task artifacts, as to 
not interfere with the team’s performance. In the present 
study, we utilize task transcripts to understand the extent to 
which a single teammate contributes toward the team’s CPS 
efforts. Specifically, we propose an objective measure of 
individual influence, beyond just an individual’s proportion 
of the team’s overall speech activity.
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The present study builds on past work from the team sci-
ences literature to provide initial validation for an objective 
metric that quantifies CPS influence—the extent to which 
each individual’s speech activity contributes toward the 
team’s socio-cognitive processes. Given that CPS is an inter-
active process, much of team coordination and problem solv-
ing occur via verbal communication channels. Thus, 
communication artifacts are a fruitful resource for modeling 
collaboration (Cooke et al., 2013; Hesse et al, 2015). While 
past work similar to the present study has relied on modeling 
only turn-taking behavior to understand an individual team 
member’s influence (Gorman et  al., 2020), we extend this 
work to the assessment of communication content during 
collaborations. Given the common practice of coding CPS 
communications for content (i.e., the presence of socio-cog-
nitive processes), this was a natural extension of Gorman and 
colleagues’ (2020) approach to the CPS setting.

Current Study & Hypotheses

We utilized existing data from a triadic task—originally 
reported by Amon et  al. (2019)—wherein participants 
worked together to complete code.org’s Minecraft Hour of 
Code (https://code.org/Minecraft) using videoconferencing. 
One participant was selected at random to serve as the con-
troller (i.e., the only person who engaged with the virtual 
task interface directly) and shared their screen with the other 
teammates who contributed to the solution. This heteroge-
nous but interdependent role manipulation—common to 
CPS tasks (Graesser et al., 2018)—allowed for a systematic 
comparison between the controller participant and the two 
non-controller participants. This design supported the vali-
dation efforts for the proposed metric, as the controller was 
uniquely positioned to have more influence over the team’s 
output than the non-controller participants. Thus, if influ-
ence, as conceptualized in the current metric, were higher for 
the controller, we would have initial evidence in support of 
the novel measure.

Accordingly, we predicted that the controller’s speech 
activity would have more influence on the team’s CPS inter-
action than either of the other two team members. We also 
predicted that CPS influence may be related to learning out-
comes and task performance, wherein those with higher 
influence (presumably, the controller) would have higher 
content knowledge and task performance. Further, we 
expected participants’ subjective impressions of the collab-
orative session to be related to influence, so we included this 
as an exploratory analysis.

Method

Participants

As reported by Amon et al. (2019), 111 participants (63% 
female; Mage = 19.4) were recruited from a private 

Midwestern university and compensated with course credit. 
The 37 triads were formed based on schedule availability, 
where 19 participants from ten teams indicated familiarity 
with one or more teammates. Participants did not have prior 
computer programming experience.

Procedure

Participants were located in separate rooms, each equipped 
with a videoconferencing-enabled computer with a webcam 
and microphone, where they interacted via Zoom. One ran-
domly assigned participant controlled interactions with the 
task interface and shared their screen. The other two partici-
pants engaged with the task by verbally communicating their 
ideas to help with planning and task execution. Audio, video, 
and screen activity were recorded.

Participants individually completed a demographic sur-
vey, as well as self-report scales (e.g., the Big Five 
Inventory) not reported here. Prior to beginning the experi-
mental session, groups completed a 20-minute familiariza-
tion session of five easy levels and viewed three introductory 
computer programming videos that covered concepts such 
as loops and if statements. The experimental task had the 
groups complete a challenging programming task in Hour 
of Code (Figure 1), where they had 20 minutes to construct 
a 4 x 4 brick building using at least one if statement and 
loop. The task was further constrained by requiring that 
three bricks be constructed over water and only allowing 
the code to consist of 15 blocks or less.

Following the task, participants individually completed a 
survey indicating their subjective perceptions of the collabo-
ration using Likert scale ratings of the following example 
statements: “I am satisfied with how we communicated with 
each other”, and “I am satisfied with how we cooperated to 
complete the lessons.” Lastly, participants individually com-
pleted a post-test to capture how well they understood the 
coding concepts utilized in the task. Because the data were 
collected over two semesters, where a 5-minute times-up 
warning was given only in the second semester, all outcome 
measures were Z-scored by semester.

Data Coding

Team-level task performance was scored from 0 to 5 by two 
independent raters on the five task requirements (e.g., use a 
loop, use 15 blocks of code or fewer, etc.). All discrepancies 
between raters were reconciled (Amon et al., 2019).

The communication content codes proposed by the 
Generalized Competency Model for CPS (Sun et al., 2020) 
were applied to the duration of the 20-minute interaction. 
Five of the 37 teams were excluded from behavior coding 
as one or more recorded channels were missing (audio, 
video, or screen recording). As shown in Table 1, content 
codes belonged to one of three CPS facets and noted the 
specific socio-cognitive behavior exhibited at the utterance 

https://code.org/Minecraft
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(i.e., single speaking turn) level. If the utterance did not 
contain evidence of a CPS behavior, no code was applied to 
that line in the transcript. If the utterance contained evi-
dence for more than one CPS behavior, it could have been 
coded as belonging to more than one CPS facet. Two trained 
coders reached indicator-level reliability of 0.97 (Gwet’s 
AC1) on two 5-minute video samples. They then each 
coded a randomly assigned half of the 32 videos (Amon 
et al., 2019). Verbosity (total words spoken captured from 
the IBM Watson Speech to Text service; IBM, n.d.) was 
also extracted from the transcripts as a content-free mea-
sure of team-member contributions.

Measures

To determine the extent to which any given team member’s 
speech influenced the CPS communication content codes 
exhibited at the team-level, we used average mutual infor-
mation (AMI; Abarbanel, 1996; Cover & Thomas, 2006). 
This metric has been used previously to determine which 

individuals’ behaviors drove team-level adaptations 
(Gorman et al., 2020).

Two time series (X, Y) are input into the AMI function 
(Equation 1). If, in the symbolic time series, a symbol from 
X is independent from a symbol from Y, where P x yXY ( , ) = 

P x P yX Y( ) ( ), then mutual information is 0. AMI, then, is the 
average of these probabilities over all symbols. AMI is theo-
retically greater than or equal to 0, as it is from the informa-
tion theoretic approach and measured in bits, but its values 
are in reality constrained by the amount of information in the 
system. As the time series become more dependent, wherein 
by knowing one time series we know more information about 
the other, AMI becomes larger.
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Applied in the current study, we utilized the start and stop 
times of the utterances noted in task transcripts to create 
time series at both the individual- and team-levels. The 

Figure 1.  Screenshot of the Hour of Code environment (Amon et al., 2019). Blocks of code (B) were moved to produce solutions and 
solutions were tested in the Minecraft window (A). Teammates could also view each other’s videos (C).

Table 1.  CPS facets of the Generalized Competency Model adapted from Sun et al. (2020). Percentages represent the proportion of 
utterances ascribed to each facet.

Facet Description Example Utterance-Level Indicator

Constructing Shared 
Knowledge (33.0%)

The sharing of new ideas and the 
effort to understand them

Proposes specific solutions

Negotiation and 
Coordination (15.3%)

The process involved in reaching 
an agreed solution

Provides reasons to support/refute 
a potential solution

Maintaining Team 
Function (9.9%)

The process involved in 
sustaining the team’s dynamic

Asks if others have suggestions
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individual-level time series represented whether (1) or not 
(0) that individual was speaking during a given 10 ms of the 
transcript. The team-level time series was constructed from 
the communication content codes exhibited by all partici-
pants on the team. For example, if a participant uttered a 
statement from 3.34 to 3.63 s, coded as constructing shared 
knowledge, the team-level time series would display 100 
(the constructing shared knowledge nominal symbol) from 
the 334th cell to the 363rd cell, and that individual’s time 
series would display a 1 in corresponding cells. AMI was 
calculated using the MATLAB AMI function (Shrestha, 
2005) with bin size 10 and a lag of 0. The metric was calcu-
lated once for each participant in a team, wherein a partici-
pant’s time series (X) was assessed for the AMI it shared 
with the team’s time series (Y). This allowed us to under-
stand which participant’s communications accounted for the 
most mutual information, and thus influence, of the team’s 
CPS-relevant utterances.

We also calculated the ratio of an individual’s CPS verbal 
behaviors to their team’s total number of utterances to under-
stand how this simple proportion would covary with the 
novel influence metric. We refer to this ratio as proportion of 
verbal behaviors. For example, if Participant A contributed 
30 utterances overall, but only 4 of those were coded as con-
taining evidence of CPS processes, and their team’s tran-
script was 100 utterances long, Participant A’s proportion of 
verbal behaviors would equal 0.04. This proportion was cal-
culated using inputs analogous to the AMI measure of influ-
ence so we included this in addition to verbosity as it may 
share more variance with influence than the simple verbosity 
measure.

Results

All analyses were performed in R (R Core Team, 2022) with 
comparisons between the controller and non-controller par-
ticipants, wherein individual-level measures and covariates—
influence, post-test scores, subjective ratings, verbosity, and 
proportion of verbal behaviors—were averaged for the two 
non-controller team members. Comparisons between the con-
troller and the averaged non-controller participants were done 
via linear mixed effects models using a dummy coded variable 
with the controller entered as the reference group. Team mem-
bership was included as a random intercept.

First, we regressed influence on role with verbosity and 
proportion of verbal behaviors as covariates (Equation 2). 
While controlling for these factors, results suggest that the 
controller participants had significantly more influence over 
the CPS interaction than the non-controllers, which provides 
support for our hypothesis and initial validation for the AMI 
metric, β = 0.15, 95%CI [0.02, 0.06], p < .001. Said differ-
ently, the controller’s speech had significantly more depen-
dency with the entire team’s CPS codes than the other two 

participants. With respect to covariates, those with higher 
verbosity tended to have higher influence scores, β = 0.14, 
95%CI [0.08, 0.20], p < .001, but proportion of verbal 
behaviors was not significantly related to influence, β = 
-0.04, 95%CI [-0.10, 0.02], p = .20).
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We then sought to understand how influence related to 
post-test scores. We retained participant role as a predictor 
and the covariates from Equation 2, however in this second 
model influence was entered as a predictor and post-test 
score as the outcome variable. Neither predictor, influence, β 
= 0.05, 95%CI [-0.24, 0.35], p = .72, nor, participant role, β 
= -0.14, 95%CI [-0.63, 0.36], p = .58, were significantly 
related to post-test performance. Thus, participants appeared 
to retain task concepts regardless of their role or influence on 
CPS codes. Further, neither of the covariates related to task 
performance (verbosity, β = 0.15, 95%CI [-0.16, 0.46], p = 
.33; proportion of verbal behaviors, β = 0.01, 95%CI [-0.31, 
0.33], p = .93). While a potential explanation for these null 
findings is provided later, the results of this model did not 
support our hypothesis that influence would be related to 
performance.

Next, we ran a model to understand how influence and 
participant role predicted subjective ratings of the collabora-
tion. Similar to findings from post-test scores, neither the 
predictors (influence, β = -0.05, 95%CI [-0.31, 0.20], p = 
.68; participant role, β = 0.19, 95%CI [-0.37, 0.75], p = .51) 
nor covariates (verbosity, β = -0.10, 95%CI [-0.42, 0.21], p 
= .51; proportion of verbal behaviors, β = -0.17, 95%CI 
[-0.50, 0.16], p = .32) significantly related to participants’ 
subjective ratings of the collaboration.

We then ran correlations to understand how the partici-
pant-level variables in the above models were related. Only 
verbosity and proportion of verbal behaviors were signifi-
cantly correlated, r(62) = 0.59, 95%CI[0.40, 0.73], p < 
.001. Pairwise correlations between the verbosity and pro-
portion of verbal behaviors covariates and the other vari-
ables—influence, subjective ratings, post-test scores—were 
all non-significant, p > .05.

Lastly, we assessed the effect of role-specific influence on 
the team-level measure of performance. Because controller 
and non-controller influence between teammates was highly 
correlated, r(30) = 0.97, 95%CI[0.93, 0.98], p < .001, we 
ran two separate linear models to assess the effect of influ-
ence on task performance. While both models were not sig-
nificant, controller influence, β = 0.11, 95%CI[-0.26, 0.48], 
p = .55, was a relatively better predictor of team-level task 
performance than non-controller influence, β = 0.06, 
95%CI[-0.31, 0.44], p = .73.
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Discussion

The present study provides initial validation for a novel mea-
sure of an individual’s influence on team-level CPS pro-
cesses. The metric utilized communication content codes in 
the adaptation of previously explored team science methods 
to bridge an individual’s contributions to output at the team 
level (Gorman et  al., 2020). Given the results of the first 
model, where the controller had more influence over the 
team’s CPS communications than the other participants, we 
can conclude that the influence metric, as operationalized 
using AMI, does capture an individual’s contributions to col-
laborative interactions. The manipulation to participant roles 
allows us to make this casual conclusion, as the controller 
was uniquely positioned to have more influence than the 
non-controller participants. Though influence was signifi-
cantly related to verbosity in this model, it may not always be 
the case that an individual’s high word count is influential to 
CPS processes. In future efforts, we aim to investigate influ-
ence in other contexts and iterations to understand whether 
the metric can capture instances of substantial contributions 
independent of verbosity.

While individual-level post-test scores were hypothesized 
to relate to influence, it is not entirely unexpected that the two 
measures were unrelated, as they each may account for differ-
ent aspects of collaboration. It is likely that the influence met-
ric captures aspects of the CPS interaction that fall along the 
social dimension of this socio-cognitive activity. Social 
aspects of CPS include the behaviors it takes to coordinate and 
regulate the demands of a team’s collaborative efforts. This 
may involve such activities as ensuring all members have a 
turn or chance to contribute (Hesse et al., 2015), a quality that 
would in part be captured by the present study’s conceptual-
ization of influence. On the other hand, the individual post-test 
scores in the present study captured the cognitive gains of 
engaging with the activity—in this case, computer program-
ming concepts. Thus, whether in the controller role or not, par-
ticipants gained computer programming knowledge. We also 
investigated team-level performance as it relates to role-spe-
cific influence scores. Our hypothesis that influence is related 
to task performance was partially supported given the control-
ler’s influence was more related to this team-level perfor-
mance score than the non-controllers’ influence.

The final mixed-effects model analyzed to what extent sub-
jective ratings of the collaboration would relate to influence 
and participant roles. Based on the items in this scale, it is not 
surprising that these constructs were not related. The scale 
asked participants to respond to prompts that inquired about the 
interaction in general, not their perceptions of how they them-
selves contributed to the group. Future efforts will address this 
limitation via self-report measures that more centrally inquire 
about how participants felt their individual contributions drove 
the group’s problem solving processes and dynamic.

More specifically, future studies will assess the degree to 
which the influence metric correlates with social loafing and 

emergent leadership behaviors. In classroom learning, social 
loafing has been measured using self-report scales (e.g., 
Linnenbrink-Garcia et  al., 2011) and behavior coding (e.g., 
Nieswandt et  al., 2020), however additional measures that 
objectively assess this construct would be useful for applica-
tions like teacher dashboards. It is currently envisioned that 
this metric could identify which group member(s) have the 
least influence in CPS discussions, should the task not involve 
clearly defined roles, which may be a marker of social loafing. 
However, social loafing may also be imposed on an individual 
through forces extrinsic to the classroom interaction (e.g., 
existing power dynamics between students) so teachers and 
researchers should use discretion when interpreting the mea-
sure. Further, emergent leadership, which occurs when leader-
ship status is not based on designated roles but instead 
spontaneously arises, may also be explored within this mea-
sure, where high influence scores may correlate with leader-
ship behaviors (Hollander, 1960; Yoo & Alavi, 2004).

In all, the influence metric allows us to assess the degree to 
which CPS interactions are distributed equally amongst the 
group by assessing the range of influence scores within a 
team. If the team is indeed collaborating absent of specified 
roles, and the range of influence is close to 0, the team could 
be understood to have equitable interaction. However, this 
metric should and will be applied cautiously, as not all stu-
dents contribute to collaborations verbally—the modality 
considered in the present study. To truly understand a team 
member’s contribution, more accurate measures will include 
multiple modalities. In future work, we will explore cross-
modal effects, such as whether an individual’s gaze behavior 
carries mutual information with team communication streams.

Future Directions: Classroom Data & Real-Time 
Modeling

We ultimately intend to assess influence in real-world class-
room collaborations. Classroom data is inherently noisier 
with generally less intelligible audio and often inconsistent 
group sizes and roles, thus our validation effort first focused 
on controlled lab data. As an initial effort, we have also com-
puted the measure on excerpts of a dataset of transcribed vid-
eos from dyads and triads of middle school students 
collaborating on a task that required them to learn about sen-
sors through hardware and block programming. These tran-
scripts currently have only 5-minute snippets of each team’s 
transcript coded for CPS content using the Generalized 
Competency Model from Sun et al. (2020).

We calculated the influence measure for five of these 31 
5-minute transcripts, selected at random. We report on the 
results of one team to demonstrate how the influence metric 
reflects classroom interactions. This dyad displayed an 
unequal distribution of influence, where Student 1’s influence 
score was 0.04 and Student 2’s was substantially larger at 
0.24. As verbosity was related to influence in the Minecraft 
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task, the two measures remain related in this classroom exam-
ple, where Student 1 uttered 34 words and Student 2 uttered 
86 words. The difference between the two metrics is that 
influence is computed as a kind of nonlinear correlation 
between speech activity and CPS behaviors, whereas verbos-
ity provides a more direct measure of speech. Further, as can 
be seen in the excerpt from their transcript below, Student 2’s 
utterances were more substantive and drove their solution for-
ward with directives more so than Student 1’s speech. This 
pattern persisted throughout the 5-minute interaction.

Student 2: Cause I don’t think ours is working.
Student 2: I guess we could unplug it and plug it back in
Student 1: We could?
Student 2: And then do you want to plug it back in?
Student 2: And then we just plug it.
Student 2: Is this put on right?
Student 1: I thought so.
Student 2: Maybe wait for this to download and then. .  .
Student 2: Oh, it works now.

While one virtue of the influence measure is its consider-
ation of both individual- and team-level data, this measure 
was implemented specifically for future use as a real-time 
(i.e., dynamic) measure of CPS influence. Moving window 
approaches to AMI have been applied in other team settings 
to detect critical events in the environment using diarized 
speech data (i.e., who is speaking and when), devoid of com-
munication content information. Gorman et al. (2020) report 
on their success modeling individual and team communica-
tions in real time to recognize events using turn-taking behav-
ior alone. This method enabled them to also determine which 
members drove the team’s response to the event. In future 
efforts, we will adapt the Gorman et al. (2020) approach and 
apply it to classroom collaborations, making use of communi-
cation content codes, where the critical events we aim to rec-
ognize are such things as moments of insight or points at 
which the teacher provides guidance to the group.

Conclusion

In the present study we partially validated a multilevel mea-
sure intended to quantify an individual’s verbal influence 
toward their team’s CPS processes. While this metric has 
utility as-is, future work will systematically explore its valid-
ity in classroom collaborations and as a dynamic measure for 
potential use in collaboration dashboards and assessments.
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