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Resilient teams overcome sudden, dynamic changes
by enacting rapid, adaptive responses that maintain
system effectiveness. We analyzed two experiments on
human-autonomy teams (HATs) operating a simulated
remotely piloted aircraft system (RPAS) and correlated
dynamical measures of resilience with measures of team
performance. Across both experiments, HATs experi-
enced automation and autonomy failures, using aWizard
of Oz paradigm. Team performance was measured in
multiple ways, using a mission-level performance score,
a target processing efficiency score, a failure overcome
score, and a ground truth resilience score. Novel dy-
namical systems metrics of resilience measured the
timing of system reorganization in response to failures
across RPAS layers, including vehicle, controls, com-
munications layers, and the system overall. Time to
achieve extreme values of reorganization and novelty of
reorganization were consistently correlated with target
processing efficiency and ground truth resilience across
both studies. Correlations with mission-level perfor-
mance and the overcome score were apparent but less
consistent. Across both studies, teams displayed greater
system reorganization during failures compared to
routine task conditions. The second experiment re-
vealed differential effects of team training focused on
coordination coaching and trust calibration. These re-
sults inform the measurement and training of resilience
in HATs using objective, real-time resilience analysis.
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Introduction

Effective teams efficiently coordinate het-
erogeneous and shared resources to accomplish
shared and valued goals (Salas et al., 2008). In
this context, a resilient team responds to un-
desirable conditions and challenges, such as
system failures, by rapidly reorganizing its re-
sources to maintain high levels of team perfor-
mance (Alliger et al., 2015;Morgan et al., 2017). It
is theorized that resilient teams accomplish this by
rapidly recognizing, designing, and implementing
changes to ward off novel impediments to team
effectiveness outside their current areas of capable
performance (Hoffman & Hancock, 2017). Lack
of team resilience is exemplified in the 1996
Mount Everest climbing disaster, in which eight
climbers died while climbing Mount Everest. A
lack of team learning—including ill-defined pur-
pose, vague leadership, and poor sensemaking—
were key contributors to this disaster, but this
disaster was at least partially attributable to
a breakdown of team coordination (Kayes, 2004).
Lack of resilience and coordination was also
observed in the delayed response to Hurricane
Katrina (Leonard & Howitt, 2006), in which
a more rapid system reorganizationmay have sped
up relief and the subsequent recovery of those
impacted by the storm surge (Colten et al., 2008).
In contrast, rapid reorganization of system re-
sources has been associated with timely and
effective responses (e.g., military-civilian evacu-
ation efforts following 9/11; Boin & Bynander,
2015). In line with Hoffman and Hancock (2017),
we propose that more resilient teams exhibit faster
detection of impending catastrophes, im-
plementation of required changes (i.e., re-
organization behavior), and are thus able to
recover from novel threats more rapidly.

Emergency response in aviation and other
power system failures are long-standing concerns
in resilience research (e.g.,Woods et al., 1988).We
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build on this research by applying an objective,
data-driven approach to measuring team resilience
with the potential for real-time analysis that can
provide training, feedback, and identify critical
sources of system reorganization underlying re-
silience. We focus on human-autonomy teaming
(HAT), which is defined as teams inwhich humans
work with technological agents that are intelligent
and autonomous enough to be considered
a teammate (McNeese et al., 2018). The study of
HATs increasingly applies to safety-critical do-
mains, including urban search and rescue (Krujiff
et al., 2014), uninhabited aerial systems (McNeese
et al., 2018), cyberspace operations (Tambe et al.,
1999), and self-driving autonomous vehicles
(Campbell et al., 2010). By enabling flexible,
adaptive, and rapid team responses (Hoffman &
Hancock, 2017; Hollnagel et al., 2007), a resilient
HAT would be better equipped to rapidly over-
come potential pitfalls associated with un-
predictable challenges, such as automation and
autonomy failures, cyberattacks, communication
link failures, and system power outages. Many of
these common pitfalls in HATs are associated with
brittleness, lack of transparency, miscalibrated
trust, and a lack of shared awareness (Shively
et al., 2017). For example, although a human
working with an autonomous agent may lack
shared situation awareness with the agent, a re-
silient HATwould be more likely to overcome an
error resulting from this lack of shared awareness
by quickly reorganizing how it coordinates across
system layers. These potential pitfalls associated
with HATs make these types of teams suitable for
studying resilience.

In this paper, we describe a method for
measuring team resilience in response to tech-
nological system failures (i.e., automation and
autonomy failures), system power-downs,
communication outages, and cyberattacks us-
ing the concept of system reorganization
(Stevens et al., 2016). Reorganization refers to
how a team dynamically alters its patterns of
interaction, including communication and co-
ordination, across human and technological
system layers to adapt and overcome system
failures. By measuring reorganization in re-
sponse to failure perturbations, we aim to create
objective metrics for measuring resilience that
correlate with established measures of team

performance. In addition, by correlating resil-
ience metrics with team performance, we hope
to better understand the nature of resilience, in
which faster reorganization is hypothesized to
correlate with increased team effectiveness.
Thus, the primary focus of this paper is to
present novel dynamical systems metrics of
team resilience and validate them across a series
of HAT experiments.

Our method takes a systems approach to team
resilience in a remotely piloted aircraft system
(RPAS), wherein adaptive solutions must be or-
ganized across operators (humans and autono-
mous agents), user interfaces, and vehicle system
layers to overcome failures. Table 1 provides
conceptual definitions of system layers as well as
other terminology used in the current studies.
Table 1 also outlines the theoretical interplay
between stability, entropy, and reorganization,
such that when an adaptive system is perturbed
from equilibrium it has the capacity to reorganize
component states to maintain order and function
(or discover a new order and function; not ex-
plicitly investigated here), at the system level.
Relaxation time (Table 1) and its components
(described later) are key metrics for measuring the
time course of this process.

Systems Approach

Resilience engineering is relevant to the
training and development of effective teams
across a variety of settings. Resilience engi-
neering emphasizes how sociotechnical systems
of varying sizes, from teams to large organ-
izations, are expected to encounter disturbances,
errors, and perturbations, and how these systems
flex and adapt to maintain peak performance
(Hollnagel et al., 2007). In this light, the de-
velopment of bottom-up, data-driven ap-
proaches to quantify and visualize team
resilience that have the potential for real-time
resilience analysis are a critical need. We will
measure team resilience using metrics based in
dynamical systems theory, with the goal of in-
tegrating real-time dynamical methods with
concepts of team resilience in human factors and
resilience engineering.

In resilience engineering, resilience is
defined as the “systemic capacity to change
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[i.e., reorganize] because of circumstances that
push the system beyond the [current] boundaries
of its competence envelope” (Hoffman &
Hancock, 2017, pp. 565–566). The RPAS syn-
thetic task environment is appropriate for ana-
lyzing team resilience because it allows for the
controlled introduction of different types of
technology failures, referred to as perturbations,
which are external forces that require a system to
reorganize to remain in or find a new stable state
(Gorman, Cooke, & Amazeen, 2010). In terms of
resilience engineering, perturbations force teams
to operate beyond the boundaries of their initial
training. We analyze team resilience in the context
of failure perturbations that provide a test of
a team’s ability to adapt to and overcome different
types of HAT failures.

Because teams in dynamic environments
continuously self-organize new arrangements of
parts as they adapt to the changing environment,
we view teams as complex adaptive systems
(Elliott & Kiel, 2022; McGrath et al., 2000).
Therefore, our measures focus on the co-
ordinated behavior that emerges from
individual-level interactions, as opposed to the
individual-level actions themselves (Amazeen
& Amazeen, 2017). When examining the co-
ordinated behavior of human and technological
components of a system, resilience can be
viewed as the ability for components to mutually
adapt when encountering unexpected perturba-
tions and quickly recover to maintain stable and
effective system performance. Thus, resilience
involves maintaining system performance

TABLE 1: Conceptual Definitions of Terms Used in the Current Studies (Operational Definitions are
Provided Later Under Methods and Metrics)

Terms Conceptual definitions

Entropy and
reorganization

Variety of system or layer states. Greater variety has higher entropy. In the
current studies, entropy is measured within a (moving) window of time, where
entropy fluctuations over time indexes increasing (more reorganization) and
decreasing (less reorganization) variety of system states over time. This is
called a reorganization time series (Gorman et al., 2020).

Failure complexity Failures based on a single task element (e.g., a single automation or autonomy-
related failure) are considered less complex than failures comprised ofmultiple
task elements (e.g., combinations of automation and autonomy failures).

Ground truth resilience An objective score that measures the change in system performance following
a failure. In the current studies, it is measured as difference in performance on
an RPA ground target when a failure is introduced and performance on the
subsequent target.

Layered dynamics A type of functional decomposition that groups all measurable sensor states
according to the system layer that generates them. In the current studies, we
model the RPAS HAT system using vehicle, communications, and controls
layers, each of which is comprised of different sets of sensors; however, the
approach is scalable to smaller or larger systems (e.g., Yin et al., 2022). Layered
dynamics allows system reorganization to be assessed at the system-level, as
well as within different system layers.

Relaxation time The amount of time it takes a system or system layer to reorganize and stabilize
following a failure perturbation. In the current studies there are three
relaxation time components (initial, peak, end) corresponding to the
components of a “resilience curve.”

Resilience The capacity of a sociotechnical system (e.g., RPAS HAT) to rapidly enact
a response, adapt, and recover from conditions previously outside of its
competence envelope (Hoffman & Hancock, 2017).

Robustness The capacity of a system to overcome novel perturbations without degradation
of performance.
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across human and technological components to
maintain a stable trajectory directed toward
accomplishing team goals (“teleological varia-
tion,” Gorman et al., 2019; Thorén, 2014). The
time course of a system to re-stabilize or sta-
bilize in a new state following a perturbation is
called relaxation time (Trotsky et al., 2012),
which is an index of the system’s ability to enact
a response, adapt, and recover following a per-
turbation (Abraham & Shaw, 1992; Mermin,
1970). In the current studies, we use the con-
cept of relaxation time to measure how long it
takes a HAT to reorganize following autonomy,
automation, and other system failures to identify
the reorganization profiles across system layers
that correspond to different types of failure
perturbations.

The Current Studies

Our relaxation time metrics of resilience are
based on a nonlinear prediction algorithm
(Kantz & Schreiber, 1997) and layered dy-
namics (Gorman et al., 2019). We used these
algorithms to measure (a) how quickly a team
reorganizes system behavior in response to
a perturbation, (b) the novelty of the re-
organization, and (c) which system layers (op-
erator communications, controls, vehicle,
system overall) reorganize in response to failure
perturbations. To examine the association be-
tween these resilience metrics and maintaining
team effectiveness, we correlated them with
objective team performance measures, including
a team performance outcome score, a processing
efficiency score, and a binary score of whether
the team overcame the failure. We also corre-
lated the relaxation time resilience metrics with
a ground truth resilience score, which measures
the change in the efficiency of taking photos of
ground targets (the primary goal of RPAS
missions) during and immediately following
a failure perturbation. Thus, the team perfor-
mance metrics and ground truth resilience score
provided a test of criterion validity for the re-
laxation time resilience metrics. The purpose of
testing our resilience metrics across different
RPAS HAT experiments was to understand how
these measures react to automation and auton-
omy failure perturbations (Experiment 1) and

failure perturbations of increasing complexity
(Experiment 2), as well as their sensitivity to
HAT training manipulations, which were hy-
pothesized to differently impact response to
either automation or autonomy failures, as de-
scribed in the Experiment 2 Methods section.
The next section outlines the general method
used in both experiments; the details of the
participants and procedures of each experiment
are separately provided in later sections. Study
hypotheses are heavily informed by the design
of the dynamical systems resilience metrics;
hence, specific hypotheses are presented after
the General Method, Measures section.

General Method

Overview

Results are reported from two experiments
conducted at the Cognitive Engineering Re-
search Institute (CERI) at Arizona State Uni-
versity. The data were collected in the Cognitive
Engineering Research on Team Tasks RPAS
Synthetic Task Environment (CERTT-RPAS-
STE), which simulates teamwork components
of RPAS operations and allows for system-level
evaluations of these components. The two ex-
periments use the CERTT-RPAS-STE but differ
with respect to between- and within-subjects
manipulations.

Materials

The CERTT-RPAS-STE consists of seven
hardware consoles (three for task roles, four for
experimenters) in which participants and ex-
perimenters use a chat interface to communicate
(Grimm et al., 2018; McNeese et al., 2018). The
task consists of three team-member roles: (1)
a navigator who creates the flight plan and sends
waypoint restrictions (altitude, airspeed, way-
point name and type, effective radius) to the pilot
and photographer; (2) a pilot who monitors and
controls vehicle altitude, heading, and airspeed
based on the flight plan, and maintains fuel,
gears, and flaps settings; additionally, the pilot
negotiates with the photographer to achieve
required altitude and airspeed to enable suc-
cessful photographs of target waypoints; and (3)
a photographer who controls camera type and
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settings, takes target photos, and communicates
feedback of the target photo results to the
navigator and pilot. Each teammember has three
screens, including a screen that displays role-
specific information, a screen that presents RPA
status (e.g., current target; speed; altitude; dis-
tance to target), and a chat interface screen. The
goal of the team is to fly the RPA through a series
of target waypoints (11–20 per mission) to take
reconnaissance photos while meeting waypoint
restrictions (i.e., acceptable speed/altitude) and
to minimize warnings and alarms during a series
of 40-min missions.

This research sought to understand resilience
in HATs under degraded conditions, which is
a term used to specifically refer to automation,
autonomy, and malicious attack failures (Cooke
et al., 2020). In the current studies, the navigator
and photographer were informed that the pilot
was an autonomous agent, although the auton-
omous agent was actually a trained experi-
menter. Known as the Wizard of Oz paradigm
(WoZ; Kelley, 1983), this technique was used to
introduce autonomy failures in a controlled
manner rather than programming an autono-
mous agent that failed in controlled ways. Other
than introducing autonomy failures, the WoZ
pilot emulated the behavior of an actual au-
tonomous agent pilot, known as the synthetic
teammate (Ball et al., 2010). The synthetic
teammate was developed using Adaptive Con-
trol of Thought-Rationale (ACT-R; Anderson
et al., 1997) and interacts with human team-
mates through text chat and is responsible for all
taskwork aspects of the pilot role. Prior work
with the synthetic teammate revealed limitations
of the agent’s communication and coordination
capabilities (McNeese et al., 2018; Scalia et al.,
2022), which were replicated using the WoZ
paradigm in the current studies. Therefore,
participants (navigator and photographer) were
given cheat sheets to assist in effective com-
munication with the WoZ pilot.

Measures

Performance Metrics. We measured team
effectiveness using three performance scores.
Team Performancewas a mission-level outcome
score, that emphasized the overall ability to

successfully photograph targets while account-
ing for other mission parameters, including time
spent in warning/alarm states, number of good
photographs, missed targets, and fuel and bat-
tery consumption. Teams started each mission
with a score of 1,000, and points were deducted
based on those parameters. Overcome measured
how many failures teams successfully over-
came, defined as the team successfully photo-
graphing the target impacted by the failure. If the
team overcame the failure, they received a 1, and
if they failed to overcome the failure, they re-
ceived a 0. Finally, Target Processing Efficiency
(TPE) measured performance at the target level
based on how much time the team spent in the
effective target radius to take a photo (shorter
times are more efficient). TPE was negatively
scored, such that higher scores corresponded to
greater efficiency (range = 0–1000). The closer
the score to 1,000, the better the TPE; however,
there was no a priori range regarded as opti-
mally efficient TPE. Team performance and
overcome are outcome-basedmeasures, whereas
TPE is a process-based measure, as it deducts
points for inefficient team processing while in the
target radius. Overcome was scored 1 if the team
successfully obtained a good photo of the failure
target and 0 if not; all other performance scores
were generated automatically by the task software.

Ground Truth Resilience Score. The ground
truth resilience score (GTRS) is a process-based
measure of team resilience computed from TPE
scores. GTRS measures the performance dif-
ference between TPE on the failure target and
TPE on the subsequent target. Conceptually,
GTRS measures both how much a team is ini-
tially impacted by a failure and how well a team
recovers following the failure. This score is
calculated as the difference between TPE on the
failure target and TPE on the following (non-
failure) target (Equation (1)).

GTRS ¼ TSfþ1 � TSf (1)

GTRS = ground truth resilience score,
TSfþ1 = TPE on the target immediately fol-
lowing the failure target,
TSf = TPE on the failure target.

Although GTRS was intended to measure
behavioral resilience, it does not directly measure
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how this occurs. For example, if TPE is greatly
reduced by a failure, but TPE on the subsequent
target returns to a high level, then GTRSwould be
large, which would fit the concept of resilience as
recovery (Woods, 2015). In this case, we should
observe a negative correlation between larger
GTRS and shorter relaxation times. On the other
hand, if a team reorganizes so quickly (shorter
relaxation time) that TPE on the failure target
remains high, and TPE on the subsequent
target also remains high, then GTRS would be
small, and this would fit the concept of resilience
as robustness (Woods, 2015). It is also possible for
low-performing teams, who were poor on the
failure target and the subsequent target (i.e., TPE
small on both occasions), to obtain a small GTRS.
In these latter cases, we should observe a positive
correlation between smaller GTRS and shorter
relaxation times.

Dynamical Systems Resilience Metrics

Layered Dynamics. We analyzed four lay-
ers of RPAS coordination that represent HAT
reorganization (Gorman et al., 2019). System
layers included (1) communication layer –

message sending and receiving among team
members through the chat system (i.e., pilot →
navigator; navigator → pilot and photographer;
etc.); (2) vehicle layer – actions and states of the
vehicle (i.e., changes in speed; altitude; fuel;
heading; etc.); (3) controls layer – the controls
used to interface with the vehicle and other
teammates (i.e., changes in pilot’s vehicle
controls; photographer’s camera controls; nav-
igator’s route planning controls; etc.); and (4)
system layer – overall system state across all
layers.

A vector of binary symbols represents the
states of all system components, within each
layer and the system overall, as a time series
(1 Hz). The sensors within the layers—
Communication = 9, Vehicle = 9, Con-
trols = 21—comprise an overall RPAS state
vector (Figure 1). This overall RPAS vector
(i.e., the “system layer”) is thus a 39-
component vector. For continuous variables,
states were determined by mapping the con-
tinuous dynamics of components onto a nu-
meric alphabet for symbolic time series

modeling (Nicolis & Prigogine, 1989) that
preserves the dynamics (e.g., vehicle speed
can be represented using four states/symbols:
speeding up; slowing down; constant speed;
alarm state; Gorman et al., 2019). The purpose
of using symbolic dynamics is that by defining
the symbols as mutually exclusive and col-
lectively exhaustive symbol sets, we can sum
across any collection or sensor states at 1 Hz
(e.g., just the vehicle layer vs. the system
overall) to efficiently obtain set intersections
representing unique layer and system states.
This method allows for the efficient compu-
tation of changing system and layer states on
a second-by-second basis (Gorman et al.,
2019).

Although the symbolic alphabet is numeric to
allow for summation, we do not assume any
ordinal relations (e.g., greater than) among the
symbols. As illustrated in Figure 2, it does not
matter what the symbols are except that the
symbolic time series for each component sensor
must be mutually exclusive with all other
components, such that summing across com-
ponent states yields a unique intersection (\) for
every unique system state. In Figure 2, the
numeric symbols are binary numbers, with ad-
dition through horizontal concatenation. The
purpose of using binary numbers is that it fa-
cilitates the scalable expansion of the mutually
exclusive and exhaustive symbol sets if needed
(e.g., if we needed to add another component to
the system).

Reorganization. The following section de-
scribes the calculation of reorganization time
series using layered dynamics. All data man-
agement and analytic procedures were the same
across both experiments.

Entropy (Equation (2)) is a measure of the
variety of system states within a window of time
(Ashby, 1957), and moving window entropy is
a continuous measure of the changing variety
(“reorganization”) of system states over time
(Gorman et al., 2020; Stevens et al., 2016). In
equation (2), pn is the relative frequency of any
of the n states in the window multiplied by log2
pn. Entropy is used due to its computational
efficiency relative to other measures such as
recurrence-based determinism (Gorman et al.,
2020). Based on prior work, we calculated
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reorganization in the system layers and the
system overall using a window size of 120 s
with a 1 Hz window update rate (e.g., Gorman
et al., 2019; Gorman et al., 2020). Using this
approach, the more permutations of symbol
intersections (i.e., unique states) a system
goes through in a window of time, the greater
the system variety and, hence, the greater the
reorganization in that portion of the time se-
ries. Entropy spikes correspond to times of
extreme reorganization, and dips in entropy
correspond to times of low reorganization. We

used Shannon entropy (Shannon & Weaver,
1949; Equation (2)) to calculate continuous
system reorganization as the window was slid
across the layered dynamics symbolic time
series (e.g., Q0 in Figure 2).

Entropy ¼ �
X#sym

n¼1

ð pn × log2 pnÞ (2)

In accordance with the law of requisite variety
(Ashby, 1957), we hypothesized (described
later) that reorganization would be significantly

Figure 1. Input component signals for theVehicle, Controls, andCommunication layers. Non-underlined component
in the Vehicle layer provide redundant information and were not used. Figure adapted from Gorman et al. (2019).

Figure 2. Example illustrating symbolic time series using binary symbols for component states (qi = component
i state; 000 = off state) and team state (Q’; component intersections) obtained by summing across (binary
addition) component states at each time point (sample). For illustration, this example uses two on/off state for
each component; however, the method is generalizable to higher order component states as in the current studies.
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larger during failure perturbations compared to
routine mission conditions that do not require as
much reorganization. This corresponds also to
the interpretation of increased entropy as critical
variability during phase transitions (Heinzel
et al., 2014; Wiltshire et al., 2018), as this in-
crease can be indicative of a team or system
transitioning from one state to another. Similar
dynamics have been observed in symptom
changes among patients with obsessive-
compulsive disorder (Heinzel et al., 2014), de-
noting the generalizability of the approach.
Figure 3 provides a visualization of the moving
window entropy calculation on binary symbols,
using team communication channels as an
example.

The purpose of encoding sensor data using
mutually exclusive states is that every unique
intersection of sensor states (e.g., intersecting
a Vehicle state with a Communication state)
defines some new state. The possible combi-
nations of sensor states for measuring system
state (or layer state, if desired) can be enormous.

A conservative estimate of the number of the
possible system states in the current studies if
each of the 38 sensors take on at most two states
would be 238 = 274,877,906,944 unique system
states. It is unlikely that all portions of this state
space will ever be visited by the system: Some
portions of the state space are likely to be visited
more frequently than others (cf. attractors),
whereas some portions of the state space may be
inaccessible to the system (cf. repellors). Note,
however, that the purpose of the present studies
is not to enumerate specific states and attractors
of the system; we leave that for future research,
but to use layered dynamics models to develop
generalizable real-time resilience metrics.

Reorganization Novelty. We used Kantz
and Schreiber’s (1997) nonlinear prediction al-
gorithm to quantify reorganization novelty in
terms of deviations (root mean square error;
RMSE) of the observed reorganization time
series from a predicted behavior reorganization
time series. RMSE represents how different the
current reorganization trajectory is from the

Figure 3. Illustration of moving window entropy calculation: (a) input database of text chat events generated by
the task software (only time sent and read were used; content was not analyzed); (b) symbolic encoding
represents each possible “From-To” chat event as a binary symbol; (c) moving window entropy calculated from
(1 Hz) symbolic time series of chat events (higher entropy = more reorganization/variety). Figure adapted from
Gorman et al. (2019).
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predicted trajectory based on prior re-
organization behavior (Figure 3).

For a reorganization (entropy) time series,
select the current value, xN , and define a neigh-
borhood, Uζ (xN ), of near neighbors, xn, that are
within ε of xN , where ε is a noise factor. Next,
generate predictions for the future evolution of xN
over the next Δn time steps (the “prediction
horizon”), denoted by xNþΔn, by taking the points,
xni, inUζ (xN ), and following them Δn time steps,
to obtain a collection of predicted trajectories,
xniþΔn. Rather than arbitrarily choosing any one
predicted trajectory, calculate the ensemble av-
erage across the predictions, hxniþΔni. To calcu-
late how much the current system trajectory,
xNþΔn, deviates from the ensemble average pre-
dicted trajectory, hxniþΔni, calculate RMSE =
√ðxNþΔn � hxniþΔni)2.

For the current studies, we set ε = 3 and Δn =
20s, which have been shown to be effective for
detecting novel system reorganization during
perturbations in medical and submarine domains
(Gorman et al., 2020; Grimm et al., 2017). RMSE
time series were generated for each RPAS mis-
sion using the same moving window procedure
described previously for entropy (Figure 4).

Relaxation Time. Dynamical systems ap-
proaches for studying team adaptation typically
involve introducing perturbations to determine
how the team responds through verbal commu-
nication reorganization (e.g., Gorman et al., 2020;
Grimm et al., 2017). Using this approach,

relaxation time is the time it takes for a team to
adapt and recover by reorganizing following
a perturbation. If this happens quickly, then the
team’s relaxation time is shorter. We define re-
laxation time as being made up of three compo-
nents in line with the theoretical approach of
Hoffman and Hancock (2017). Whereas re-
laxation time and resilience are often thought of as
a singular time to rebound (Woods, 2015), we
break it down into three functionally meaningful
parts (Initial, Peak, End). In the current studies, we
measure these relaxation time components across
the sociotechnical system—across communica-
tion, vehicle, controls layers, and the system as
a whole—in response to failure perturbations.

The first relaxation time component, Initial, is
how long (in sec.) it takes a team’s re-
organization time series to exceed a 99% con-
fidence interval (CI) following perturbation
onset (described in detail later). The Initial
measure operationalizes how quickly the team
enacts a reorganization in response to a failure
and represents the enaction component of re-
silience. The second component, Peak, is how
long (in sec.) it takes reorganization to reach its
most extreme value following perturbation on-
set. The Peak measure operationalizes how
quickly the team reaches its maximum point of
reorganization and represents the adaptation
component of resilience. To parallel Hoffman
and Hancock (2017), Initial measures the time to
recognize the need for and enact a change,

Figure 4. Depiction of the RMSE calculation. Larger deviations between observed (“Raw”) and predicted
(“Expected”) yield larger RMSE values indicating greater reorganization novelty.
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whereas Peak measures the time to implement
the change (i.e., adaptation).

The third component, End, measures how
long it takes for a team to return to a non-
significant level of reorganization following
enaction and adaptation. The End measure is
defined as the last time point (in sec.) at which
the reorganization time series is operating at
statistically extreme levels (exceeds 99% CI)
following a failure perturbation. This third metric
closes the “resilience curve” comprising enaction,
adaptation, and recovery (Figure 5), with recovery
defined as a return to nominal levels of re-
organization. As shown in Figure 5, all relaxation
time component measures are calculated relative
to a 99% CI computed over the reorganization
time series from failure perturbation onset to

perturbation offset. The purpose of using the
distribution of observations within a failure’s
duration was to ensure that each of the three re-
laxation time components (Initial, Peak, End)
could be measured for every failure perturbation.

Because the sampling rate was 1 Hz, the
number of possible reorganization observations
during a perturbation simply corresponds to the
duration (in sec.) of the perturbation. Perturba-
tion failure length ranged from 300–420 seconds
in Experiment 1 (Cooke et al., 2020) and 300–
600 seconds in Experiment 2 (Johnson et al.,
2020). Relaxation times were always measured
relative to the onset of perturbation, such that
more rapidly closing the resilience curve
(Figure 5) would result in relaxation times
shorter than the full perturbation duration.

Figure 5. Resilience measurement components that complete a “resilience curve.” The black trace represents
moving window entropy over time, and the red line represents the 99% confidence interval (CI) used to measure
Initial, Peak, and End relaxation time components. This figure illustrates resilience metrics for an entropy
reorganization time series; however, the process is identical for measuring resilience for an RMSE re-
organization novelty time series.
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Study Hypotheses

Our first hypothesis examined how relaxation
time metrics relate to maintaining team effec-
tiveness. We hypothesized that shorter re-
laxation times, which indicate faster enaction,
adaptation, and recovery, should be associated
with higher team performance.

· Hypothesis 1: Shorter relaxation times (greater
adaptive ability/recovery) will be correlated
with greater team effectiveness (higher perfor-
mance scores) across both experiments.

Our second hypothesis was that RPAS HATs
should exhibit significantly greater system re-
organization during failure perturbations com-
pared to routine mission conditions containing
no failures. This hypothesis is akin to the law of
requisite variety (Ashby, 1957), which states that
for a system to maintain effectiveness, the con-
troller (“team”) must be able to produce sufficient
coordination variety (variety = number of states) to
match or exceed the variety demanded by the
environment. We further hypothesized that this
increase in reorganization behavior would be
larger for more effective teams.

· Hypothesis 2a: Teams will exhibit greater re-
organization behavior during failure perturba-
tions compared to routine mission segments.

· Hypothesis 2b: This effect will be larger for
higher-performing teams.

We examined criterion validity by correlating
our resilience metrics with a ground truth resilience
score, which measured the impact and subsequent
recovery of performance following a failure per-
turbation. As described earlier, whether the corre-
lation between our resilience metrics and ground
truth resilience was negative or positive indicates
either the classic form of resilience as recovery or
resilience as robustness to perturbation (Woods,
2015). Therefore, our hypothesis with respect to
ground truth resilience was non-directional.

· Hypothesis 3: Relaxation times will be corre-
lated with ground truth resilience, with the di-
rection of correlation indicating the nature of
resilience (i.e., recovery vs. robustness).

In Experiment 2, teams received different types
of training designed to help them overcome either

automation failures (“Coordination Coaching”) or
autonomy failures (“Trust Calibration”), with
a third group receiving no special training
(“Control”). Because coordination coaching was
intended to help teams overcome automation
failures, and Trust Calibrationwas intended to help
teams overcome autonomy failures (Johnson et al.,
2020), we hypothesized that our resilience metrics
would reflect this difference. Specifically, we
predicted that relaxation time-performance/GTRS
correlations would be stronger for automation
failures for Coordination Coaching teams,
whereas these correlations would be stronger for
autonomy failures for Trust Calibration teams.
These two training conditions, Trust Calibration
andCoordination Coaching, are described in detail
in the Experiment 2 Methods section.

· Hypothesis 4: Teams receiving coordination
coaching will display greater resilience in the
form of stronger resilience correlations for au-
tomation failures, whereas teams receiving trust
calibration training will display stronger resil-
ience correlations for autonomy failures.

Hypotheses 1–3 (but not 4) were tested in both
experiments. Therefore, in the following results
sections we refer to each hypothesis according to its
experiment and hypothesis number. For example,
Experient 1, Hypothesis 1 is labeled E1.H1, Ex-
perient 2, Hypothesis 1 is labeled E2.H1, etc.

Experiment 1

Participants

Forty-four participants (22 teams) between
18 to 36 years of age (M= 23.0, SD = 3.90) were
recruited from Arizona State University and
surrounding areas. The gender distribution was
21 males and 23 females. Participants were
required to have normal or corrected-to-normal
vision and fluency in English. All participants
were compensated $10 per hour. The experiment
was approved by the Cognitive Engineering
Research Institute Institutional Review Board.

Procedure

Experiment 1 took place across two sessions,
with a one- to two-week interval between ses-
sions. A trained experimenter was placed in the
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pilot role and performed as the autonomous
agent in a WoZ paradigm (Kelley, 1983) using
a script to mimic actions and communications
consistent with the synthetic teammate. Partic-
ipants were randomly assigned to either navi-
gator or photographer and were instructed that
they were working with a synthetic teammate.
The experimenter in the synthetic teammate role
was in a separate room, and the participants were
located together in another room and were
separated by a partition. Each participant in-
dividually received 30 min of PowerPoint
training on the task and their roles. Sub-
sequently, they performed a 30 min hands-on
training mission as a team, during which other
experimenters used a checklist to ensure that the
navigator and photographer were sufficiently
trained in their roles.

The first 40-min mission was a baseline
mission with no failures. From Missions 2 to 9,
there were two failures (one automation and one

autonomy) per mission. These failures were
introduced to measure team resilience to low-
level system automation failures versus pertur-
bations stemming from glitches in the autono-
mous agent teammate and allowed us to directly
compare team behavior during failures to routine
mission segments. A malicious cyberattack was
introduced during the final 10 minutes of the last
mission. Table 2 summarizes the experimental
procedure, including the schedule for in-
troducing different types of failures. As de-
scribed next, automation and autonomy failures
each had three types.

Failure Types

This section describes the three types of
automation and autonomy failures. Because
the malicious cyberattack occurred only once,
it was not included in the inferential statistical
analysis of Experiment 1. However, the
malicious attack failure was examined in

TABLE 2: Procedure for Experiment 1

Application of failures during specific targets

Target/
Automation

Target/
Autonomy

Target/Malicious
attack

Session I (total session with breaks ∼6 hours)
Consent (15 min)
Training - PowerPoint + hands on No failure No failure No failure
Mission I (40 min) No failure No failure No failure

NASA TLX (15 min)
Mission 2 (40 min) 2nd/Type I 4th/Type I No failure
Mission 3 (40 min) 4th/Type II 2nd/Type II No failure
Mission 4 (40 min) 1st/Type III 3rd/Type III No failure

NASA TLX-II, trust and anthropomorphisms, and
demographics (30 min)

Session II (total session with breaks ∼7 hours)
Mission 5 (40 min) 2nd/Type III 4th/Type II No failure

NASA TLX I (15 min)
Mission 6 (40 min) 4th/Type I 2nd/Type I No failure
Mission 7 (40 min) 1st/Type II 3rd/Type II No failure
Mission 8 (40 min) 3rd/Type III 1st/Type III No failure
Mission 9 (40 min) 3rd/Type II 1st/Type III No failure
Mission 10 (40 min) 2nd/Type III 4th/Type III Last 10 min

NASA TLX-II, trust, anthropomorphism,
demographics, and debriefing (30 min)

Post-check procedure (15 min)

Note. Automation and autonomy failures of different types were implemented in a specified order. Failure types are
described in the text.
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Experiment 2, due to its importance for ex-
amining failure complexity.

Automation Failures. The Type I Auto-
mation Failure affected the photographer for
a total duration of 300 sec. This failure prevented
the photographer from viewing current and next
target waypoint information, remaining time,
distance to the current target, bearing, and course
deviation to target, such that the photographer
had to obtain that information by communi-
cating with other team members. The Type II
Automation Failure affected the pilot for a total
duration of 420 sec. This failure prevented the
pilot from viewing current altitude and airspeed
settings and from entering new altitude and
airspeed information, such that the pilot had to
obtain that information by communicating with
other team members. The Type III Automation
failure also affected the pilot for a duration of
420 sec. This failure was more intense than the
Type II automation failure. In addition, the pilot
was unable to see the remaining time, distance,
and bearing to the current target waypoint, such
that the pilot had to communicate with other
team members to obtain accurate target in-
formation. Figure 6 displays an example of
a Type II automation failure.

Autonomy Failures. The experiment in-
cluded three types of autonomy failures in which
the synthetic teammate pilot failed, each lasting

420 seconds. The Type I Autonomy Failure was
a comprehension failure in which a human team
member provided information to the synthetic
agent, but the agent repeatedly requested the
same information due to its inability to com-
prehend. To overcome this failure, the human
team member had to notice the synthetic pilot’s
incorrect behavior and re-send the correct target
waypoint information (i.e., required altitude and
airspeed; Cooke et al., 2020). The Type II
Autonomy Failure was an anticipation failure in
which the synthetic agent did not give the
photographer sufficient time to take a good
photo and prematurely changed course to the
next target. To overcome this failure, the pho-
tographer or navigator must notice this failure
and instruct the pilot to go back to the target
waypoint. The Type III Autonomy Failure was
also a comprehension failure in which the
synthetic agent failed to understand a message
due to its limited communication abilities and
misinterpreted target information (altitude, air-
speed) from the navigator and photographer. To
overcome this failure, the photographer had to
repeat the correct information until the pilot
correctly adjusted the necessary settings.

Data Analysis Overview. To classify re-
organization or novelty values as exceeding the
critical threshold, we focused on the distribution
of observations within the timespan of a failure,

Figure 6. Example of a Type II automation failure. The left image displays the pilot’s screen during normal
(routine) conditions. The right image displays the failures that occurred during the Type II automation failure:
The pilot cannot see Altitude and Airspeed and must obtain this information from other team members.
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and identified reorganization observations that
exceeded the 99% CI of the observations within
the timespan of that failure, corresponding to
a .01 alpha level (Cohen et al., 2013). From these
extreme values, we calculated the relaxation
time component metrics (i.e., Initial, Peak, and
End) for each failure perturbation. To test H1
(shorter relaxation times are correlated with
greater performance), H3 (relaxation times are
correlated with GTRS), and H4 (training effects
will be present), we correlated each relaxation
time component for each system layer (Vehicle,
Communications, Controls, System Overall)
with all performance scores and GTRS. This was
done separately for the reorganization (entropy)
and novelty (RMSE) metrics. To test H2a
(greater reorganization during failures), we
conducted ANOVAs to test for main effects
between failure and routine mission segments; to
test H2b (that the effect would be larger for
higher performing teams), we examined mission
segment × performance cluster (low, medium,
high) interactions from these ANOVAs.

All correlations and ANOVAs for both Ex-
periment 1 and 2 were conducted using IBM
SPSS Statistics (Version 28.0.1.0). To calculate
the resilience metrics (relaxation time compo-
nents, reorganization, RMSE, GTRS, and
moving window measures) we used MatLab
(Versions 2019–2021a) for both Experiment 1
and 2. All MatLab scripts were written by the
authors, except for the entropy function, which
was downloaded from the MatLab File Ex-
change (Dwinnell, 2023).

Results and Discussion

Hypothesis E1.H1

This hypothesis predicted that faster re-
laxation times would correlate with greater team
performance. Significant relaxation time—
performance metric correlations are presented
in Table 3. This table includes system layers,
reorganization and reorganization novelty
measures (entropy, RMSE), and relaxation time
components (Initial, Peak, End). Table 3 reports
all significant correlations at the α ¼ :05 level.
However, given that there were 192 correlations (2
failure types × 2 dynamical system measures × 4
performance measures × 4 layers × 3 relaxation

time components), we focus on medium to large
effect sizes (|r| > .3; Cohen, 1988) to reduce the
risk of Type I errors and to assess the correlations
in terms of their practical significance (Cumming,
2012, 2014). Prior work by Cumming describes
how relying on p-values may lead to poor repli-
cation due to high variability and a wide range of
possible p-values, whereas effect sizes perform
better in replications under simulated conditions
(Cumming, 2008; Cumming, 2014; Cumming &
Maillardet, 2006). Additionally, relying on
a Bonferroni-corrected α ¼ :05

192 ¼ :00026 would
have increased the probability of Type II error.

Using this criterion, all three relaxation time
components were negatively correlated with
TPE in the vehicle layer during autonomy
failures, with the system layer falling just below
our practical significance criterion (all |r| > .24).
Thus, the vehicle and to some degree the system
layer produced consistent correlations in the
hypothesized direction for autonomy failures,
whereas the results across all other system layers
were less consistent. These results provide some
support for E1.H1, that faster relaxation times
would be correlated with greater team perfor-
mance, across all three relaxation time compo-
nents (Initial, Peak, End). The positive vehicle
and overall system correlations were also sizable
with respect to GTRS for autonomy failures.

Hypothesis E1.H2

Hypothesis 2a was that teams would display
greater reorganization during failure perturba-
tions compared to routine mission segments, and
Hypothesis 2b was that this effect would be
larger for more effective teams. To test this
hypothesis, we calculated average system layer
entropy separately for routine, automation fail-
ure, and autonomy failure segments of each
mission. We obtained n = 788 average entropy
values (9 missions × 22 teams × 4 layers; four
observations were missing due to a file that
failed to save) for each level of failure status
(routine, automation, autonomy). To test the
team effectiveness hypothesis (H2b), we clus-
tered (k-means) teams on TPE, Team Perfor-
mance, and Overcome, to classify low, medium,
and high-performing teams across the three
performance scores. We then analyzed mean
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entropy using a 3 (Performance Cluster [Low,
Medium, High]) × 3 (Failure Status [Routine,
Automation, Autonomy]) mixed Analysis of
Variance (ANOVA), with Performance Cluster
as a between-subjects factor and Failure Status
as a within-subjects factor.

The main effect of Failure Status was sig-
nificant, F (1.78, 1237.56) = 49.45, p < .001,
η2p = .066 (Greenhouse-Geisser correction used).
Post-hoc Least Significant Difference (LSD)

comparisons revealed that teams exhibited sig-
nificantly greater reorganization during auton-
omy failures compared to automation failures
(p = .003) and routine mission segments (p <
.001) and greater reorganization during auto-
mation failures compared to routine mission
segments (p = .008). These results support
E1.H2a (Figure 7). This result suggests that
teams display greater reorganization in response
to increasing demands for system variety caused

TABLE 3: Experiment 1 Results: Significant Relaxation Time Correlations

Failure type

Dynamical
reorganization
measure

Performance
measure Layer Relaxation time component

Automation
failure

Entropy Ground truth
resilience score
(GTRS)

Vehicle Initial (r = .153, p = .041)

Team
performance
(mission level)

Vehicle Initial (r = .205, p = .004)
Peak (r = .164, p = .023)
End (r = .153, p = .034)

Overcome Vehicle Initial (r = .153, p = .041)
Control Initial (r = .166, p = .022)

Peak (r = .166, p = .021)
End (r = .176, p = .015)

System Initial (r = .161, p = .025)
Peak (r = .154, p = .033)
End (r = .146, p = .043)

RMSE Team
performance
(mission level)

Vehicle Peak (r = �.160, p = .029)
End (r = �.162, p = .027)

Control Initial (r = �.158, p = .031)
Peak (r = �.159, p = .031)
End (r = �.151, p = .040)

Overcome System Initial (r = .172, p = .019)
Peak (r = .173, p = .018)
End (r = .172, p = .019)

Autonomy
failure

Entropy Target processing
efficiency (TPE)

Vehicle Initial (r = �.317, p < .001)��
Peak (r = �.333, p < .001)��
End (r = �.332, p < .001)��

System Initial (r = �.270, p < .001)��
Peak (r = �.244, p = .002)�
End (r = �.260, p < .001)��

Ground truth
resilience score
(GTRS)

Vehicle Initial (r = .298, p < .001)��
Peak (r = .202, p = .016)
End (r = .201, p = .016)

System Initial (r = .260, p = .002)�
Peak (r = .246, p = .003)�
End (r = .266, p = .001)�

RMSE Overcome Communication End (r = �.159, p = .040)

Note. Significant correlations of relaxation time metrics with outcome measures. Medium to large correlations are in
bold, with asterisks denoting the following: �p < .01, ��p < .001.
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by failure perturbations. The interaction between
Failure Status and Performance Cluster was not
significant, F (3.551, 1237.56) = .209, p = .917,
η2p = .001, indicating that low, medium, and
high-performing teams exhibited similar
amounts of increased entropy (reorganization) in
responding to failures compared to routine
mission segments. These results do not support
E1.H2b, that the effect of greater reorganization
during failure perturbations would be larger for
higher performing teams. The Performance
Cluster main effect was not significant, F (2,
697) = .363, p = .695, η2p = .001, such that low,
medium, and high-performing clusters dis-
played similar entropy levels overall.

Hypothesis E1.H3

This hypothesis predicted that relaxation
times would be correlated with GTRS, with the
direction of correlation suggesting the nature of
resilience. Table 3 shows significant correlations
between vehicle and overall system entropy and

GTRS (difference between failure target TPE
and subsequent target TPE), all in the positive
direction. Close inspection of the autonomy
failure data revealed teams that performed well
on both the failure target and subsequent target
and, therefore, had a small GTRS. Conversely,
there were teams that performed poorly on the
failure target but recovered and performed well
on the subsequent target and, therefore, had
a large GTRS (see Table 4). Based on this
pattern of findings, teams that are relatively
unaffected by failures (high TPE on failure
target) followed by high TPE on the subsequent
target display robustness. Conversely, teams that
are negatively impacted by failures (low TPE on
failure target) but subsequently score high on the
follow-up target display recovery. This in-
terpretation of the data was corroborated by the
large negative correlation between failure target
TPE and GTRS, r (140) = �.634, p < .001.

Considering that shorter relaxation times
were generally correlated with higher TPE
(Table 3), Figure 8 illustrates the empirical re-
lationships underlying the positive correlation
between relaxation time and GTRS. This posi-
tive correlation undergirds two interpretations of
resilience in the current study, resilience as ro-
bustness and resilience as recovery (Woods,
2015).

Experiment 2

Experiment 1 revealed that the dynamical
systems resilience metrics were more sensitive
to autonomy failures versus automation failures,
in terms of the resilience-performance correla-
tions. Experiment 1 also indicated separate in-
terpretations of resilience using the metrics:
resilience as robustness versus resilience as re-
covery and that the reorganization profiles
suggested that autonomy failures required
greater reorganization than automation failures,

Figure 7. Main effect of Failure Status on re-
organization behavior (% max entropy) in Experi-
ment 1. Error bars represent standard errors.

TABLE 4: Sample Data Points for Target Processing Efficiency (TPE) Scores on Autonomy Failures to
Illustrate the Generation of Large and Small Ground Truth Resilience Scores (GTRS)

TPE on autonomy failure TPE on target following failure GTRS

High performance on autonomy failure 938.49 974.24 35.75
Low performance on autonomy failure 622.4 935.21 312.81
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which in turn required greater reorganization
than routine mission segments. Taken together,
these results suggest that although they were of
similar time durations (i.e., all failures were
420 sec except for Automation Type I, which
was 300 sec), autonomy failures may have been
more complex than automation failures, in that
they required greater amounts of system re-
organization by the team. Experiment 2 further
investigates this effect by introducing even more
complex failures in the form of hybrid
automation-autonomy failures, system power-
downs, and malicious cyberattacks. Experi-
ment 2 was also designed to test separate
training strategies for increasing resilience to
automation and autonomy failures, providing
the opportunity to examine the sensitivity of the
dynamical systems resilience metrics to differ-
ences in team training.

Participants

Sixty participants (30 teams) between 18 to
33 years of age (M = 22.6, SD = 3.61) were
recruited from Arizona State University and
surrounding areas. The sample had a gender
distribution of 52 males and 7 females, with one
participant not responding. Ten teams were
randomly assigned to each of the training con-
ditions. Participants were required to have normal
or corrected-to-normal vision and fluency in

English. All participants were compensated $10
per hour.

Procedure

Experiment 2 took place over one session. As
in Experiment 1, it used the WoZ paradigm in
the CERTT-RPAS-STE with a trained experi-
menter in the synthetic pilot role and participants
randomly assigned to either navigator or pho-
tographer. Participants were told that they were
working with a synthetic teammate. Like Ex-
periment 1, the experimenter was in a separate
room, with the participants located in another
room and separated by a partition.

Experiment 2 included a between-subjects
training manipulation (Control, Coordination
Coaching, Trust Calibration) and three addi-
tional types of failures (hybrid, system power-
down, communication cut; described later), with
the new types of failures intended to be more
complex than the failures in Experiment 1. The
Control condition was the standard training used
in Experiment 1. In Coordination Coaching,
participants were trained to push and pull in-
formation with the synthetic pilot in a timely
manner. The hands-on training mission included
a synthetic “super-pilot” coach that directed
information pushing and pulling coordination
patterns by instructing participants to send rel-
evant information if it was not sent in a timely
manner. The goal of the Trust Calibration
condition was to appropriately calibrate partic-
ipants’ trust in the synthetic agent. Participants
were informed that the synthetic teammate was
“imperfect” and “still under development.”
There were simulated agent coordination delays
during hands-on training, and experimenters
reinforced that participants should be persistent
in coordinating with the agent. The Co-
ordination Coaching condition was intended to
increase effectiveness in responding to auto-
mation failures, whereas the Trust Calibration
condition was intended to increase effectiveness
in responding to autonomy failures (Johnson
et al., in press). Table 5 describes the training
condition manipulations used in this experiment.

The current study examines resilience-
performance correlations as a function of
training condition; Johnson et al. (in press)

Figure 8. Graph of the relationships between re-
laxation time, target processing efficiency (TPE), and
ground truth resilience score (GTRS) underlying the
interpretation of resilience as robustness versus
recovery.
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presents the details of the training hypotheses
and their direct impact on team process and
the team performance metrics. Table 6 shows
the Experiment 2 procedure.

Failure Types

Experiment 2 included Automation Type III
and Autonomy Type III failures as previously
described. Other failures included malicious
cyberattacks, hybrid failures, system power
down failures, and communication cuts.

Malicious Cyberattacks. Malicious cyber-
attacks, introduced during the final 10 minutes
of the final mission, simulated the synthetic
agent being hijacked through cyberattack re-
sulting in the agent providing false information
detrimental to mission completion. In addition,
the synthetic agent pilot attempted to fly the RPA
to an enemy-designated waypoint. To overcome
this failure, either the navigator or photographer
had to explicitly inform Intelligence (an ex-
perimenter) that the RPAwas off-route and was
flying toward an enemy-designated area via chat
message.

Hybrid Failure. The hybrid failure was
a combination of the Type II automation failure
and Type II autonomy failure from Experiment

1. The Type II automation failure affected the
pilot, wherein the pilot was not able to view the
altitude and airspeed for the next target and had
to communicate with the navigator and pho-
tographer to achieve proper airspeed and alti-
tude. The Type II autonomy failure portion was
an anticipation failure, wherein the pilot began
flying to the next waypoint before the photog-
rapher could take a photo of the target waypoint.
To overcome this failure, the team needed to
negotiate the proper settings with the synthetic
pilot (Johnson et al., 2020). Since this is
a combination of an automation and autonomy
failure, the solution would naturally be a com-
bination of solutions to these specific failures as
described in Experiment 1.

System Power Down Failure. This failure
simulated a system power down and rebooting
during the mission. During this failure, there was
a gradual power down of all screens over the
course of 330 sec. The screens were powered
down in order from pilot→navigator→photog-
rapher. After each team member lost their
common information screen, the sequence re-
peated with each team member losing their role-
specific screen. The screens then rebooted in
reverse order. The photographer was still able to

TABLE 5: Training Condition Manipulations

Training
condition Manipulations to training Goal of training

Targeted
failure type

Coordination
coaching

Participants were informed of
teammates’ informational needs and
encouraged to expediently push and
pull information during interactive
slideshow training; the synthetic
pilot pushed and pulled information
across the team members in a timely
manner to “coach” coordination
during hands-on training.

Improve the speed at which the
team coordinates and sends
information to one another

Automation

Trust calibration Participants were informed that the
synthetic pilot is “imperfect” and
“under development” during
interactive slideshow training;
during the training mission, the
synthetic pilot experiences delays in
responding, and participants were
encouraged to be persistent in
communicating with the agent.

Calibrate participants’
expectations of the synthetic
teammate’s abilities and
limitations

Autonomy
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take a successful photo (until the last screen lost
power) if the team adapted in a timely manner to
ensure that all necessary information was provided
to the affected team member before losing power.

Communication Cut Failure. In the com-
munication cut failure, communication from the
photographer to the pilot was cut; however, the
pilot to photographer link remained active.
Because the pilot’s communication links to the
photographer and navigator remained intact, the
pilot was unaware of the communication cut. To
overcome this failure, the photographer had to
communicate through the navigator to relay
information to the pilot.

Results and Discussion

Hypothesis E2.H1

Significant relaxation time—performance
correlations across failure types, measures,
system layers, and relaxation time components
are shown in Table 7. Medium to large corre-
lations are shown in bold.

As in Experiment 1, although significant, the
automation failure correlations did not meet the
medium-to-large effect size criterion. In addi-
tion, the communication cut correlations were
not significant. All performance correlations
were in the hypothesized direction except for the
autonomy failure, for which we found positive
correlations between relaxation time in the ve-
hicle layer for team performance. Unlike the
performance measures that correlated in the
hypothesized direction (i.e., Overcome and
TPE), the team performance outcome measure
was taken at the mission-level rather than the
failure target level, perhaps contributing to this
unexpected result. As indicated by the changing
patterns of medium to large correlations across
system layers and failure types, these results
suggest that specific patterns of relaxation times
and system reorganization across system layers
depend on failure type. The positive correlations
between relaxation times and GTRS replicated
the finding from Experiment 1 and are discussed
later, under Hypothesis E2.H3.

TABLE 6: Procedure for Experiment 2

Condition 1: Control
Condition 2:
Coordination coaching

Condition 3: Trust
calibration

Consent (15 min)
Training- PowerPoint
(40 min)

Control: Filler Automation: + push/pull Autonomy: Calibration
of expectations

Training – Hands-on
(40 min)

Standard Super-AVO/pilot +
push/pull coach

Faulty-AVO/pilot +
persistence coach

Mission I (40 min) No failure No failure No failure
Mission 2 (40 min) 2nd/Automation (type I) 2nd/Automation (type I) 2nd/Automation (type I)

4th/Autonomy (type I) 4th/Autonomy (type I) 4th/Autonomy (type I)
Mission 3 (40 min) 3rd/Automation (type III) 3rd/Automation (type III) 3rd/Automation (type

III)
1st/Autonomy (type III) 1st/Autonomy (type III) 1st/Autonomy (type III)

Mission 4 (40 min) 2nd/Hybrid (automation
II and autonomy II)

2nd/Hybrid (automation
II and autonomy II)

2nd/Hybrid (automation
II and autonomy II)

4th/Communication 4th/Communication 4th/Communication
Mission 5 (40 min) 2nd/System power down 2nd/System power down 2nd/System power

down
4th/Malicious attack 4th/Malicious attack 4th/Malicious attack

Debrief, trust and
anthropomorphism
questionnaires
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Hypothesis E2.H2

Hypothesis 2a was that teams would display
greater reorganization during failure perturba-
tions compared to routine mission segments, and
Hypothesis 2b was that this effect would be
larger for higher-performing teams. We carried
out the same analysis as for Experiment 1 by
conducting a k-means cluster analysis to identify
low, medium, and high-performing teams, cal-
culating average entropy according to failure
status, and running a mixed ANOVA on the
average entropy values. We obtained n = 348
average entropy values (29 teams × 4 layers × 3
failure complexity [described below]; one team
was missing due to a file that failed to save). The
Experiment 2 analysis also included Training
Condition as a between-subjects factor. Because
each mission had two failures (Table 6), we
classified the various failure types as Failure One
and Failure Two, constituting a within-subject
variable, Failure Status. We analyzed the aver-
age entropy scores using a 3 (Performance
Cluster [Low, Medium, High]) × 3 (Failure
Status [Routine, Failure One, Failure Two]) × 3
(Training Condition [Control, Coordination
Coaching, Trust Calibration]) mixed ANOVA.
Due to the different failure types included in the
Failure One and Failure Two factor, we included
a covariate, Failure Complexity, that indexed the
different possible failure combinations.

There was a main effect of Failure Type,
F (1.702, 549.762) = 17.373, p < .001, η2p = .051.
Pairwise comparisons (Bonferroni) showed that
Failure Two resulted in significantly greater
reorganization than Failure One (p = .048) and
Routine (p < .001), and Failure One displayed
significantly more reorganization than Routine
(p = .002). Figure 9 displays this effect. The
Performance Cluster effect, Training Condition
effect, and all interactions with these factors
were non-significant. As in Experiment 1, these
results support the increased variety in response
to failure perturbation (main effect, E2.H2a)
portion of Hypothesis 2. Also, as in Experiment
1, the portion of Hypothesis 2 that predicted that
this effect would be larger for higher performing
teams (interaction, E2.H2b) was not supported.

The Failure Status × Failure Complexity
(covariate) interaction was significant,

F (1.690, 544.262) = 18.587, p < .001, η2p =
.055 (Greenhouse-Geisser correction used).
We conducted a simple effects analysis, ex-
amining the effect of Failure Type at each
level of Failure Complexity. At Complexity =
1 (Missions 2 and 3), we found that the au-
tonomy failure resulted in greater re-
organization than the automation failure (p <
.001) and routine (p < .001) mission segments,
which replicates the Experiment 1 finding.
However, at Complexity = 2 (Mission 4) and
Complexity = 3 (Mission 5), there were no
significant differences between Failure One
and Failure Two. As shown in Figure 10,
although high complexity failure types re-
sulted in higher than routine entropy, auton-
omy failures resulted in the greatest amount of
reorganization.

Hypothesis E2.H3

The three relaxation time metrics resulted in
medium-to-large correlations with GTRS
(Table 7), supporting Hypothesis 3. The Hybrid
and Malicious Attack failures resulted in large
correlations in the Communication layer and
medium correlations in the Controls layer for the
system power down. As in Experiment 1, these

Figure 9. The main effect of Failure Type in Ex-
periment 2 shows that failure perturbations resulted in
greater entropy (reorganization) compared to routine
mission segments. Failure 2 entropy was also sig-
nificantly greater than Failure 1 entropy. Error bars
represent standard errors.
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correlations were all positive. We further in-
spected the relationship between TPE and GTRS
by comparing TPE scores on the failure target
with TPE scores on the follow-up target. Table 8
shows example scores for the Hybrid and Ma-
licious Attack failures, demonstrating the same
pattern observed in Experiment 1.

The pattern of TPE scores in Table 8 predicts
a strong, negative correlation between failure
target TPE and the resulting GTRS, due to the
mapping of high TPE on the failure target onto
small GTRS (“robustness”) and low TPE on the
failure target onto large GTRS (“recovery”).
Another possibility that must be accounted for is
that low TPE on both the failure target and the

follow-up target (“non-resilient”) can result in
small GTRS. In that case, we would expect
a smaller, insignificant correlation between TPE
on the failure target and GTRS, due to the in-
consistent mapping between TPE failure target
score (equal mix of high and low TPE) onto
GTRS. Indeed, the correlations between TPE on
the failure target and GTRS were strong
and negative for both the Hybrid Failure,
r (21) = �.669, p < .001, and Malicious Attack,
r (20) = �.755, p < .001, indicating that our
results were primarily due to a mix of the ro-
bustness and recovery forms of resilience. This
same pattern of correlations between TPE and
GTRS was observed across experiments, despite

Figure 10. The amount of reorganization (entropy) differed as a function of failure type, with autonomy failures
producing the greatest amount of entropy. Error bars represent standard errors.

TABLE 8: Sample Data Points for Target Processing Efficiency (TPE) Scores on Hybrid Failure and Ma-
licious Attack to Illustrate the Generation of Large and Small Ground Truth Resilience Scores (GTRS)

TPE on failure target TPE on target following failure GTRS

High performance on hybrid failure 948 927.65 �20.35
Low performance on hybrid failure 725.15 880.08 154.93
High performance on malicious attack 974.15 979.79 5.64
Low performance on malicious attack 458.08 852.96 394.88
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the different experimental manipulations across
the two experiments. As explained later
(Table 11), low GTRS scores resulting from the
“robustness” pattern of TPE scores were ap-
proximately 47% more frequent than low GTRS
resulting from the “non-resilient” pattern of TPE
scores across both experiments.

Hypothesis E2.H4

We hypothesized that teams trained in the
Coordination Coaching condition would display
stronger, negative correlations between re-
laxation time and performance when over-
coming automation failures and that teams
trained in the Trust Calibration condition would
display stronger, negative correlations between
relaxation time and performance when over-
coming autonomy failures. Thus, we examined
how these differently trained teams’ relaxation
times correlated with all performance metrics
and GTRS (Table 9).

Counter to our hypothesis, Trust Calibra-
tion teams exhibited strong correlations for
automation failures rather than autonomy
failures, although they were in the predicted
direction. As hypothesized, Coordination
Coaching teams exhibited strong performance
correlations for automation failures, although
not in the predicted direction. Specifically, as
in Experiment 1 we observed negative cor-
relations for the target-level performance
variables (TPE, Overcome) but some corre-
lations were positive for the mission-level
performance variable (team performance).
In addition to the strong automation failure
correlations, Coordination Coaching teams
unexpectedly exhibited strong negative cor-
relations for autonomy failures. That these
correlations involving GTRS were negative
suggests that this effect may be interpreted as
resilience as recovery. In sum, these results
only partially support Hypothesis 4, primarily
due to the unexpected direction of effects and
locus of resilience (i.e., automation vs. au-
tonomy) across these training conditions.
These results indicate that the resilience
metrics are sensitive to differences in training
conditions, although the exact nature of this
relationship remains to be determined.

Table 10 provides a summary of findings
across both studies.

General Discussion

Although they may occur infrequently
compared to routine conditions, failure pertur-
bations are to be expected in dynamic HAT
environments. These are often high-stakes, one-
of-a-kind events that require enaction, adapta-
tion, and recovery by HATs. The current studies
developed and tested a novel approach for
measuring HAT resilience in a controlled lab-
oratory setting. We envision, however, that
versions of these metrics will be deployed in
operational environments, wherein team adap-
tation and resilience are critical for safe and
effective operations. Based on the current re-
sults, these metrics are promising as real-time
indicators of when and howHATs resolve failure
perturbations.

Consistent with Hoffman and Hancock’s
(2017) theoretical resilience measurement
model, we operationally defined three compo-
nents of a “resilience curve” (Figure 5), com-
prising initial (“enaction”), peak (“adaptation”),
and final (“recovery”) relaxation time compo-
nents. Considering only medium-to-large re-
laxation time-performance correlations, we
found support for the hypothesis that relaxation
times were negatively correlated with better
team performance (Hypothesis 1) across both
experiments. These results suggest that faster
enaction, adaptation, and recovery during fail-
ures predict greater team effectiveness. Al-
though the preponderance of correlations
supports this hypothesis, mission-level team
performance and GTRS (discussed below) in-
dicated positive correlations. Regarding
mission-level team performance, this perfor-
mance measurement was taken at the mission
level, whereas the other measures were taken
during and just after a failure at the target-level.
The mission-level performance score also in-
cluded the amount of time spent in warning or
alarm states. It is possible that faster relaxation
time coupled with less time spent in warnings or
alarms over the whole mission could account for
the positive correlation with mission-level
performance.
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One potential difficulty with relaxation
time metrics is that as failures become in-
creasingly complex (e.g., moving from Ex-
periment 1 to Experiment 2), the locus of
resilience (e.g., system layer) may be difficult to
predict. In Experiment 1, correlations were found
primarily in the vehicle and system layers, whereas
in Experiment 2, correlations were found in all
system layers. This may reflect the bespoke nature
of adaptation and resilience to increasingly com-
plex system failures. Although currently our re-
silience metrics have the advantage of identifying
where and when a system reorganizes across
system layers, there is no simple law relating
system layers to failure complexity. This may still
be a potential benefit to resilience engineering,
however, which views teams as large systems
containing numerous components with complex
interactions that are difficult to predict in perturbed
operational settings (Hollnagel et al., 2007). We
argue, therefore, that this approach can help
identify, if not predict a priori, which system
layers are key to resilience in dynamic
environments.

There is, however, a straightforward law that
relates the amount of reorganization to the va-
riety demanded by the environment in terms of
maintaining stable system performance, the law
of requisite variety (Ashby, 1957). In both ex-
periments, we found support for the hypothesis

(Hypothesis 2a) that teams would display sig-
nificantly greater reorganization behavior during
failures compared to routine (nominal) mission
segments, regardless of the source (system layers)
of reorganization. We additionally hypothesized
that this effect would be greater for more ef-
fective teams (Hypothesis 2b), such that teams
with higher performance scores would exhibit
larger differences between failure and routine
reorganization. We did not find support for the
latter hypothesis. However, the point of this law
is that a controller must be able to match the
variety required by the system it controls. The
question is whether it is effective in doing so.
For instance, a poorly designed traffic system
takes longer to match the same amount of
requisite variety compared to an effectively
designed traffic system. In the current study, all
HATs were exposed to the same amounts of
requisite variety. However, as demonstrated by
the relaxation time metrics and support for
Hypothesis 1, timeliness of response was key,
over and above the amount of variety the system
can match. Although not observed in the current
studies, it should be noted that Ashby’s Law is
a key contribution to the inverse-U relationship
between controller complexity and perfor-
mance. This means that if there is too much
complexity in the controller, then there is wasted
effort, which can be a detriment to a team’s

TABLE 10: Summary of Findings Across Experiments 1 and 2

Hypothesis Support

1 Negative correlation between performance
metrics and relaxation times.

Supported: This relationship was particularly salient
in the vehicle and system layers but also observed
in the controls and communications layers.

2 Greater reorganization during failure
perturbations compared to routine mission
segments, such that this relationship would be
more pronounced for more effective teams.

Partially supported: There was greater
reorganization during failures compared to
routine mission segments, but this effect was
similar across team effectiveness levels.

3 Relaxation times will be correlated with ground
truth resilience scores (GTRS).

Supported: Relaxation times can reflect resilience
as either recovery (negative correlation with
GTRS), robustness (strong positive correlation
with GTRS), or non-resiliency (weak positive
correlation with GTRS).

4 There will be predictable training effects on
resilience in terms of the locus of resilience (i.e.,
automation failure vs. autonomy failure
resilience).

Partially supported, training condition appears to
moderate the resilience – performance
relationship; however, the directionality and locus
of these effects are hard to predict.
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efficiency (Boisot & McKelvey, 2011; Friston,
2010; Guastello, 2015; Hong, 2010).

In support of the hypothesis that relaxation
times would predict ground truth resilience
(GTRS;Hypothesis 3), we foundmedium to strong
correlations between relaxation times and GTRS,
largely in the positive direction, in both experi-
ments. Moreover, shorter relaxation times (i.e.,
faster enaction, adaptation, and recovery) at the
failure target were correlated with higher TPE at
the failure target, indicating that resilience in the
current studies can be interpreted as either ro-
bustness or recovery. This suggests that although
resilience as recovery may contribute to resilience,
it can also be associated with robustness, or the
ability to handle increasing complexity at the point
of the system failure (Woods, 2015).

Table 11 acknowledges four possible
outcomes to explain the relationship between
GTRS and the dynamic resilience metrics,
including the number of teams across both ex-
periments whose mode GTRS falls into each
outcome. First, a team could display high per-
formance on the failure target as well as the
subsequent target. This is a high-performing
team and one that is both robust and resilient
because it effectively handled the complexity of
the failure while maintaining high performance
on the follow-up target. However, this team
would have a low GTRS or possibly negative,
which partially explains the positive correlation
between relaxation time and GTRS. This was
the most frequently occurring pattern in the
current studies (n = 29).

A second possibility is that a team performed
well on the failure target but performed poorly
on the subsequent target. This team could be
considered robust initially but possibly lacking
in recovery after doing so, thereby failing to
perform well on the follow-up target. It is
possible, for example, that such teams may
expend their energy on the failure target, making
it difficult to function effectively afterwards.
However, this pattern was not observed in the
current studies (n = 0). A third possibility is that
a team may perform poorly at the point of failure
but performs well on the subsequent target.
These teams would have a high GTRS and
would be considered resilient in terms of re-
covery but not robustness. This pattern, which
would account for the remainder of the negative
correlation between relaxation time and GTRS,
was not as frequently observed in the current
studies (n = 9).

A final possibility is that teams perform
poorly on both the failure target and the sub-
sequent target. Teams in this category would be
non-resilient from both a robustness and re-
covery perspective (Woods, 2015). This pattern,
however, does not map onto the strong negative
correlations between failure TPE and GTRS.
Nevertheless, this pattern was observed in the
current studies (n = 19), although 47% less often
than the robust and resilient pattern, but it could
contribute to positive correlations between re-
laxation time and GTRS. Thus, relaxation time
metrics should be supported by classification
metrics to disentangle the formal nature of team

TABLE 11: Mode Resilience Profile Classifications Using Ground Truth Resilience Scores (GTRS) for Teams
Across Experiments 1 and 2

Failure target
performance

Subsequent target
performance

Change between
scores (GTRS) Classification

Number of teams
(across experiments)

High High Low (on average) Robust and resilient 29
High Low Negative Initially robust but

non-resilient
0

Low High Positive Recovery after
failure

9

Low Low Low (on average) Non-resilient 19

Note. A description of four possible outcomes and corresponding performance classifications when measuring GTRS.
We calculated the failure target performance classification per failure during eachmission. To aggregate this value to the
team level, we took the most frequently occurring target performance category (i.e., the mode) per team.
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resilience. The approach used in the current
studies could be implemented in real time using
real-time TPE scoring. At a minimum, to create
these profile classifications, one needs to ex-
amine not just the change scores, but the dif-
ferent performance classifications at both the
point of failure and subsequent targets (e.g.,
Table 11).

These findings align with previous research
in which teams competed against a sentient
attacker (Guastello, 2010; Guastello et al.,
2017). Like our studies, that research focused
on dynamical systems metrics, which quantified
adaptability and resilience using the largest
Lyapunov exponent (an index of stability and
chaotic behavior). When enemy attacks were
making progress, team performance dropped
both during the current performance opportunity
as well as the subsequent performance oppor-
tunity, during which decision making was
hampered. However, teams exhibited higher
levels of adaptation compared to attackers as
measured by larger values of their largest Lya-
punov exponents.

With respect to our training hypothesis
(Experiment 2, Hypothesis 4), results were
mixed. Teams trained in the Coordination
Coaching condition demonstrated strong re-
laxation time correlations when overcoming
automation failures as hypothesized, although
the direction of correlation (positive) was not in
the predicted direction. These teams also dem-
onstrated the hypothesized strong negative re-
laxation time correlation in response to
autonomy failures, which was not hypothesized.
Teams trained in the Trust Calibration condition
did not demonstrate the hypothesized strong
relaxation time correlations when overcoming
autonomy failures; however, they did demon-
strate strong negative relaxation time correla-
tions when overcoming automation failures,
which was not hypothesized. Interestingly, these
training effects were most apparent in the
communication layer and to a lesser extent in the
controls layer. Consistent with other analyses of
these training effects demonstrating that co-
ordination training primarily impacts commu-
nication, this implies that communication
reorganization may be critical when overcoming
failures of increasing complexity, and that the

relationship between communication re-
organization and performance differs depending
on training condition (Johnson et al., in press).
Overall, Coordination Coaching teams appear to
be more resilient in terms of their relaxation
time—performance relationships because these
relationships were observed for both automation
and autonomy failures, whereas Trust Calibra-
tion teams only demonstrated these relationships
for automation failures.

Given the many definitions of resilience in
the literature (Hollnagel et al., 2007; Woods,
2015), as well as recommendations to practi-
tioners on how to apply concepts of resilience
engineering in practice (Hollnagel, 2013), there
is currently a lack of methods for objectively
measuring team resilience in dynamic socio-
technical environments. However, layered dy-
namics and relaxation time metrics demonstrate
the potential for objective, real-time methods
that can be used to quantify resilience across
system layers that are predictive of various as-
pects of team performance. The current ap-
proach builds on the work of Hoffman and
Hancock (2017), who proposed a theoretical
approach for measuring resilience. We submit
that their proposal, which comprises recogni-
tion, design, and implementation of system
changes in response to failures, aligns with the
operational definitions of enaction (Initial), ad-
aptation (Peak), and recovery (Final) relaxation
time metrics that comprise a “resilience curve”
in the current studies. Although we do not claim
a strict, one-to-one match with their proposed
theoretical framework, the concept of measuring
resilience as the capacity to overcome a failure
and rapidly and efficiently recover to a stable
state, we claim captures the essence of their
theoretical approach.

The current results may further be tied to
theoretical concepts in resilience engineering.
Woods (2015) defines four concepts of resil-
ience, including resilience as robustness, resil-
ience as rebound from degraded conditions,
resilience as graceful extensibility, and resil-
ience as sustained adaptability. The current re-
sults most directly apply to the first three. In
relation to ground truth resilience (e.g., GTRS),
we argue that relaxation time can be indicative of
robustness (performance on both targets is high)
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or low-performing, non-resilience (performance
on both targets is low) when the correlation is
positive and rebound or recovery when negative.
Thus, relaxation times are indicative of different
theoretical conceptualizations of resilience de-
pending on the robustness of the system and its
ability to recover from a failure. The third
concept, graceful extensibility, is the ability of
a system to extend its capacity in response to
novel disturbances. Although we did not aim to
directly measure this property in the current
studies, the “extensibility” component of this
property is arguably represented by the con-
sistently greater system reorganization values
observed under failure conditions compared to
routine conditions. The “graceful” component
may be embedded within the relaxation time—
performance correlations, which should be ex-
plored in future research. Overall, the aims of the
current research involved generating dynamic
systems-based resilience metrics, wherein rapid
reorganization tends to be associated with better
performance, and sublayers can be used to
identify the sources of rapid responses and re-
silient behavior within a system. On those
counts, the current results are promising for
future applications of these metrics in training
and operational settings.

Limitations and Future Directions

Although we can generally argue that re-
laxation time metrics measure robustness,
recovery, and extensibility, due to the number
of system layers, types of failures, relaxation
time metrics, and performance measures,
there were a very large number of correlations,
making a clean interpretation of the results
difficult. In the future, it may be beneficial to
use a less complicated experimental apparatus
with fewer layers and types of failures to parse
out the causal relations between perturbations
and relaxation times as they relate to resil-
ience. Although it would appear to bely the
bespoke nature of unique events that require
resilience, a more highly controlled and
simpler experiment might help unpack the
complex dynamics observed in the current
studies.

Additionally, more conceptual work is
needed on the two dynamical system measures
used, entropy (reorganization) and RMSE
(novelty), and how they meaningfully relate to
system response. Entropy describes system re-
sponse in terms of the number of unique states
occupied by the system during a span of time.
Currently, we think this is analogous to variety
in Ashby’s (1957) law of requisite variety. On
the surface, RMSE captures the novelty of
system response in terms of the deviation from
a predicted trajectory of the reorganization time
series. However, RMSE is agnostic as to the
source of a novel trajectory of the entropy time
series. Moreover, because it is a square root,
RMSE, in terms of novelty, could correspond to
extremes of either increasing or decreasing va-
riety. Future work should focus on more exactly
tying novel team states to requisite variety that
maintain system effectiveness under degraded
conditions.

Along these lines, future directions in resil-
ience measurement could disentangle these two
metrics based on their respective explanations of
a system response. Thus, another future di-
rection involves selectively filtering out sources
of variation, such as team members or sublayers,
to identify which are critical for reorganization
and novelty in a team response (e.g., by using
the filtering method described in Gorman et al.,
2020). For example, one could filter the control
layer from the overall system layer separately for
the reorganization and novelty metrics to de-
termine if significant correlations between re-
laxation time and performance persist across
other layers.

Finally, it is worth noting that the relaxation
times do not necessarily indicate whether
a system is revisiting a previous state, or if it is
moving into a new state. Our metrics quantify
reorganization and resilience by computing
unique states of the system, but they do not
currently capture qualitative differences among
those states. In this light, there are other metrics
available for quantifying resilience based in
dynamical systems theory that are relevant to
this line of research (Guastello & Gregson,
2011).
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Conclusion

The methodological approaches described
in the current paper have the potential to
impact the training and assessment of HATs as
well as teams in other sociotechnical contexts.
These environments can be highly dynamic
and are susceptible to system failures, errors,
and crises. This work is beneficial in many
situations in which team flexibility, preventive
behavior, and resilience are critical, and real-
time metrics are needed. The metrics de-
veloped in this work have strong potential for
real-time implementation that would benefit
the training of more resilient teams and the
design of more resilient systems by providing
real-time feedback and guidance during
training and simulation, as well as un-
derstanding how systems reorganize to
maintain high levels of effectiveness during
one-of-a-kind, anomalous events (e.g.,
Gorman et al., 2020; Grimm et al., 2017).
Real-time analysis of reorganization and resil-
ience may also enable analysts and operators in
operational environments to detect early onset of
maladaptive and possibly dangerous team actions.
Taken together, we propose that these types of
measures will inform and generate new ap-
proaches to teamwork measurement, monitoring,
and assessment strategies in sociotechnical work
domains in which timely and resilient responses
are critical.
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