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Abstract 

Psychological science can benefit from and contribute to emerging approaches from the 

computing and information sciences driven by the availability of real-world data and advances in 

sensing and computing. We focus on one such approach, machine-learned computational models 

(MLCMs) – computer programs learned from data, typically with human supervision. The article 

introduces MLCMs and how they contrast with traditional computational modeling and 

assessment in the psychological sciences. Examples of MLCMs from cognitive and affective 

science, neuroscience, education, organizational psychology, and personality and social 

psychology are provided. We consider the accuracy and generalizability of MLCM-based 

measures, cautioning researchers to consider the underlying context and intended use when 

interpreting their performance of such measures. We conclude that in addition to known data 

privacy and security concerns, the use of MLCMs entails a reconceptualization of fairness, bias, 

interpretability, and responsible use.  
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Psychological Measurement in the Information Age: Machine-Learned Computational 

Models 

If measurement is the cornerstone of science, psychological science has accomplished a 

lot. We have designed clever experiments to measure complex social phenomena, honed the 

measurement of ill-defined constructs to a precise science, made inferences about the mind 

through probing of behavior, begun to delve into the brain, and have applied our findings to 

improve the human condition. Meanwhile, the trifecta of the information age – new, improved, 

and cost-effective sensing, anywhere/anytime computing, and a new generation of digital natives 

– has led to a data and computing revolution which has enhanced multiple research areas and 

created new ones (e.g., computational social science, cyber-physical systems, quantitative 

biology). Can such advances similarly enhance psychological science? We think so and describe 

how the core of psychological science – psychological measurement – can benefit from an 

information-age update.  

Consider one simplified view of psychological measurement: measurement = data + 

inference. The data typically comes from humans (e.g., posts on social media) and is converted 

to a structured format (e.g., human coders count the number of pronouns). Computers can 

automate and scale this task and discover complex associations in the data, revealing multivariate 

interactions and nonlinearities. However, they cannot make meaning of any patterns they 

discover, at least in any deep sense. We rely on human knowledge and expertise to make 

inferences from data. Even when measurement is automated, for example, computerized adaptive 

testing (Wainer et al., 2000), the items and inference are preprogrammed into the computer. 

But what if we could design computers to learn how to make human-like inferences from 

data? The resultant measure would combine the pattern-finding prowess of computers with the 
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inferencing abilities of humans, resulting in transformative impacts. For one, such a measure 

would enable the analysis of less-structured datasets with the scope and scale to address thorny 

issues of reproducibility and generalizability. By leveraging modern sensing/analysis 

capabilities, these measures can focus on real-world human behavior rather than curated 

responses. Measurement could also be done in real-time, opening the door for just-in-time 

interventions, individualized experimental manipulations, and discoveries currently precluded by 

measurement latencies. The measures would potentially be more objective provided that bias is 

mitigated in their design. Because the measures are learned, not preprogrammed, analysis of the 

measures themselves can deepen understanding of the underlying phenomena. 

If this all seems too fanciful, rest assured there is a systematic approach to developing 

these measures. It is called computational modeling, a representation of a phenomenon in silico – 

i.e., performed or simulated by a computer. This is not an advance in itself – the novelty is that 

the computational models are directly learned from data rather than preprogrammed. 

Machine Learned Computational Models (MLCMs) 

A computational model is a computer program that produces a desired output given input. 

Applied to psychological measurement, this entails converting input data into a higher-level 

representation (features) usable by a computer, which are transformed into a measurement 

estimate (i.e., output) via various algorithmic structures (approaches). For example, a 

computational model of mind wandering during reading (Faber et al., 2018) based on eye 

tracking can map features, such as the number and duration of gaze fixations, onto estimates of 

mind wandering using one of the structures in Figure 1A. 
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MW = B0 + B1 × NFix + B2 × FixDur 

Regression structure 
 

if [NFix < T1 and FixDur > T2]; 
then [MW = true] 

Rule-based (or tree-based) structure 
 

P(MW | NFix = x, FixDur = y) = [P(NFix = x | MW) ×  
P(FixDur = y | MW) × P(MW)]/P(NFix = x, FixDur = y) 

(Naïve) Bayesian structure (simplified) 
 

[
wNFix_h1 wFixDur_h1

wNFix_h2 wFixDur_h2
] 
wh1_MW

wh2_MW
 

Neural network representation (weight matrix) 

 

(A) 

    
Support vector  

machine 
Decision tree Neural network Convolutional neural network  

(B) 

Figure 1. (A). Example structures for computational models of mind wandering (MW) based on two eye gaze 

features (number of fixations [NFix] and fixation duration [FixDur]). B = parameter; T = threshold; P = 

probability and W = weight (top). (B). Graphical representation of some common machine-learned 

computational models (bottom)   

  

Computational models differ in how features, structure, and parameters (e.g., regression 

weights) are specified. Traditionally, human experts pre-programmed the models by specifying 

all components (Figure 2) as in the classic GOMS models in human factors (Card et al., 1983). 

Hand-crafted models are rare due to difficulties in specifying a generalizable set of parameters 

(amongst other factors). An intermediate step is to pre-specify the features and structure but learn 

the parameters from data as with traditional psychological models, such as item response theory 

used in assessment and classic Bayesian models of cognition. 
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Figure 2. The four main approaches to computational modeling. Note that the approaches are not mutually 

exclusive and can be combined in multiple ways. Annotations are only needed in the model training phase. 

 

But what about complex, poorly understood phenomena, where neither the model 

structure nor the parameters can be pre-specified? Using supervised machine learning, it is 

possible to learn both from data (Jordan & Mitchell, 2015). Starting with a set of training 

examples which link features with corresponding annotations (e.g., human ratings), these 

methods learn the model by identifying patterns in the training data. After training is complete, 

the resultant machine-learned computational model (MLCM; Figure 2) produces computer 

estimates (i.e., measurements) on new input data (without annotations). 
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Turning to our example, training data are collected by tracking eye gaze (to compute 

features) and self-reports of mind wandering (annotations) as participants read. Training 

examples are created by aligning the gaze features with the mind wandering reports over a 

temporal window (e.g. a page), upon which supervised learning methods are applied to learn an 

MLCM, which produces estimates of mind wandering from gaze features. 

What are these supervised learning techniques? Linear regression is one example. 

However, in the psychological sciences, where the goal is explanation, the models are fit on the 

entire data, and the emphasis is on statistical significance of the coefficients (Yarkoni & 

Westfall, 2017). For machine learning, where the goal is prediction, the focus is on the extent to 

which MLCM outputs align with some measure of “ground truth” when applied to holdout (i.e., 

different from training) data, including data from different people, paradigms, populations, and 

contexts (generalizability); e.g., alignment of the MLCM’s predictions of mind wandering to 

self-reports (accuracy) from a different set of readers on a new text (generalizability). 

A highly accurate model might overfit to the training data and perform poorly on holdout 

data (lower generalizability), whereas a highly generalizable model might underfit to the data 

(lower accuracy). Because regression and its variants (e.g., generalized linear models) are limited 

in both respects, researchers have developed numerous approaches to improving accuracy (e.g.,  

modeling nonlinearity and feature interactivity) and generalizability (e.g., penalizing models 

with more parameters, using an ensemble of multiple models). The resultant models (Figure 1) 

have different representations (e.g., probabilities, parameter weights), structures (e.g., equations, 

rules, networks of artificial neurons), and assumptions (e.g., some assume feature independence 

whereas feature interdependence is critical in others). But they are all computer programs. 
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With the resurgence of deep neural learning (Jordan & Mitchell, 2015), which combines 

massive data (e.g., the entirety of English Wikipedia), computing (e.g., thousands of parallel 

processors), and advanced algorithms, MLCM complexity (up to billions of parameters) has 

increased, yielding greater performance. Some innovations include representational learning, 

where the features themselves are learned from raw data rather than being pre-specified. An 

extension is end-to-end learning, where everything (features, structure and parameters) are 

simultaneously learned from raw data (Figure 2). For example, forgoing human-engineered 

features, the model automatically extracts internal representations most useful for predicting 

mind wandering when presented with raw gaze data. Another is fine tuning, when a model is first 

pre-trained on massive data in a domain-agnostic fashion and then adapted for a given domain 

using a small amount of annotated data.  

As Figure 2 indicates, computational models can be broadly divided into explanatory – 

where the primary aim is understanding the underlying mechanisms – and predictive – where 

accurate and generalizable predictions are the main goal. MLCMs fall into the predictive family 

in that they have fewer theoretical commitments and are more bottom-up and data-driven. As a 

result, MLCMs with very different structures can yield similar predictions, which limits their 

ability to provide causal or mechanistic explanations. However, because they are powerful, fine-

grained predictive machines, MLCMs can be useful tools for scientific inquiry (in addition to 

applications in assessment and intervention; see Introduction). For example, they can be 

designed to compare the diagnosticity of various input modalities, investigate whether combining 

modalities results in superadditive, additive, or redundant effects, understand the time course of 

phenomena, model nonlinearity and interactivity among inputs, contrast model predictions with 

human judgments, and investigate generalizability across people, domains, contexts, etc. Thus, 
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MLCMs can complement explanation-based approaches, especially for complex, ill-defined 

phenomena, and are valuable tools in the arsenal of a pluralistic scientist. 

It should also be noted that distinctions among the four main modeling approaches 

(Figure 2) are not crisp. For example, when theoretical commitments are important, it is possible 

to pre-specify a subset of the structure and parameters based on theory and/or plausibility while 

allowing others to be learned (e.g., Hinaut & Dominey, 2013). Some deep learning architectures, 

for example, convolutional neural networks, which have revolutionized image processing, are 

inspired by the neural pathways in the visual cortex (Le Cun et al., 2015). When data is abundant 

but annotations are sparse, a useful approach is to use deep representational learning to 

automatically learn the features in an unsupervised (i.e., without annotations) fashion, but then 

revert to standard supervised learning (i.e., with annotations) to learn the MLCM. The main 

message is that MLCM development should not be dogmatic – the goals of the enterprise, 

availability of data, and expertise of those involved should determine the approach.  

Illustrative Example 

To illustrate, Jensen et al. (2021) automatically analyzed audio recordings of teachers’ 

classroom discourse to estimate the prevalence of seven discourse categories (e.g., questions, 

elaborated evaluations) linked to student achievement growth. The main steps to construct the 

MLCM – which are common to multiple MLCMs – are shown in Figure 3A. First, the 

researchers recorded teacher audio from 127 authentic class sessions of 16 English Language 

Arts (ELA), which were segmented and transcribed into 35k utterances via an automatic speech 

recognizer. Trained coders annotated 16k utterances for the presence of each discourse category. 
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Figure 3. Illustrative example of training an MLCM to identify spoken discourse features from audio. Panel 

(A) lists the basic pipeline for training an MLCM. Lines in red denote components where human input might 

be needed. Panel (B) contrast a standard and a deep machine learning approach. 

 

The researchers contrasted two modeling approaches (Figure 3B). The standard approach 

used utterance-level counts of individual words and two- and three-word phrases (called n-

grams) as features. Then, binary Random Forest classifiers (a supervised learning method) were 

individually trained to identify the presence/absence of each discourse category from the 

features. An examination of the n-grams most predictive of each discourse category provided an 

intuitive understanding of teacher talk.  For the second approach, the researchers started with a 

deep neural network that was pre-trained on large text corpora containing over 3 billion words to 

learn the contextual semantics of words (e.g., distinguishing between “bank” in the context of a 
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river vs. financial institution) and then fine-tuned (i.e., adapted parameters) it to identify each 

discourse category using the 16k annotated utterances. 

Both approaches used cross-validation where the utterances were divided into eight 

partitions; MCLMs were trained on seven partitions (training set), and evaluated on the held-out 

partition (test set). The process was repeated until all partitions were included as the test set 

exactly once. To ensure generalization across teachers, utterances of a given teacher were only 

included in a training or testing partition in a given iteration.  

Accuracy was assessed by comparing each MLCM’s utterance-level estimate with 

corresponding human annotations using the area under the receiver operating characteristic curve 

(AUC). Scores ranged from 0.73-0.90 for the deep learning approach compared to 0.71-0.85 for 

the standard approach; both substantially outperformed chance guessing (AUC of 0.5). The 

researchers have embedded the models into a software application that provides teachers with 

automated feedback on their own classroom discourse to enable reflection and improvement. 

The example highlights some newsworthy points. First, developing MLCMs for complex 

phenomena such as spoken discourse classification often entails leveraging MLCMs developed 

for more primitive tasks (e.g., speech recognition, representing word semantics). Second, the 

example used minimal human knowledge engineering in that features were automatically 

computed (standard approach) or bypassed altogether (deep learning approach). An alternate 

approach would be to use hand-crafted features such as parts of speech (e.g., nouns, pronouns) 

that may have theoretical significance. Third, there is an accuracy-interpretability tradeoff, which 

favors the deep learning and standard approaches, respectively. 
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Selective Examples of MLCMs from the Psychological Sciences 

We now present further examples of MLCMs for measurement, which we have roughly 

organized across four levels of sensing timescale inspired by Newell (1990) bands of action 

(biological, cognitive, rational, and social –see Figure 4). We start with the biological band 

(<10ms), such as some measures of neuronal activity. In one example, Fraiwan et al. (2012) 

developed an EEG-based MLCM to accurately discriminate among the five main sleep stages (a 

time-consuming task for trained clinicians) in a thoracic clinic. While this study used predefined 

EEG features, Zhang et al. (2018) developed an end-to-end deep approach to learn spatio-

temporal patterns directly from EEG data to distinguish between high and low workloads. As an 

example of integrating multiple modalities, Hassan et al. (2019) combined electrodermal activity 

(EDA), photoplethysmography (PPG), and electromyography (EMG) to discriminate among 

experimentally-elicited emotions in the lab. Turning to the cognitive band (100ms-10s), Wager et 

al. (2013) developed an MLCM that discriminates heat-induced pain from warmth, anticipation, 

recall of pain, and social pain based on whole-brain fMRI activity.  

Whereas these examples used research-grade sensing and experimentally-induced 

responses in controlled settings, MLCMs can measure spontaneous responses with cost-effective 

sensing in the wild with many studies blending the biological/cognitive sensing bands. For 

example, Hutt et al. (2021) used $100 eye trackers to develop an MLCM of mind wandering 

while high-school students interacted with educational technology in classrooms. They used the 

MLCM’s estimates to trigger dynamic interventions to reengage attention and improve learning. 

Similarly, Bosch et al. (2015) combined facial expressions from video with interaction patterns 

(clicks and click timings) to measure affect as students played an educational videogame, finding 

that a multimodal approach improved robustness to missing data but negligibly impacted 
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accuracy. At the team level, Subburaj et al. (2020) used a multimodal (facial expressions, 

acoustics, eye gaze, and interaction patterns) and multiparty approach (integrating signals from 

three individuals) to predict collaborative problem solving outcomes in remote teams. 

The rational band consists of measurement in the range of minutes to hours and studies 

often aggregate more fine-grained sensing (cognitive band) over longer time frames (rational 

band). The Jensen et al. (2021) example discussed above is one example. Another is Hickman et 

al. (2021), who automated scoring of personality based on language, facial expressions, and 

prosody in mock video interviews for personnel selection. In a large-scale study, Hutt et al. 

(2019) developed an MLCM to infer engagement from interaction patterns as approximately 

70,000 students interacted with an online learning platform.  

Studies at the social band have largely relied on social media posts (individual posts are 

on the rational band) using timeframes from days to months. De Choudhury et al. (2013) 

developed an MLCM to identify individuals diagnosed with depression based on their Twitter 

usage. Eichstaedt et al. (2015) also used Twitter data, but at the societal level – their MLCM was 

a better predictor of county-level atherosclerotic heart disease mortality rates than established 

demographic and health indicators. At the organization level, Das Swain et al. (2020) analyzed 

language used in over 600,000 Glassdoor reviews from 92 Fortune 500 companies to infer 41 

dimensions of organizational culture, which then were used to predict job performance.   

MLCMs can span all four bands. In a year-long study of 757 information workers, 

Robles-Granda et al. (2021) measured physical and physiological signals from wearable sensors, 

communications from a smartphone app, relative location using Bluetooth beacons, contextual 

cues (e.g., weather), and social media data to develop MLCMs of personality, cognitive ability, 

health, well-being, and job performance using a robust (to missing/noisy data) approach. 
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Figure 4. Selective example MLCMs aligned with respect to Newell’s four bands of action for the temporal 

granularity of the assessment and psychology domain for the assessed construct (top). Additional details for 

the examples (bottom). 

 

Accuracy and Generalizability of MLCMs 

MLCMs are typically evaluated across dimensions of accuracy and generalizability 

(defined above). Accuracy is higher with well-engineered features and sophisticated algorithms 

that can infer complex patterns without overfitting than simpler approaches which risk 

underfitting to the data. It is often assumed that “big data” is better, but this is an 

oversimplification; it is not the volume but what matters is the quality of the data and how well it 

represents the phenomenon to be measured. Another assumption is that multimodality improves 

accuracy, but this is not always the case (e.g., the Bosch study); often its main advantage is 

increasing robustness (D'Mello & Kory, 2015). All things equal, the quality of the annotations 

matters most because it provides the “supervisory” signal (Figure 2) for learning and 

performance evaluation. High-quality annotations should reach the same standards of construct 

validation as any psychological measure (e.g., reliability, convergent validity). 

In terms of generalizability, MLCMs developed in very specific contexts are unlikely to 

generalize beyond the specific paradigm (e.g., Hassan affect-induction study), which can be 

somewhat alleviated by training on multiple stimuli/tasks (e.g., Zhang used both spatial and 

arithmetic tasks). The Hutt engagement study made domain generalizability a design principle in 

selecting features, and their MLCM trained on Math data generalized to Geometry data without 

retraining. Temporal generalizability is of concern for language models as new terms enter the 

lexicon (e.g., “COVID-19” for Jensen et al. (2021) which used 2018 data). The gold standard is 

to collect broad, diverse, and voluminous training data, such as the social media examples, but 

this is challenging for sensor-based models (e.g., Robles-Granda study) without mass 

surveillance. When applicable, as in the Jensen et al. (2021), example, starting with models pre-
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trained on large datasets across multiple domains and customizing them using limited data in a 

target domain is a promising approach.  

Expectations of accuracy and generalizability must be calibrated with respect to the 

complexity of the construct and availability of quality training data (especially annotations). 

Accuracy will be higher for well-defined, experimentally-induced phenomena in the lab (Wager 

pain example) compared to spontaneously occurring, ill-defined phenomena in the wild (the Hutt 

engagement example). Similarly, generalizability is difficult when the phenomenon is highly 

context-specific, such as emotion (D’Mello et al., 2018). Here, it is prudent to learn context-

specific models, live with modest accuracy, and temper performance claims rather than 

completely write off the approach. We suggest channeling Tukey when interpreting the value of 

such models: “far better an approximate answer to the right question, which is often vague, than 

the exact answer to the wrong question, which can always be made precise.” (1962, p. 13). 

Bias, Fairness, and Explainability of MLCMs 

There was a recent media frenzy when it was revealed that commercial face recognition 

technology routinely underperforms for dark- compared to lighter-skinned individuals with 

shocking disparities (error rates up to 34.7% compared to 0.8%) (Buolamwini & Gebru, 2018). 

Whereas the idea of biased algorithms dates back to the 1970s, similar high-profile revelations 

have renewed interest in raising awareness of algorithmic bias and approaches to mitigate it. 

Tay et al. (2021) proposed a theoretical framework that addresses bias in MLCMs for 

psychological assessment. They consider evidence for bias in a measurement context to arise 

when, for some subgroups, MLCM scores systematically depart from the actual scores, but there 

are no actual subgroup differences. Though often used interchangeably, fairness is distinct from 

bias. It is a subjective perspective based on the values and beliefs of individuals and societies.  
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As an example, consider a MLCM that assesses personality from automated video 

interviews, which are increasingly used in real-world hiring (e.g., Hickman et al., 2021). If the 

MLCM yields higher scores for men compared to women and nonbinary individuals on the 

personality dimension of conscientiousness when there are no gender differences in the 

annotations used to train the model (e.g., expert-rated conscientiousness), this would be prima 

facie evidence of bias. On the other hand, fairness is a broader subjective evaluation of a 

MLCM’s predictions and its outcomes. If there are higher scores for men on the personality 

dimension of agreeableness in the actual annotations, and the MLCM reproduces this (i.e., it is 

not biased), some would view the MLCM as fair because its measurements reflect actual scores. 

Others would view it as unfair because it gives unequal group outcomes. 

It is sometimes assumed that bias is purely a factor of the representativeness of data used 

to develop the models, but it arises from decisions made throughout the modeling process. The 

framework identifies and contextualizes potential sources of bias at both the data and algorithm 

level while also recommending tests and mitigation strategies. 

A related concept is explainability, where the inner-workings of the model are 

interpretable by humans, a critical concern for both scientific inquiry and real-world use. 

Explainability can pertain to the structure of an MCLM itself (e.g., how do the features combine? 

what are the representations?) and/or the MLCM outputs (e.g., why did the model predict X for 

data point Y). The four modeling approaches in Figure 2 align along an explainability-

performance tradeoff, with the hand-crafted models and deep learning approaches on either 

extreme. Whereas methods from the nascent field of explainable AI (XAI) can help improve the 

interpretability of MLCMs (e.g., Lundberg et al., 2020), it is unlikely that the tradeoff will be 

entirely eliminated akin to the no-free-lunch-theorem of mathematical folklore. 



MACHINE-LEARNED COMPUTATIONAL MODELS 18 

 

MLCMs in a Well Measured Life 

What role do MLCMs play in an information age obsessed with measurement? As the 

examples illustrate, MLCM-based measures have been developed across multiple areas of 

psychological sciences ranging from neuroscience, cognitive/affective science, education, 

organizational personality, and personality/social psychology (Figure 4). They reflect 

measurements in the scanner, the lab, online, workplaces, homes, schools, and the community. 

Whereas most MLCMs focus on within- and between-individual differences, some produce 

measurements at the level of the team, organization, or society. MLCMs have been used for 

scientific inquiry, automated scoring, assessment, and intervention. They extend our capacity to 

harness natural data sources, in each case drastically increasing the speed, scale, and convenience 

of psychological measurement. Psychological scientists have a vital role to play in the future of 

MLCMs by providing guidance on human behavior, construct validity, statistical rigor, 

theoretical grounding, and evaluations of bias and fairness. 

At the same time, a proliferation of such measures increases privacy, security, and ethical 

concerns over what and how data is collected, processed, and stored. It also raises long-

established concerns of bias and fairness. Whereas researchers have historically emphasized 

accuracy and generalizability, achieving unbiased, fair, and interpretable models has garnered 

considerable interest over the past decade. As research and recommendations emerge, one 

immediate step is to adopt a culture where ethical design is a core goal. For example, the NSF 

National AI Institute on Student-AI Teaming3 has adopted a Responsible Innovation Framework 

(Stilgoe et al., 2013) that guides its vision, values, methods, and success criteria. Of course, 

words must be followed with action in terms of how, when, why, from whom, and for what 
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purpose are data collected and analyzed so that research artifacts (MLCMs here) are instruments 

that reflect and promote justice rather than perpetuate inequality.  
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