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ABSTRACT | Engagement is critical to satisfaction and perfor-

mance in a number of domains but is challenging to measure

and sustain. Thus, there is considerable interest in developing

affective computing technologies to automatically measure

and enhance engagement, especially in the wild and at scale.

This article provides an accessible introduction to affective

computing research on engagement detection and enhance-

ment using educational applications as an application domain.

We begin with defining engagement as a multicomponential

construct (i.e., a conceptual entity) situated within a context

and bounded by time and review how the past six years of

research has conceptualized it. Next, we examine traditional

and affective computing methods for measuring engagement

and discuss their relative strengths and limitations. Then,

we move to a review of proactive and reactive approaches to

enhancing engagement toward improving the learning experi-

ence and outcomes. We underscore key concerns in engage-

ment measurement and enhancement, especially in digitally

enhanced learning contexts, and conclude with several open

questions and promising opportunities for future work.
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I. I N T R O D U C T I O N
“If you are interested in something, you will
focus on it, and if you focus attention on any-
thing, it is likely that you will become interested
in it. Many of the things we find interesting
are not so by nature, but because we took the
trouble of paying attention to them.”—Mihaly
Csikszentmihalyi, Finding Flow: The Psychology of
Engagement With Everyday Life [36, p. 128].

As the renowned psychologist Csikszentmihalyi points
out, our engagement is both a byproduct of and an essen-
tial precursor to our long-term interests. For many of us,
it seems natural that we focus our attention on tasks
that we already have an interest in, but research and
theoretical models of interest development suggest that we
can nurture an emerging interest in an activity through
repeated engagement with it [40], [41].

In the context of education, this observation is one of
the primary reasons why triggering and nurturing early
phases of interest are so important. Maintaining engage-
ment, however, taxes cognitive and emotional resources,
making it difficult to sustain for prolonged periods of time.
In learning contexts especially, many hours of engaged
attentive focus are needed to successfully master new and
challenging content. Thus, maintaining engagement at the
moment and a sustainable commitment to reengaging peri-
odically over time is essential. Can intelligent technologies
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help promote and sustain engagement across extended
periods of time?

Recent advancements in remote sensing technologies
(e.g., portable cameras, microphones, and wearable health
trackers) and affective computing approaches offer one
potential solution by enabling a deeper understanding
of people and their behaviors and emotions in different
contexts (e.g., facial expression tracking [42] and
physiological stress detection [43]). In learning contexts,
these technologies aim to monitor learner engagement and
take actions to help promote engagement (e.g., to help
improve the pacing of instructional content or reengage
students who may have temporarily disengaged). These
approaches fall under the broad umbrella of affect
detection [44], [45], affect-aware interaction (e.g., [46]
and [47]; see [48] for a review), and attention-aware
interaction [49].

However, because engagement is a complex psycholog-
ical construct (i.e., a conceptual entity), purely technical
approaches risk oversimplification, resulting in measures
that are only tangentially related to engagement [50].
A purely technical perspective also risks adopting nar-
row value and reward structures, such as maximizing
predictive accuracy without considering robustness, gen-
eralizability, interpretability, bias/fairness, and application
contexts [51], [52]. Thus, it is critical that any attempts
to measure and improve engagement in a given domain
adopt interdisciplinary perspectives that blend psychologi-
cal, computational, and domain-specific know-how. This is
precisely what we do in this article by providing a review
of engagement from the fields of cognitive, affective,
and motivational science, affective computing, attentional
computing, wearable sensing, and machine learning (ML).
We focus on research and applications involving learning
and education to keep the scope manageable.

So what exactly is engagement and how can technolo-
gies help to enhance it? Conceptually, engagement is easy
to comprehend, but, as we will discuss in this article,
it is difficult to precisely define. We will begin by exam-
ining notions of engagement broadly, which encompass a
very large number of behaviors, emotions, and cognitive
features that are differentially relevant when studying
engagement in different domains (see Section II-A). Next,
we will adopt two complementary schemes representing
the multiple dimensions and perspectives of engagement
(see Section II-B) and use them to illustrate the breadth of
engagement research in the past few years (see Section
II-C). We will provide an overview of traditional and
recent approaches to measuring learner engagement in
particular and also discuss how digital technologies and
recent advances in human-centered and affective com-
puting are enabling automated measurement of learner
engagement (see Section III-A). We will examine how
these automated technologies perform both in terms of
the accuracy of learner engagement assessment and also
in terms of the biases and errors that they make and how
those may negatively impact certain groups of learners.

Then, with these traditional and automated engagement
measurement approaches in place, we will describe how
technologies may be used to help enhance engagement
to improve learning outcomes, focusing on systems from
the past decade that implemented these strategies (see
Section IV). Finally, we will conclude with a discussion of
the strengths and weaknesses of different approaches to
automated engagement detection and feedback systems,
propose open research questions for enhancing learner
engagement, and highlight important next steps for future
research (see Section V).

II. C O N C E P T U A L I Z I N G E N G A G E M E N T
A. What Is Engagement?

In 2013, an interdisciplinary group of researchers span-
ning computing sciences and psychology convened to
discuss and better understand what “engagement” [53]
means to different research fields. They discovered that
the notions of engagement in different research areas span
a wide range of behaviors, thoughts, perceptions, feel-
ings, and attitudes toward a particular task, as also noted
by Christenson et al. [54]. In particular, the committee
produced a list of behaviors indicative of engagement rele-
vant in specific contexts, including attendance, attention,
memory, caring, emotion, inhibited actions, an urge to
share, understanding/learning, taking action, willingness,
active participation, and mental investment. While this
list indeed covers many pertinent aspects of engagement,
a rigorous definition that is both broad enough to be gen-
eralizable and narrow enough to be scientifically measured
and tested continues to remain out of reach. As Eccles and
Wang [55] observe, generalizable notions of engagement
may be more intuitive and accessible to the public, but they
offer little guidance for scientific inquiry and uncovering
cause–effect relationships between the antecedents and
consequents of engagement. Thus, it may be more benefi-
cial to narrowly study engagement in particular contexts in
terms of the associated behaviors and mental states rather
than adopting all-encompassing definitions that equate
being engaged to “doing something.”

Adopting a narrow focus has been the usual approach
in a tradition of theoretical and practical scientific inquiry.
When considering motivational aspects of engagement,
theories including self-determination theory [56], [57]
and self-efficacy theory [58], [59], [60] emphasize under-
standing the precursors of engagement such as auton-
omy, self-efficacy, interest in a particular activity, and
a balance of challenge and skill. Theories focused on
cognition prioritize understanding the ebb and flow of
mental demands and how they impact attention and
performance [33], [61], [62]. For instance, in learning
contexts, the interactive-constructive-active-passive (ICAP)
framework [33] and an attention-based extension [63]
propose that cognitive engagement and attention are
highest for interactive (e.g., debating/discussing) and
constructive (e.g., generating a self-explanation) activi-
ties, decreasing progressively in order for active (e.g.,
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copying verbatim notes), and passive (e.g., watching a
prerecorded lecture). In addition, affective theories focus
on the role of mood and emotion on engagement, such
as the assimilation–accommodation framework [64], goal
appraisal theories emphasizing how physiological arousal
and cognitive appraisal influence emotions, or hedonic
schema-based theories examining the interplay between
the pleasure of immersion (i.e., “flow” [65]) and inter-
active engagement [66]. Though engagement is often
perceived as a positive mental state, it is sometimes
linked with addictive behaviors, which may occur when
dopamine (a “feel good” chemical in the brain) is confused
with happiness causing people to engage with certain
activities (e.g., video games) to the detriment of other
life goals [67]. It may also be associated with affective
states such as confusion and frustration, which may have
a negative valence, but are part and parcel of complex
learning [68].

Given its multitude of manifestations (e.g., visual atten-
tion, activity participation, and feelings toward the activ-
ity) and the numerous contexts in which it is studied,
we adopt a broad perspective of engagement. Specifically,
we operationalize engagement in terms of multicomponen-
tial affective states, cognitive states, and behaviors that
arise from interactions with a person and a task context
and unfold across multiple time scales. In other words,
as reviewed in the following, engagement is not one uni-
tary entity but an umbrella term that is operationalized as
a function of component(s), task context, and timescale as
noted in the following:

engagement = f(component, context, time).

B. Components of Engagement and the
Engagement Continuum

Researchers generally agree that engagement is a mul-
tidimensional construct that encompasses not only how
one feels or behaves at the moment but also longer
term patterns of engaging and wanting to engage with a
task [53]. To provide a more structured approach to its
study in learning contexts, Fredricks et al. [69] proposed
three components (or facets) of engagement: emotional,
behavioral, and cognitive. Emotional engagement refers to
one’s feelings and attitudes about a specific task or the
context in which it is performed, such as feelings of interest
toward a particular subject or liking for a teacher in
school [70]. Behavioral engagement regards aspects related
to one’s direct involvement in a task and encompasses
behavioral features, such as participation and persistence
(e.g., “hard fun” in learning games [71]) practice, and level
of effort. Cognitive engagement pertains to the allocation
of cognitive resources to a task, ranging from maintaining
attentional focus to adopting high-level learning strategies.
As such, it captures aspects related to cognitive outcomes,
such as memory, recall, learning, and a deep understanding
or mastery of knowledge pertaining to the task. These

components provide a useful mechanism for approaching
engagement as a multicomponential construct; however,
they do not account for the influence of context and time,
both of which are crucial dimensions.

Complementary to the multicomponential categoriza-
tion scheme, Sinatra et al. [72] consider how context and
time scale influence engagement. They propose engage-
ment along a continuum with one endpoint corresponding
to a person-oriented perspective of engagement, which
focuses on the cognitive, behavioral, and emotional com-
ponents of engagement within individuals in a singular
task context and across a short time span lasting sec-
onds to minutes. Studies at this extreme would focus on
tracking one or more components of engagement, while
people are engaged in some activity over a short time
period (e.g., using eye trackers to measure mind wander-
ing while students interact with educational technology
in a computer-enabled classroom [12]). Most affective
computing research can be aligned to the person-oriented
perspective of engagement. At the other extreme is a
context-oriented perspective where group- or task-level
features of engagement are considered as products of
context and across extended time frames lasting weeks,
months, or years. For example, understanding how broad
learning structures (e.g., whether a school adopts a tradi-
tional lecture-, computer-based instruction, or a blended
approach) influence engagement at the school level
(i.e., an aggregate of measurements on individual stu-
dents). Sinatra et al. [72] propose that between these two
extremes is the person-in-context perspective where the
focus is on how particular contexts influence individuals’
engagement (e.g., how a teacher’s behavior differentially
influences students from different backgrounds [73]) and
unfolds over tens of minutes to hours and days. Of course,
every event entails an interaction of person, context, and
time, but the framework highlights whether the event
is characterized from the perspective of the person, the
context, or their interaction.

C. Review of Recent Studies on Engagement and
Learning

We conducted a review of how recent research within
learning contexts has contextualized engagement with
respect to components, contexts, and time scales. To facil-
itate this, we selected papers from the last six years
(published 2017 or later) based on Google Scholar results
for engagement “machine learning” students, search varia-
tions including modality-specific keywords (e.g., “EEG”),
and by exhaustively searching for “engage” in all paper
titles published in IEEE TRANSACTIONS ON AFFECTIVE COMPUTING

during or after 2017.
We filtered papers based on whether they considered

engagement in learning and then categorized the contex-
tual focus (i.e., person-oriented to context-oriented) based
primarily on the research questions or goals in the papers.
Research questions varied from highly person-oriented,
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Fig. 1. Plot of our survey of engagement research over the past six years (see Table 1) categorized using the three components

(behavioral, cognitive, and emotional) proposed by Fredricks et al. [69] and the engagement continuum (ranging from person-oriented to

context-oriented) proposed by Sinatra et al. [72]. The signals used to measure engagement within each work are listed in each box. Black

boxes use overt (openly displayed) signals, white boxes use covert (subconscious or uncontrolled) signals, and gray boxes indicate a mixture

of the two. In addition, the data modalities used to assess engagement are listed within each box. EEG = electroencephalography; EDA =

electrodermal activity; and CO2 = carbon dioxide levels.

in which the purpose was to learn about signals of indi-
viduals’ engagement, to highly context-oriented questions,
in which the purpose was to learn something about the
engaging properties of the context itself. For example,
Chang et al. [4] focused on engagement detection across
contexts in a person-oriented way, relying only on fea-
tures that could be extracted across contexts (e.g., facial
expressions) without accounting for the influence of con-
text on those features. Conversely, Soffer and Cohen [25]
addressed person-in-context research questions that inte-
grate person-oriented goals (i.e., detecting student engage-
ment) and context-oriented goals (i.e., discovering which
aspects of the context predicted engagement). In highly
context-oriented research, Seo et al. [24] investigated how
an aspect of the context (i.e., a novel type of video pre-
sentation) related to student engagement. Most research
projects are between the extremes of the continuum, where
they take contextual factors into account for predicting
individual engagement or consider a mix of both con-
textual and person-oriented research questions. Table 1
contains the tabulated results from this survey, accounting
for the focus along the engagement continuum, engage-
ment components, engagement construct, data modalities,
measurement approaches, modeling approaches, and also
methods to enhance engagement. Fig. 1 plots these papers
along the engagement components (discrete) and engage-
ment continuum (continuous) dimensions and illustrates
the focus of the past six years of research. The color of
the boxes in Fig. 1 groups studies by the measurement
approaches where black boxes use overt (openly displayed,
e.g., gaze, face, and logs) signals, white boxes use covert
(subconscious or less-controlled, e.g., electroencephalog-
raphy (EEG), electrodermal activity (EDA), and ambient
sound) signals, and gray boxes indicate a mixture of the
two. In addition, the data modalities used to monitor and
measure engagement are listed within each box.

Based on the results from Table 1 and Fig. 1, the
past six years of learning engagement research span a
variety of components, contexts, and time scales. This is
quite a departure from the bulk of research on learner
engagement prior to the last decade (see [54] for an
excellent summary), which has mainly focused on the
classroom as a traditional learning context. In particular,
out of the 32 papers we surveyed, only 22% focus on
traditional classroom activities or settings, while the rest
focus on learning from digital technologies and online
learning systems (see the Learning context column in
Table 1). Collectively, these studies focus on different
engagement components (26% affective, 26% cognitive,
and 48% behavioral), more remote/online than classroom
contexts (22% classroom, 37% remote/online, and 41%
laboratory), and they skew more toward short (person-
oriented) than long-term (context-oriented) time scales
(47% person-oriented, 38% person-in-context, and 15%
context-oriented).

1) Engagement Components: Sometimes when learners
are willing to engage but have difficulties sustaining
engagement (cognitive component), long-term learning
outcomes are poor. For instance, when learners are bored
with learning content or the learning environment (e.g.,
school classroom), they may have difficulties maintaining
attention, leading to diminished learning outcomes [74],
[75], [76]. A meta-analysis of 29 research studies found a
statistically significant (N = 190̇52 students total) nega-
tive correlation (r = −.24) between boredom (an affective
component) and academic success [77]. Perhaps unsur-
prisingly, interventions that promote attention and concen-
tration are among the most beneficial of all interventions
explored in another recent meta-analysis of training pro-
grams for self-regulated learning skills (total N = 5786;
Hedges’ g = 0.61) [78]. Stress (an affective component)
is yet another influential factor but one that can have
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Table 1 Selective Survey of Past Six Years of Engagement Research for Learning

both positive and negative effects on learner engagement,
depending on its strength, duration, source, and learner
personality [79], [80], [81].

Certain behavioral manifestations of engagement offer
a window into the day-to-day and week-to-week trends
in engagement. In the classroom, learner attendance and
completed exercises provide some important behavioral
indicators linked to positive learning outcomes [82], [83],
while, in technology-driven and online learning contexts,
forum posts and viewed videos are readily apparent behav-
ioral indicators of engagement [84], [85]. Behavioral

engagement in online settings has also been used to
learn more about how course content benefits students
(e.g., [22]).

2) Engagement Contexts: Engagement in learning mani-
fests in different ways across a spectrum of activities rang-
ing from listening and note-taking in traditional classroom
learning [33], watching lecture videos, and answering
questions in remote or digital learning [86] to reading and
completing homework [87], [88]. Engagement is relevant
for each of these activities over varied time scales as well.
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Today, more and more professionally curated learning
content is becoming accessible through Massive Open
Online Courses (MOOCs, e.g., edX and Coursera), and
less traditional presentations of learning content are also
available on YouTube and other streaming platforms (e.g.,
Khan Academy and Veritasium). Though these digital
learning platforms offer perhaps the most convenient and
approachable access to learning content, with MOOCs
providing additional facilities for students and teachers to
directly communicate and interact, student disengagement
and course dropout rates are problematic and often more
troublesome than traditional classroom learning [89].

Engagement manifests in ways that differ substan-
tially between face-to-face and online learning contexts as
well. Objective indicators of engagement from methods
such as eye-gaze tracking and EEG (e.g., [2], [5], and
[12]) are difficult to implement with high fidelity out-
side of experimenter-controlled in-person contexts. Con-
sequently, research on engagement in different learning
contexts has also adopted varied approaches. For example,
Rodriguez et al. [22] clustered students according to their
online course behaviors to learn more about how the
course context benefited students, whereas Gao et al. [10]
explored certain in-person contextual factors directly, such
as indoor climate. At the person-oriented end of the
spectrum, research questions about the individual may
be answered via fine-grained data of engagement-related
behaviors during learning with technology [16] though
multimodal data collected in face-to-face contexts are per-
haps more common (e.g., [2], [11], [29], and [30]).

3) Engagement Time Scales: Engagement influences
learning in terms of both momentary engagement in a
learning task and longer term engagement with a course
or topic [90], [91], [92]. Furthermore, prolonged periods
of focused attention may occur in a classroom setting
during a lecture [30], [93], while it may occur in short
bursts when learning in between other responsibilities or
distractions within a home [94]. In spite of the com-
plexity of these multitemporal aspects, students who are
engaged for prolonged periods should be better able to
learn and retain information compared to students who
are disengaged or engaged for shorter and less frequent
durations [95], [96].

Since learning requires sustained effort over a period
of time, periodic disengagement (e.g., for relaxation and
taking breaks) might actually benefit learning outcomes
to the extent that it enables learners to reengage in
learning content over time [97]. However, prolonged
periods of disengagement are associated with negative
learning outcomes, such as a reduced interest in educa-
tional activities [98], lower self-efficacy [99], an increase
in risk-taking behaviors [100], lower levels of educational
achievement [74], [101], or an increased risk of course
absenteeism or dropping out from school entirely [102].

4) Summary: In short, engagement in learning is a
multitemporal and multicomponential construct that is

positively associated with long-term learning outcomes
in a variety of formal (e.g., classroom) and informal
(e.g., YouTube learning videos) contexts. Though pro-
longed periods of disengagement are associated with
negative learning outcomes, periodic disengagement may
help learners “recharge” in between learning sessions and
can benefit long-term learning outcomes. Careful measure-
ment of learner engagement during these focused periods
coupled with strategies to promote focused engagement
(i.e., to combat fatigue or boredom) is necessary to help
improve the effectiveness of these focused sessions and
long-term learning outcomes. Sections III and IV focus on
these two major issues.

D. Takeaways

Key takeaways from this section on the conceptualiza-
tion of engagement are given as follows.

1) Engagement can be operationalized as a function of
component(s), task context, and timescale.

2) Engagement is multicomponential, encompassing
affective states, cognitive states, and behaviors.

3) Engagement unfolds as a function of task context
and time, where a person-oriented perspective focuses
on momentary engagement patterns over narrow
contexts, a context-oriented perspective focuses on
the influence of the context on engagement patterns
overextended time frames, and a person-in-context
perspective lies somewhere between these two.

III. M E A S U R I N G E N G A G E M E N T
Given the multitude of ways in which learners exhibit
behaviors, express emotions, and cognitively attend to
learning tasks, several methods for measuring engage-
ment have been developed. Since engagement is a latent
construct and cannot be directly observed, traditional mea-
sures rely on self-reports, observation/annotation, or prox-
ies for inferring engagement, which we will delve into
next. Automated approaches then leverage these “ground-
truth” measures along with sensor data to derive computer
estimates of engagement. In both cases, there are several
challenges involved in obtaining valid, reliable, and unbi-
ased measures in different learning contexts.

A. Traditional (Manual) Approaches

The traditional approaches to measuring learner
engagement can be broadly categorized along two dimen-
sions. The first dimension concerns when the engagement
measurement is made, which can either occur in tandem
with learning activities (i.e., a momentary assessment) or
retrospectively after the activity. The second dimension con-
cerns the perspective used to make the assessment, which
can either come from the learner (i.e., self-reported engage-
ment) or from the perspective of an observer. We consider
the merits and drawbacks of these approaches in the
following.
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1) Retrospective Self-Report Measures: These measures
are among the most commonly used to capture learner
engagement in classroom contexts (e.g., [92], [103], and
[104]). Typically, these are operationalized as Likert-type
or yes/no questionnaires where learners reflect on recent
learning experiences and respond to a collection of ques-
tions. For example, learners may be prompted with “I like
learning new things in class” (an item for emotional
engagement) or “I try to match what I already know
with what I learn in school” (an item capturing cognitive
engagement) (e.g., [105]). In other cases, students may
be presented with a list of statements to endorse, such as
“when I am in class, I listen very carefully” (a behavioral
engagement item) or “in school, I do just enough to get by”
(a reverse-scored behavioral engagement item). Usually,
these items are packaged together into questionnaires to
increase their validity and reliability and promote reuse
(for example, the student engagement in school question-
naire [105]). This is an important step for generaliz-
able and reproducible research. Other nonquestionnaire
approaches for retrospective and self-reported engage-
ment measurement include day reconstruction [106] and
interviews [107] (which perhaps blur the line between
self-reported and observer-based measurement).

2) Momentary Self-Report Measures: Momentary
self-reports are useful measurement approaches for
sampling mental states at particular moments when
those states may have changed. One approach is called
experience sampling [108], which is similar to ecological
momentary assessments used in affective computing
research [109], [110]). Here, learners may be periodically
probed to report their levels of engagement during a
learning activity. Though these kinds of assessments
are widely used in affective computing research, they
are less commonly utilized for measuring engagement
in classrooms because of the concern that they disrupt
engagement in the process. However, this concern can be
alleviated by careful design of the timings and delivery of
the probes [108]. In perhaps the largest study on student
engagement during digital learning, Hutt et al. [111] used
this method to collect tens of thousands of engagement
instances from close to 70 000 students across an entire
school year.

3) Retrospective Human Observer-Based Measures: These
types of engagement measures include video coding
and observer-based annotation of recordings of student
engagement. For example, several recent works (e.g., [26],
[29], [30], and [112]) utilized human coders to rate
the level of engagement of different students in labora-
tory and classroom settings based on camera recordings
(and eventually used these measures to train machine
learning models to automatically infer engagement). This
approach gives observers access to some types of infor-
mation available to teachers in a classroom for assessing
student engagement in real time (e.g., visual and audible
information).

Some additional approaches utilize observations about
the learning outcomes to retrospectively infer whether
learners were engaged in activities or learning con-
tent. Examples of these types of measures are common
in today’s classroom and digital learning environments:
homework grades or completion, absences, test scores,
behavior records, time spent watching lecture videos, num-
ber of discussion forum views and posts, and more [113],
[114]. Traditionally, these metrics are evaluated by
humans (e.g., teachers and teaching assistants) to gauge
learner engagement, but it is questionable whether they
actually reflect engagement (e.g., test scores are designed
to measure knowledge rather than engagement). Further-
more, absences conflate legitimate reasons for nonatten-
dance (e.g., illness) with disengagement and homework
completion measures do not account for home-life factors
(e.g., access to reliable Internet). These types of measures
need to be taken with a grain of salt and used as a last
resort for assessing learner engagement, unless they are
validated against accurate alternative measures.

4) Momentary Human Observer-Based Measures: Momen-
tary observer-based measures can encompass both live
human-based observation (e.g., via a teacher or research
assistant in the classroom) and also asynchronous indica-
tors of learner behavior at particular moments (e.g., obser-
vation of video recordings of students in classrooms [26]
and coding of log files during digital learning [115]).
One widely used observer protocol is the Baker-Rodrigo-
Ocumpaugh Monitoring Protocol (BROMP)—a human-
observer coding method in which students are observed
individually for up to 20 s to assess both their affective
(e.g., neutral, boredom, and confusion) and behavioral
states (e.g., on-task, off-task, and on-task with conversa-
tion) [116]. To avoid ordering effects and the influence
of distracting behaviors on the observers, BROMP requires
that the sequence of students to be observed is determined
a priori [117].

B. Recent (Automated) Approaches

Recent approaches to measuring engagement have
turned to automated and machine-based methods. The
main ideas behind using machines rather than human
observers or self-reports are to reduce costs, (ostensibly)
reduce biases, improve objectivity in assessment, scale up
measurement, and have real-time measures for dynamic
interventions. The manner in which these automated sys-
tems are built depends on the learning context in which
they will be deployed. For example, an automated engage-
ment detection system in the classroom might use video
and audio data from camera and microphone recordings
of students to infer engagement, similar to how a teacher
would use the same visual and audible cues (e.g., [118]
and [119]). Another example is an automated system
for digital learning environments where students’ interac-
tions with the system (e.g., time spent watching lectures,
number of lectures viewed, and quizzes answered) and
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with each other (e.g., forum views and posts) are used
to infer engagement (see [120] for a review). Each of
these approaches is a form of machine observation that
is trained to infer learner engagement levels at differ-
ent moments in time using information from an array
of features (e.g., video-based gaze or face, audio cues,
and logs) and prior examples of engagement and disen-
gagement from human-based measurement approaches.
Thus, human measurements provide the foundation for
automated assessments.

Fig. 2 provides an overview of how these automated
artificial intelligence (AI) engagement inference systems
are built. The end result of this process is a trained machine
learning model (i.e., the ML model in the model/prediction
stage) that is able to infer engagement from (machine-
based) observations about learners. However, in order
to train this model, additional supporting information
needs to be supplied, such as examples of learn-
ers’ behaviors/cognition/emotions in context, human-
provided ground-truth ratings/annotations of engagement
using any of the aforementioned measures, and various
decisions from stakeholders (e.g., researchers) to deter-
mine the ML model algorithm. To summarize, first, the ML
model is trained to detect and predict learner engagement
from examples, and then, it can be used to infer engage-
ment levels for new groups of learners, as noted in the
following.

ML Model Training:

machine-observed features

+ human-provided engagement scores/labels

→ ML model.

ML Model Deployment:

machine-observed features

+ trained ML model

→ machine-provided engagement estimates.

In Fig. 2, each stage (gray dashed box with bold labels)
is comprised of information, denoted by the yellow wavy
boxes, and processes, people, or systems that act upon and
transform that information. We refer to this latter grouping
as agents and depict them using rounded green boxes.
Within and between each stage, information is produced
by agents and passed along to other agents that transform it
into a new type of information. Thus, the pipeline consists
of alternating steps (e.g., agent → information → agent).
The red diamond denotes a stakeholder decision, which
influences how information flows through the pipeline
and is used to decide when an iteration of the pipeline
is complete. In Fig. 2, only one decision is depicted at
the end where stakeholders control whether to continue
training the ML model, but, in reality, many stakeholder

decisions influence the structure and flow of information
throughout the entire pipeline (e.g., which algorithm for
the ML model should be used? and how many learners
should be studied and in what context?). For simplicity
here, only one decision is illustrated. We describe each
stage in turn next and use italicized font when referring
to items within the figure.

1) Engagement Continuum Stage: This stage encom-
passes the learners and the learning context. As proposed
by Sinatra et al. [72], there are a number of influences that
learners have on their learning context and vice versa;
thus, there exists a continuum where engagement can
be studied at the level of learners, the learning context,
or anywhere in between. This stage captures the details
of a particular context, such as learning in a traditional
classroom or learning by watching video lectures at or
away from home.

2) Human-Provided Measurement Stage: This next stage
encompasses any of the four aforementioned measurement
approaches (e.g., momentary observer-based). This stage
is only necessary for ML model training and would not
be used once the ML model is deployed; thus, all mea-
surements made in this stage involve human-based assess-
ments of engagement (see [121] for a review). Three paths
are depicted in the figure, but typically only one or two
are utilized in a particular study (see [122] for a combi-
nation of measures including self-reports, peer-judgments,
and trained judges). The top path represents both types
of observer-based measurements where human observers
use their senses (e.g., watching and listening to learn-
ers’ behaviors, expressions, and performance) to make a
judgment about their perceived level of learner engage-
ment. Sometimes, these judgments are purely subjective,
and sometimes, they may involve questionnaires and
assessment items, similar to those previously mentioned.
Perceived engagement scores from multiple observers are
sometimes gathered to help reduce the influence of any
observer’s biases, and then, the scores are fused (e.g.,
by averaging) to produce an engagement score. The second
path involves self-reported engagement where the learners
themselves reflect on their experiences of engagement
and report them directly (e.g., at 7-min intervals [123]).
Finally, sometimes, engagement is induced rather than
measured, which the third path represents. In these types
of scenarios, the learning context is carefully controlled
and presumed to have some known effect on the engage-
ment levels of learners. For example, Siddiqui et al. [124]
suggest that engagement can be induced via peer-to-peer
synchronous interactions, and Hsu et al. [125] have shown
that disengagement can be induced using distractions.
Engagement scores are often treated as binary measures
(e.g., engaged or disengaged) in these induced engage-
ment settings, offering coarse insights into the effects of
(dis)engagement.
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Fig. 2. Pipeline demonstrating how machine learning models for automated engagement assessment are trained. ML = machine learning.

3) Automated Sensing/Feature Stage: In this stage, infor-
mation about the learners and learning context are
observed and recorded. Since the aim is to build an ML
model that can automatically infer engagement without
human intervention (though human oversight is needed
at all steps, as we will explain later), a machine-based
observer collects observations here rather than humans.
Thus, these observations can be generated from any signal
that can be digitized. A video is one example of a digitized
signal from which features such as facial expressions,
gestures, body posture, or eye gaze [126], among others,
could be automatically extracted using computer vision
techniques [42]. Another example for learners in remote or
digital contexts involves collecting patterns of interactions
with the learning management systems (LMSs), including
video views, video skips, page views, or click streams,
which provides a basis for inferring student engagement
(see [111] and [127]). This latter example is called a
“sensor-free” approach because it uses overt information
obtainable from LMS interactions rather than external
sensors. Of the 32 studies surveyed (see Table 1), most
relied on overt signals (e.g., face, gaze, and logs), whether
sensor-based or sensor-free, rather than covert (e.g., heart
pulse) signals to infer engagement levels (i.e., 84% overt,
13% covert, and 3% mixed).

More recently, advances in deep neural network mod-
eling are enabling automatic feature extraction and the
transfer of trained automated sensing technologies across
domains. For example, Sümer et al. [26] used pretrained
deep networks called Attention-Net and Affect-Net to learn
deep embeddings (i.e., features of engagement) based on
facial expressions and head pose in a classroom learning
context (a person-oriented approach). Transfer learning
(i.e., from outside sources to learning contexts) benefits

from large amounts of data to learn how to understand dif-
ferent signals (e.g., gaze, facial expressions, and vocalized
audio) are proving to be powerful methods for automated
construct inference in many domains (see [128] for a
review of transfer learning), and it seems likely that
advances in automated learner engagement inference will
follow suit.

4) Model/Prediction Stage: Next is the model/prediction
stage where the ML model is trained using the features
of engagement and the engagement scores (i.e., supervised
machine learning). The training process, represented by
the ML model in Fig. 2, entails learning a mathemati-
cal function that maps the engagement features to the
engagement scores as accurately as possible. This process
is typically iterative, as many refinements to the learning
model may be needed (e.g., hyperparameter tuning) until
a sufficiently optimized mapping is found. Once the ML
model is trained, it can be used to make predictions about
the level of engagement based solely on the engagement
features without using the engagement scores.

Cross-validation is often employed in this stage to
improve the generalizability and reliability of the ML
model for a particular purpose. This technique entails
measuring the ML model’s performance on different sub-
sets of data not considered when training the models,
and the choice of these subsets influences the model’s
robustness. For example, if the stakeholders want to train
the ML model to make predictions about the engage-
ment levels of new learners in a similar context, the ML
model will be trained using a subject-independent cross-
validation procedure where examples from a given learner
appear only in the training or testing set but never split
among the two. Likewise, ML models meant to assess
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the effectiveness of different courses at eliciting engaged
behaviors (i.e., a context-oriented approach) would use a
course-independent cross-validation approach. Details of
this procedure are discussed further in Section III-C.

5) Decision/Evaluation Stage: In this final stage, the
predicted levels of engagement from the ML model are
evaluated to determine whether the model performs well
enough for its intended purpose. In most research, this
determination is made based on the accuracy (i.e., the
similarity between the engagement predictions and the
ground truth engagement scores), reliability (i.e., the sim-
ilarity of engagement predictions for similar features of
engagement), and generalizability (i.e., how accurately the
model predicts engagement for different learners and con-
texts). Statistical tests are sometimes utilized to assess how
well the model’s predictions perform compared to suitable
baselines (e.g., simple heuristics and educated guessing)
both in terms of strength and statistical significance. If the
models underperform compared to expectations, stake-
holders may choose to alter portions of the pipeline (e.g.,
adding or removing engagement features and choosing a
different ML model algorithm) and try again. The final
output of this pipeline is a trained ML model suitable
for automatically predicting the engagement levels of a
new set of learners in similar learning contexts using only
machine-based observations.

This pipeline for training the ML model is a
general-purpose pipeline for human-centered comput-
ing tasks where constructs beyond engagement are of
interest (e.g., positive or negative affect [129], per-
ceived sleep quality [130], and suitability of job can-
didates for hiring [51]). A person-oriented version of
this pipeline tailored for automated learner engagement
assessment in digital learning contexts was proposed by
D’Mello et al. [131] called the advanced, analytic, auto-
mated (AAA) approach. Many of the studies surveyed
(see Table 1) include an automated engagement inference
system trained in this fashion. In particular, while 25% of
the 32 studies used a more traditional form of statistical
inference, the other 75% used machine learning methods
[42% classic ML (e.g., k-nearest neighbors and support
vector machines) and 33% modern ML (e.g., deep and
reinforcement learning)]. Though research into automated
engagement inference is still emerging, these and other
studies (e.g., [118], [132], [133], and [134]) demonstrate
the power of this general supervisory approach for devel-
oping automated systems for engagement prediction.

C. Challenges in Measurement

Though the specific implementations for each engage-
ment measurement approach aim to be as accurate and
reproducible as possible, there are several challenges
involved with both human-based and automated machine-
based measures of engagement whose predictive accu-
racies depend on the human-based measures (used as

supervisory signals). Here, we discuss some of the chal-
lenges to engagement measurement.

1) Validity of Ground-Truth Assessments: According to the
Standards for Educational and Psychological Testing [135],
the validity of a measurement refers to “the degree to
which evidence and theory support the interpretations of
test scores for proposed uses of tests.” Using the three
components of engagement [69] as a guide, this means
that a valid measure needs to be accurate and encompass
all facets of engagement.

Fig. 3 illustrates how different perspectives (self, human
observer, and machine observer) have varying access to
information signals (e.g., introspection, gaze, and heart
pulse) for determining engagement within each compo-
nent. Thus, each perspective is restricted to producing
engagement measures based on the available channels of
information, some of which serve as unreliable proxies for
estimating engagement. Proxy measures such as grades,
test results, visual cues, and attendance are often limited in
what they can reveal about affective and cognitive engage-
ment (e.g., neutral facial expressions are limited proxies
for focus and gaze is a limited proxy for visual attention),
and some behavioral proxies are nonspecific; for example,
absences can reflect health conditions and a difficult home
life rather than lack of engagement, whereas showing up
each day might reflect compliance rather than a genuine
desire to learn. Thus, any measure of engagement should
strive to incorporate a multitude of perspectives in order
to maximize validity.

However, the validity of each perspective can be dimin-
ished by various forms of bias. Self-report accuracy may
be influenced by social desirability bias [136], mem-
ory recall limitations [137], cultural contexts [138], and
cognitive and recall biases [139]. Though human-based
observational measures can mitigate some of the biases
from self-reports (e.g., [70], [140], [141], [142], and
[143]), these measures are also subject to the influence of
prior experiences, implicit biases, spatial attention [144],
and individual differences between learners and observers
(see [145] for a cataloged review). Biases are also intro-
duced by the timing of the measure. For example, while the
asynchronous nature of retrospective observation allows
human observers to more carefully reflect on the behaviors
and affect of students, contextual factors not captured
in a video cannot be considered. Retrospective self-report
measures avoid interrupting the learning activity but suffer
from limits of memory reconstruction. As a result of these
biases and differences in perspectives, self and observer
ratings of engagement and affect, in general, tend to be
very weakly correlated [131], [146], [147], [148], [149],
[150], [151], suggesting that each is sensitive to different
sources of information. Attempts to mitigate these differ-
ences, such as frame-of-reference training that increases
observer–observer agreement, do not seem to improve
self-observer agreement [152].
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Fig. 3. Venn diagram illustrating three different perspectives for

measuring engagement. Examples of data modalities (i.e., signals)

are contained within each circle showing which types of information

can be incorporated by each perspective. A complete view of

engagement should include a multitude of these perspectives and

also momentary and retrospective assessments (not pictured).

Biases in the form of contamination or deficiency can arise when

irrelevant sources of information (e.g., situational factors and

cultural context) are utilized when making an assessment of learner

engagement.

Overcoming these challenges is difficult, and at present,
there is no single best approach. Generally, biases in one
measurement procedure can be mitigated by collecting
several measures independently (e.g., multiple observers
and multiple self-reports), and research should aim to
incorporate multiple measures where possible, which
accurately comprise cognitive, affective, and behavioral
engagement. Given that both self and observer reports
have biases and are privy to different sources of informa-
tion, perhaps, the most defensible approach is to consider
a combination of the two as in [122]. Thus, a major
weakness in current research is that studies typically do
not capture or account for these multiple perspectives.

2) Scalability of Assessments: To maximize the valid-
ity of engagement measures, multiple approaches to
engagement measurement are desirable, but this increases
costs and impacts the scalability of research. Human-
based observer measures, in particular, entail considerable
human effort, which makes it difficult to replicate studies
in similar contexts and across cultures to test the gener-
alizability of findings at scale. These limitations can be
partially addressed when using machine-based observation
to supplement or replace some human-based observation.
For instance, audio and video recording systems, such
as the electronically activated recorder (sampling audio
clips in naturalistic settings) [153] or cameras in a class-

room [26], can capture indicators of student engagement
passively and easily at scale. These recordings, however,
need to be transcribed and annotated by human observers
(e.g., [147] and [154]) to obtain an engagement measure,
which still incurs considerable costs and hinders scala-
bility. This is where automated ML models can help by
generating engagement measures from the machine obser-
vations without any need for human observers beyond the
model training process. This approach saves considerable
time, effort, and costs, and easily scales to studies involv-
ing large populations. There have been several studies
utilizing automated AI in this way (e.g., [118], [132],
[133], and [134]), but research along these lines is still
relatively new, and more work is needed before the ML
model’s engagement assessment accuracy achieves parity
with human-based observation [91], [120].

3) Generalizability of Human-Based Assessments: Self-
reported measures of engagement are relatively
inexpensive and easy to administer, but, in addition
to the previously mentioned biases, they may not
generalize across learners and cultures [136], [148].
For example, on a five-point questionnaire item asking
learners to rate how hard they study each day, one student
in a competitive learning environment who studies for
at least an hour each day may rate their effort as 4/5,
while another student in a more relaxed environment
who reviews flash cards for five minutes each day may
do the same. Since the learning outcomes and amount of
time spent engaged are likely to differ between learners
in this instance, the validity of interpretations of these
self-reported questionnaires is reduced when comparing
them across contexts [148]. This basic argument applies
to learners in different contexts (e.g., formal classroom
learning with notes versus informal digital learning with
an LMS) or cultures since the study habits and perceptions
of successful studying vary by context. Self-reported
measures are more valid when compared over time within
a learner since these differences in reference frames are
no longer problematic.

4) Validity of ML Models: There is the major issue of
how to evaluate the expected validity of automated ML
models for engagement prediction on new samples of
learner data. Often, the model’s accuracy is used (a form of
convergent validity), measured as the alignment between
automated estimates and an external standard (typically
self or observer annotations), and quantified, for instance,
using recognition rate, kappa, or correlations. Measuring
the suitability of an ML model for a purpose in terms of
accuracy ultimately requires stakeholders to make a sub-
jective assessment (see the Stakeholder Decision in Fig. 2).
Although it is difficult to specify exact bounds on what
constitutes “good” accuracy (as discussed in detail later
on), at a minimum, it should exceed random guessing
(chance).

As automated machine-based engagement measures
have only been the focus of concentrated research efforts
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in recent years, their validity has yet to be thoroughly
examined. Efforts to build the best ML model possible
(see Fig. 2) have focused almost entirely on optimizing
accuracy and, thus, convergent validity. This provides one
form of evidence of the validity (accuracy) of ML-based
measures, but, as Standards for Educational and Psycholog-
ical Testing [135] clearly states, multiple types of evidence
of validity are needed to help establish the suitability of a
measure for a particular purpose. To date, there is little to
no evidence of discriminant validity (i.e., ML predictions
are uncorrelated with unrelated constructs), predictive
validity (i.e., the success at predicting future states of
engagement), or external validity (i.e., generalizability).
For instance, none of the reactively designed systems that
we describe later in Section IV-B provide evidence of these
additional types of validity. Only a small handful of studies
(e.g., [91], [155], [156], and [157]) link the automated
engagement predictions to meaningful outcomes, such as
learning gains and college enrollment (i.e., evidence of
predictive validity).

5) Generalizability of ML Models: Only another handful
of studies (e.g., [91], [158], and [159]) consider gener-
alizability beyond predictive accuracy for new learners by
measuring the generalizability over time and demograph-
ics. The generalizability of a measure is concerned with
its validity when applied to data beyond what was used
to develop it. In the context of machine learning, this
refers to how well the ML model’s engagement predictions
perform on unseen data from a different set of learners.
Generalizability is usually operationalized by dividing the
data into two mutually exclusive sets, training the ML
model on one set (i.e., the “training data”), and testing
its performance on the remaining data (i.e., the “test
set”). Cross-validation is a widely employed variant of this
procedure where the ML model’s performance on the test
set is measured over different partitions or test sets within
the data. In this type of procedure, each data sample is
used as testing data only once and never simultaneously
included in the training data, which would be a form of
“cheating” since a flexible ML model would be able to
recall the exact engagement score when making a pre-
diction. Thus, it is important to ensure that the samples
contained within each test set reflect the deployment goals
for the ML model. For example, if the model aims to be
used to predict engagement levels of previously unseen
individuals, then the training and test sets should be
constructed, so all available samples from one individual
are contained entirely in either the test or training sets, but
not both (i.e., subject-independent cross-validation folds).
This ensures that the training data will never contain
specific information about a learner in the test data, and
hence, measures of the test-set performance will be better
indicators of the anticipated performance of new learners.
Usually, the average performance across the test sets (e.g.,
the mean correlation) provides a measure of the expected
performance of an automated machine-based engagement

measure on new data. Sometimes, the variance is also
reported (e.g., the standard deviation of the correlations),
which provides some information about the precision of
the ML model’s engagement predictions.

Models designed to be deployed in heterogeneous set-
tings or in environments where data noise may vary from
the training data need to generalize to a range of noise
conditions. This is especially true for models trained on
sufficiently clean or denoised data (e.g., vocalized audio
in a controlled and quiet classroom) that intend to make
predictions in a naturalistic setting (e.g., groups of stu-
dents chatting, talking over one another, and making noise
while working together) (e.g., [160]). Though modern
machine learning techniques have the ability to separate
out noise from the relevant data if provided with enough
samples (e.g., [161] and [162]), most research discards
noisy samples prior to modeling (e.g., [155]). Systematic
modeling of noise processes and how they affect data can
be incorporated during the modeling process and improve
measurement accuracy [163]. Nonetheless, the ability to
handle noisy data and, thus, generalize to similar contexts
with varied noise conditions needs to be a fundamental
design constraint rather than an afterthought.

Furthermore, efforts to improve ML model generaliz-
ability are only meaningful when models are deployed
to predict learner engagement in similar learning con-
texts. As noted by Sinatra et al. [72], there is a continuum
of influence between learners and the learning context,
so studies aiming to assess the same type of learner
engagement (e.g., via within-lecture quizzes) in different
learning contexts (e.g., for remote learners in a controlled
laboratory setting versus in-person learning in a naturalis-
tic classroom setting) should expect different results. For
example, studying a construct in its natural context is
generally more difficult than studying it in a controlled
laboratory setting (e.g., [164]), and research is starting
to highlight the gap in performance when an ML model
trained in one context (e.g., lab studies on remote learner
engagement) is used to make predictions in another con-
text (e.g., classroom engagement) [165], [166], [167].
Thus, scientists and practitioners should expect that gen-
eralizability measures are only applicable when both the
populations and contexts are very similar, and they should
take caution when using automated ML systems outside
of their intended contexts. Accordingly, the basic learner-
independent cross-validation method can be expanded in
scope to incorporate groups of learners with particular
characteristics [168], temporal changes [169], and domain
differences [168], among others. Even when models fail to
generalize, these analyses provide valuable data for further
refinement.

6) Robustness of ML Models: We consider the robust-
ness of an ML model as a function of its reliability and
handling of missing data. The Standards for Educational
and Psychological Testing [135] defines the general relia-
bility of measurement as the “consistency of scores across
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replications of a testing procedure, regardless of how
this consistency is estimated or reported.” For ML models
inferring engagement, this refers to the precision and con-
sistency of accuracy/errors in engagement predictions for
unseen data (i.e., future samples) in the same learning con-
text. Measures of reliability are often obtained during the
ML model training process using cross-validation, where
out-of-training-sample accuracies provide a measure of
a model’s reliability across replicated testing procedures.
These measures are operationalized using different met-
rics, such as the standard deviation in prediction accuracy
or test–retest reliability metrics [170]. Reliability is an
important measure because it provides insight into the
expected performance of the ML model on unseen data
in the same learning context; however, in practice, the
performance is further modulated by the degree to which
the context surrounding the unseen data is similar to the
one used to train the ML model.

In addition, the robustness of an ML model is affected by
its ability to handle missing data. When data are gathered
in naturalistic settings (e.g., in the classroom and at home
during remote learning), both user- and sensor-based
issues often impact the availability and quality of data. For
example, learners may forget to turn on or wear sensing
devices (e.g., wristband heart rate sensors and cameras),
forget to clean them properly, and forget to recharge the
batteries between uses, or sensors may simply malfunc-
tion. Thus, sparse samples or completely missing data are
unavoidable. Under ideal conditions, an ML model would
only be asked to provide predictions of learner engage-
ment when it has observed a sufficient amount of data
to be confident, but, in practice, the unpredictable nature
of missing data means that this is not always possible.
In this scenario, a robust ML model should be capable
of making a best-guess prediction based on the available
information (e.g., [163]), and it should also report low
confidence in its assessment(s). In cases where multiple
sensors are available capturing an array of multimodal
information, ML models can use information from one
channel to compensate for the lack of information from
other channels. For example, Bosch et al. [171] found that
multimodal fusion techniques were able to compensate
for missing facial data (due to face detector failings of
motion, occlusion, poor lighting, and so on) to achieve
around 98% coverage when combined with educational
game interaction data.

7) Privacy, Ethics, and Bias/Fairness: Most of the data
used to assess learner engagement, whether based on
in-person observation or retrospectively, is sensitive to
privacy concerns. Information about grades, test scores,
behavioral performance, and more can be legally pro-
tected (e.g., by the Family Educational Rights and Privacy
Act in the United States), so researchers need to take
extra precautions to ensure that adequate permissions are
obtained from learners, and protective measures are in
place (e.g., anonymizing data and binning performance

scores) to prevent a breach of privacy. The 2010 “Webcam-
Gate” scandal [172], where thousands of compromising
video camera and desktop background images were cap-
tured from students’ computers without their knowledge
or permission, illustrates the massive potential for these
technologies to cause harm. One effective strategy for
ensuring the privacy of engagement features is to obtain
and record nonidentifiable features from the signals and
then immediately discard the signals themselves. This is
the approach taken by certain machine-based observa-
tion tools, such as the Tracking IndividuaL pErformance
using Sensors (TILES) Audio Recorder [173] that ran-
domly samples the environment listening for vocalized
audio clips, and transforms and records anonymized ver-
sions of them (e.g., prosodic information rather than the
words uttered). Bosch et al. [112] demonstrate a similar
approach to anonymizing facial expressions in classrooms.

Even with these protective measures in place,
bias/fairness concerns apply to the features of engagement
(see Fig. 2) as well since these may contain additional
information beyond engagement (e.g., about race from
skin tone or gender from vocal pitch). Not only does this
threaten individual rights to privacy (e.g., via reidentifi-
cation) but it also can manifest as a type of measurement
bias where some aspect(s) of the input features that are
irrelevant to the construct (e.g., race) is treated as relevant
(i.e., contamination of the relevance; see [51] and [174]
for a full discussion of contamination and deficiency
biases). Automated engagement measurement systems
can help to prevent these bias/fairness concerns by
discarding all portions of the captured signal irrelevant to
engagement assessment and keeping only nonidentifiable
versions of the relevant information.

Furthermore, the manner in which automated engage-
ment tools are trained, evaluated, and used also presents
major ethical and fairness concerns. Recent research has
uncovered a plethora of examples of sensing technologies
that collect high-quality and more representative features
for certain groups of people than others. To give a few
examples, facial feature recognition software (a founda-
tion for emotional expression recognition) captures black
and female faces less well than lighter colored or male
faces [175]; vocalized audio transcription accuracy may be
diminished for nonnative language speakers due to articu-
latory differences from native speech [176], longer pause
durations [177], or nonnormative pause locations [178];
and measures for engagement in digital learning may not
account for differences in eye gaze or interaction patterns
for learners with attention-deficit disorders [179], [180].
Because these technologies may perform less well for cer-
tain people, researchers and practitioners must pay extra
attention to potential disparities in the resulting trained
ML model’s performance across groups, especially groups
protected by legal statutes (e.g., race, ethnicity, sex, and
gender).

In addition to outlining the ML model training pro-
cess, Fig. 2 provides a theoretical framework for a
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systematic investigation into differences in ML model
accuracy across protected groups (i.e., bias and fairness
concerns). As Booth et al. [51] discuss, versions of this
figure tailored to an application domain (learner engage-
ment in this article) can serve as a guide for identifying
potential sources of bias leading to differences in accuracy
across groups. Each piece of information (yellow wavy
boxes) can, in principle, be inspected for evidence of
unnecessary group differences. If these differences exist,
for example, if the evaluation measurement indicates that
engagement detection accuracy is better for one group ver-
sus another when no such differences are to be expected,
then the potential sources of bias causing this disparity
occur anywhere upstream (i.e., at previous stages). The
goal during this investigative process is to identify the
agent(s) (i.e., an information “transformer”) that causes
this developmental difference to appear. For example, pos-
sible sources may include differences in the presence of
features of engagement for different groups, differences in
how self-reported measures are interpreted among learn-
ers from different groups, or differences in how human
observers notice and assess engagement across groups.
Once possible sources have been identified, additional
steps can be taken to mitigate the influence of these biases,
such as in-learning ML model debiasing strategies [181].
There is yet no prescriptive method for performing this
search, but it is important to reduce the potential sources
of bias as much as possible when designing and building
these automated ML systems for engagement assessment.

Finally, the contexts of the use of trained ML models
for engagement prediction and the decisions made by
stakeholders present other ethical concerns. Many ML
models are not yet “self-aware” to the extent that they
can recognize when the features used to make engagement
predictions are coming from a different context. An ML
model may, thus, produce engagement scores to the best of
its ability without making its confidence in assessment or
confusion known to stakeholders. Noting that this situation
is likely a failure of the stakeholders to recognize that
the ML model should not be used in this setting, any
decisions made by the stakeholders may result in ethical
concerns. For example, using a face-based engagement
prediction system to measure learner engagement in class-
rooms consisting of a majority of female and black faces
may fail to adequately capture student engagement due
to well-known deficiencies in current facial recognition
techniques [175].

Even if all of these sources of biases were mitigated,
there is still the question of whether a model should
be used for a particular purpose. Specifically, there is a
massive concern about these automated models being used
to surveil students and for the purposes of disciplining
and evaluating them. Using models of student engagement
to evaluate teachers is similarly alarming and distressing.
Thus, even when an ML model seems to function in a
particular context, stakeholders’ decisions to utilize it with-
out considering its fitness for purpose can result in ethical

concerns. Therefore, we recommend that these models be
used for research purposes, formative feedback (i.e., feed-
back for improvement not evaluation), or dynamic inter-
vention and ideally in low-stakes settings. Users should
have agency over the measures including the ability to turn
them off.

D. Takeaways

The key takeaways pertaining to engagement measure-
ment covered in this section are given as follows.

1) Measures of engagement should utilize multiple
approaches to measuring engagement because each
accesses different sources of information (see Fig. 3).

2) Low levels of agreement between engagement scores
from different perspectives should be expected due
to differences in information and biases that uniquely
affect measurements from each perspective. However,
these unique scores provide a more nuanced view of
the different ways in which affective, cognitive, and
behavioral indicators of engagement manifest.

3) In addition to accuracy, researchers should analyze
generalizability, bias/fairness, and robustness when
evaluating automated measures of engagement (see
Fig. 2).

4) The use-for-purpose of automated measures of
engagement should be scrutinized for ethical con-
cerns. ML models should only be deployed to measure
learner engagement in contexts very similar to how
they were trained and never used for evaluation
purposes or in high-stakes scenarios.

IV. E N H A N C I N G E N G A G E M E N T
Early learning technologies in the 1980s focused primarily
on optimizing knowledge and skill acquisition (e.g., [182],
[183], and [184]), in line with learning theories at that
time emphasizing knowledge as the predominant learning
outcome. This perspective has shifted over the past four
decades as newer learning theories have come to realize
the role of engagement in deep conceptual learning. Con-
sequently, we focus on the promotion of learner engage-
ment in the context of learning technologies. Methods to
enhance engagement via curriculum design, presentation
style, and teacher intervention have been a major focus
of good pedagogical practice for many decades [185],
[186] and more recently in the context of learning
technologies [50].

Deep conceptual learning is difficult because it requires
sustained effort, rehearsal, practice, and struggle [187].
Short-term distractions and gratifications providing affec-
tive rewards (e.g., social connection, “fun”) may need to
be temporarily deferred [188]. A commitment to genuine
and persistent focus on learning needs to be established
and become routine to sustain long-term interest [40].
Even when these factors are accounted for, mental lapses
in attention are normal occurrences (e.g., students experi-
ence “zone outs” around 30% of the time while learning
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from technology; see [189] and [190] for a review) and
might need to be regulated to optimize learning and avoid
diminished learning outcomes [191], [192].

There is also a fundamental tension between liking
and learning. While “edutainment” games can be highly
engaging, it is not clear if they encourage deep comprehen-
sion [193], [194]. On the other hand, intelligent tutoring
systems (ITSs) designed to mimic one-on-one human
tutoring effectively promote deeper learning (e.g., [195],
[196], and [197]) but they also result in increased levels
of boredom [150], [198], [199], which may hinder the
development of sustained engagement in the long term.

How do we design learning technologies and contexts
that facilitate situational engagement and promote sus-
tained engagement to improve learning outcomes? This
question has received concentrated research effort over
the past 30 years [200], and researchers have identified
two main strategies: proactive and reactive design. Proac-
tive design is more of a top-down approach focusing on
optimizing the learning context and materials to facilitate
engagement (i.e., person-in-context). Reactive design is
more of a bottom-up approach that monitors and encour-
ages learner engagement either in real time (intervening
with learner engagement) or over a short time scale (e.g.,
hours or days) by offering feedback to learners and instruc-
tors. Both of these strategies can be utilized in tandem,
and Fig. 4 provides some examples of both proactive and
reactive design for improving learner engagement across
the three engagement components (affective, cognitive,
and behavioral).

A. Proactive Design

Proactively designed learning experiences are carefully
crafted to enhance engagement and successful learn-
ing outcomes. This approach is mainly person-in-context
focused (see Fig. 1) in which the design aims to optimize
the likelihood of promoting engagement across learners
or learner groups in a particular learning context. These
experiences can take on many forms, such as carefully
crafted lectures with several interesting asides to break up
content, interactive digital technologies where learners are
given the freedom to explore the learning content accord-
ing to their interests [201], well-designed curricula [202],
or personalization of math problems based on students’
interests [203]. The main aim of the proactive approach
is to craft experiences that produce cognitive and affective
states associated with engagement (e.g., interest, curiosity,
challenge, critical thinking and reflection, surprise, and
productive struggle) while minimizing events and mental
states that reduce engagement and trigger boredom and
mind wandering.

Within the digital learning space, early attempts to
proactively optimize content for engagement attempted to
incorporate elements of games, puzzles, and comics (e.g.,
point systems, badges, achievements, leaderboards, and
more [204], [205]) to increase motivation and engage-
ment. The results were generally unfavorable—students

appreciate the ease of use that tends to accompany the
“gamification” of educational content, but they do not
favor the game-enhanced experience [206]. This phe-
nomenon has been described as “chocolate-covered broc-
coli” [207] and has been a barrier to the uptake of
entertainment elements within education. Since then,
recent approaches to proactive design have targeted
learner affect, cognition, and behaviors (following the
three components of engagement; see Fig. 4) more directly.

1) Affective Design: Proactive affective design broadly
aims to enhance engagement by appealing to affective
elements. One approach called emotional design is sim-
ple: alter the content so the learning materials induce
mild positive affect and delight. Some specific imple-
mentations of this method include adding anthropomor-
phic facial features to nonhuman graphical elements and
adding colors to embellish drab imagery [208], [209].
A recent meta-analysis [31] found that emotional design
was effective both in increasing learning and improving
learner engagement as measured by intrinsic motivation,
liking/enjoyment, positive affect, and reductions in per-
ceptions of difficulty. Conversely, another approach named
productive struggle aims to control the emotional arc when
a learner first encounters cognitive disequilibrium—a state
of confusion when confronting content that does not match
expectations [32]. At the moment when learners would
be expected to experience this disequilibrium, additional
supports can appear, encouraging the learner to persist in
achieving understanding (e.g., motivational language and
alternative perspectives) until a productive resolution is
reached, resulting in conceptual change [68], [210].

2) Cognitive Design: Proactive cognitive design aims to
promote the onset and maintenance of cognitive engage-
ment, for instance, through content design, content order-
ing, and interactivity within a learning session. In one
example, Chi and Wylie [33] organize learner engagement
during activities demanding different amounts of attention
and interaction in their ICAP framework. The framework is
named after four tiers of types of activities with decreasing
likelihoods of promoting engagement (I > C > A > P ).
The research suggests that passive activities, such as sim-
ply watching a lecture video, are least likely to generate
engagement. Active verbatim note-taking in class produces
slightly more engagement, while a constructive version
where notes are summarized via self-explanations would
be much more engaging. Interactive tasks, such as debating
or discussing learning content with peers, are the most
likely to elicit high levels of engagement. Thus, the ICAP
approach encourages the incorporation of interactive and
constructive tasks in the design of learning experiences to
promote high levels of cognitive engagement.

Another approach called chunking seeks to improve the
ability of learners to store and retain information [211]
while also helping teachers manage the anticipated cogni-
tive load of learning content. The main theme in different
styles of chunking is to break down complex ideas into
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Fig. 4. Examples of proactive (top-down) and reactive (bottom-up) design for improving learner engagement across the affective,

cognitive, and behavioral engagement components.

smaller portions that are easier for learners to hold in
short-term memory, and the general rule of thumb (from
Miller [211]) is that about seven “bits” of information
is right for most people (e.g., see [34] for an approach
using chunking to teach communication skills). While
Fiden [212] has observed that microlearning (using bite-
sized chunks) reduces cognitive loading on learners in a
flipped classroom context (and also improves behavioral
and affective engagement), Gao and Kuang [213] have
observed that increasing cognitive load improves cognitive
engagement in an educational art design setting. Thus,
proactive designs using chunking to promote cognitive
engagement must balance the chunk size of content to
ensure adequate cognitive loading (larger chunks) while
using chunks that are small enough to help learners store
and retain information.

3) Behavioral Design: Proactive behavioral design
attempts to influence the context in which learners engage
in activities to improve behavioral engagement for instance
by reducing environmental distractions or minimizing
the amount of effort required to participate in learning
activities. For example, Cheryan et al. [35] highlight how
inadequate environmental conditions (i.e., lighting, noise,
air quality, and heating) within a classroom can impact
behavioral engagement and lead to significantly lower
student achievement. Thus, one effective proactive strat-
egy for improving behavioral engagement is ensuring that
the environmental conditions are conducive to learning.
Another example of distance learning students regards
how behavioral engagement is impacted by the effective-
ness of the digital interface. For instance, Seo et al. [24]
studied remote learners who watched lecture videos week-
to-week and observed that students spent more time
selectively searching for specific content within videos to
prepare for exams. The authors suggest that a proactive

design where the video player would adapt to students
each week as needed, to help them easily locate important
information, may improve engagement, perhaps by reduc-
ing the tedious task of seeking out information.

4) Multicomponent Design: Highly successful proac-
tive interventions will incorporate all three components
of engagement in design. More modern attempts at
well-designed educational games, for example, which
carefully incorporate game-design principles of problem-
solving, adaptive challenges, and ongoing feedback, can
trigger and sustain interest and motivation, in turn sup-
porting engagement and learning [214], [215], [216],
[217]. Good educational game design in this context
addresses affective design (e.g., well-timed and mean-
ingful rewards), cognitive design (e.g., activity structure
and a balance of challenging content), and behavioral
design (e.g., easy-to-use interface). This is very differ-
ent from designing games simply for entertainment and
“fun,” which may enhance engagement but not necessarily
learning.

B. Reactive Design

The following excerpt borrowed from D’Mello [50]
illustrates the potential of reactive designs to enhance
engagement in learning.

“Imagine you are helping your niece prepare
for an upcoming examination in evolutionary
biology. Things started off quite well, but, after a
while, you realize that her mind is a million miles
away. Although the plan is for the two of you
to collaboratively model genetic frequency shifts
in populations, you notice that her attention
has drifted to unrelated thoughts of lunch, the
football game, or an upcoming vacation. You
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might try to momentarily reorient her attention
by asking a probing question. However, if her
attentional focus continues to wane, you realize
that you must adapt your instruction to better
engage her by altering the course of the learning
session. You shift the initiative from a collabora-
tive discussion to a student-centered perspective
by asking her to develop a strategy for tracking
genetic changes in populations. This works and
she appears to tackle this task with a renewed
gusto and the session progresses quite smoothly.
However, sometime later, you notice that she
actually appears to be nodding off as you delve
into the fundamentals of allele frequencies. So,
you suggest switching topics or even taking
a break, thereby giving her an opportunity to
recharge.”

In this example reactive approach, the niece’s atten-
tional states are being monitored and responded to
at the moment as needed to maintain engagement.
This type of momentary intervention nudges learners
toward an engaged state when their engagement seems
to decline. Reactive approaches influence learners in a
person-oriented fashion (see Fig. 1) in order to promote
affective, cognitive, and behavioral states conducive to
successful learning outcomes. The main benefit of this type
of design is that it embraces the notion that engagement
varies over time as a result of interactions between com-
peting mental and somatic demands (e.g., fatigue, hunger,
and stress) that result in mind wandering, inattention, and
distractions [218]. It also demonstrates that guided and
subtle alterations to the learning content, the ordering of
the content, and just-in-time motivational feedback can
help turn an otherwise mundane learning experience into
an engaging one.

Reactive approaches require more awareness and con-
textual understanding than proactive ones. Dynamic adap-
tation to the ebb and flow of a learner’s engagement
requires the ability to measure it and to understand how
to intervene to nudge it in the right direction. The mea-
surement needs of such a system have been described in
Section III (see Fig. 2), but the implementation of the inter-
vention mechanism is open-ended as it entails selecting an
action among many possibilities. If a learner is engaged,
should the intervention mechanism do nothing or pro-
vide some motivational reward? If a learner is confused,
should it wait while the learner struggles, provide some
supportive message to encourage productive struggling
(e.g., [32], [219], and [220]), or provide a hint or just-in-
time explanation (e.g., [221])? Just as video games must
adapt to increases in player skill to maintain engagement,
learning experiences must also adapt challenges to abilities
or boredom may emerge if learners are underwhelmed or
overwhelmed [222]. The best courses of action are not
yet well understood, largely due to the variability among
individual behaviors and preferences for how and when to
engage with learning content.

There have been recent reactive design efforts to opti-
mize learner engagement (see Reactive Interventions in
Fig. 4) following the three components of engagement.
We look at some examples of these approaches and delve
further into specific reactive intervention systems utilizing
affective, cognitive, and behavioral designs.

1) Affective Design: Rewards for demonstrating a
learned skill (i.e., achievement rewards [36]) and motiva-
tional messaging to help struggling learners [11] are two
examples of reactive techniques for improving affective
engagement. These examples provide feedback to elicit
desired emotional responses, while other systems, such as
the following iTalk2Learn example, vary how feedback is
furnished based on learners’ affective states pertaining to
engagement.

iTalk2Learn: Grawemeyer et al. [11] detected affective
components of engagement from voice-based features
and automatically transcribed text recorded from stu-
dents’ speech in a computer-based learning environment
called iTalk2Learn. In iTalk2Learn, students ages 8–12
learn about math fractions by interacting with a graph-
ical interface and talking through problems out loud.
The system combines speech and interaction log file data
in a model to predict affective components of engage-
ment including flow, confusion, frustration, and boredom.
Then, a Bayesian network predicts what kind of feedback
should be given to students to promote engagement (e.g.,
encouragement and additional task instructions), and a
second Bayesian network predicts how best to display that
feedback (i.e., either subtly or more forcefully in a way
that will interrupt the learner’s activities). The final feed-
back prediction system produced feedback that aligned
well with experts’ decisions about feedback (tenfold cross-
validated Cohen’s κ = 0.50) and was, thus, incorporated
into iTalk2Learn.

iTalk2Learn researchers evaluated the automatic
feedback system in a randomized controlled trial with
77 students in two conditions: one condition using the
automatic feedback system and an active control condition
in which the system generated feedback without incorpo-
rating affective engagement detection. The engagement
detection condition resulted in significantly lower rates of
boredom and off-task behavior (both reduced by 50% in
the engagement detection condition) as assessed by third-
party observers, as well as suggestive (but not significant)
evidence of greater learning. In sum, the iTalk2Learn
project illustrated the feasibility of increasing real-time
engagement based on affective analysis of multimodal
speech and interaction data, and demonstrated some of
the expected resulting benefits for students.

2) Cognitive Design: Examples of reactive designs for
cognitive engagement may aim to vary the pacing of con-
tent or reengage distracted learners. For instance, a study
from Eldenfria and Al-Samarraie [8] aimed to regulate the
presentation of learning content (i.e., cognitive loading)
based on real-time measures of learner aptitude, while
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other research has shown that mind wandering can be
sensed and used to trigger digital learning interventions to
reengage students [37], such as the Eye-Mind Reader study.

Eye-Mind Reader: Research shows that adapting inter-
faces based on cognitive aspects of engagement can ben-
efit learners. In one example, Mills et al. [37] trained a
support vector machine to predict instances of mind wan-
dering or “zoning out” from features of learners’ eye-gaze
patterns, including gaze fixation durations, pupil diame-
ters, and other measures. Learners read an instructional
scientific text and self-reported when they were mind
wandering, –that is, a form of cognitive disengagement
that occurred when they found themselves thinking about
something other than the task at hand. The machine
learning approach yielded weighted precision and recall
of 0.722 and 0.674, respectively. The researchers then
incorporated this machine learning model into an adap-
tive version of the text reading interface, called Eye-Mind
Reader, which triggered interventions to improve reading
comprehension in situations where the model detected
mind wandering. When an intervention was triggered, the
student would write a short self-explanation of what they
had just read in response to a prompt. Their response
was then automatically graded via natural language pro-
cessing. If the summary appeared inaccurate, students
would then be prompted to reread the last few pages and
generate a revised summary.

To evaluate Eye-Mind Reader, researchers conducted a
randomized controlled trial with experimental and yoked-
control conditions. In the experimental condition, 35 learn-
ers received interventions triggered by the machine learn-
ing model, while, in the yoked-control condition, a further
35 learners were not asked to self-report mind wandering
but still received interventions at the same points in the
text as the corresponding yoked-learner in the experimen-
tal condition. This careful design ensured equal treatment
dosage across conditions, but the dosage was only timed
to mind wandering in the intervention condition.

Learners’ assessment scores were not significantly differ-
ent on an assessment directly after the learning experience,
but, on a follow-up assessment, one week later, the experi-
mental group significantly outperformed the yoked-control
group in terms of both surface-level and deep comprehen-
sion questions (Cohen’s d = 0.352 and 0.307). Thus, Eye-
Mind Reader successfully improved longitudinal retention
of learned material by adapting to cognitive engagement.

3) Behavioral Design: Research has demonstrated that
careful learner feedback can reduce off-task behaviors (i.e.,
self-regulation supports) [11] and improve metacognitive
awareness [38], both of which help improve behavioral
engagement. Systems designed to monitor students’ behav-
ioral engagement and raise teacher’s awareness, such as
the SEAT [3] system below, can also be effective reactive
designs for indirectly improving learner engagement.

Student Engagement Analytics Technology (SEAT): Aslan
et al. [3] adopted a multimodal approach to engagement

detection that incorporated facial features, interaction log
files, and contextual factors in real-world classrooms. The
researchers trained two machine learning models with
these features: one to predict students’ behavioral engage-
ment (specifically on-task versus off-task behavior) and
one to predict affective facets of engagement including
boredom, confusion, and satisfaction. Their multimodal
random forest model for behavioral engagement had accu-
racy well above chance (Cohen’s κ = 0.65) [223], while
their affective engagement model had F1 scores ranging
from 0.558 to 0.634 depending on the type of learning
activity (instructional versus assessment) [224]. These
machine learning models powered an adaptive graphical
interface, referred to as SEAT, which provided teachers
with whole-class and student-specific engagement infor-
mation to enable them to better tailor instructional support
based on individual student engagement with technology
in the classroom.

The authors conducted a single-user case study with one
teacher and two classes (one with SEAT and another with-
out) over several weeks. The goal was not to demonstrate
any causal effects but merely to ascertain the usability of
SEAT across time. Results stemming from interviews with
the teacher showed that SEAT enhanced the teacher’s abili-
ties to ascertain engagement and act on it, especially across
the whole classroom. The teacher also noted that SEAT
enabled more timely interventions to reorient students
who were experiencing boredom, confusion, or were off-
task, and without SEAT, some disengaged students would
have remained unnoticed in some cases. This study helps
illustrate the potential of automated engagement inference
systems to contribute to improved student engagement in
the classroom.

4) Multicomponent Design: There is a dearth of recent
research incorporating reactive design elements span-
ning all three components. Table 1 (in the Enhance-
ment approach column) lists further examples of studies
promoting learner engagement, but only two systems
(SEAT [3], [20]) demonstrate successful approaches to
enhancing engagement by reacting to both affective and
behavioral learner cues. We expect that future automated
AI systems incorporating reactive designs spanning all
three engagement components (examples in Fig. 4) will
be better equipped to enhance learner engagement.

C. Takeaways

Key takeaways in this section related to the enhance-
ment of learner engagement are given as follows.

1) Designs for improving engagement can be proactive
(top-down) or reactive (bottom-up), ideally including
elements of both.

2) Rather than focusing on individual components
of engagement (i.e., affective, cognitive, and
behavioral), the most effective approaches should
address multiple components.
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3) The promotion of learner engagement in digital learn-
ing technologies has only recently become the focus
of concentrated research. As such, many strategies
have only been tested once and have yet to be tested
longitudinally for individual learners, meaning that
these methods have yet to be robustly validated.

4) Methods to validate efforts to enhance engagement
need to be improved. Simple experimental designs
that compare systems enhanced with interventions to
baseline versions belie dosage and placebo effects and
can result in misattributing effects to the intervention
itself.

V. F U T U R E R E S E A R C H D I R E C T I O N S
We have presented an overview of several approaches
to measuring learner engagement, including automated,
machine-based measurement strategies, and shown exam-
ples of how systems can improve learner engagement.
So where do we take learner engagement research next?
Here, we end with a prospective look at promising research
directions in this domain.

1) Utilizing Heterogeneous Engagement Measures: Among
researchers, practitioners, policy-makers, and learning sys-
tem designers alike, there is an overreliance on using a
single measurement approach, be it self-reports or observer
(informant) reports, to collect ground-truth human judg-
ments. These measures have and continue to inform
learner engagement theories and intervention strategies,
and yet, as we discussed in Section III, they have individual
biases and only provide one perspective into a complex
construct. By utilizing a variety of self-reported, observer-
based, and even machine-observed measures, we stand
to gain a more comprehensive view of its varied affec-
tive, cognitive, and behavioral components and dynamics.
Focusing on blending these measures in a valid, fair, and
reliable fashion will improve the social and scientific value
of research studies and findings.

2) Integrating With Human-Sensing Technologies: The
market for consumer-off-the-shelf (COTS) devices (i.e.,
wearable sensors and fitness trackers, e.g., Fitbit, Garmin)
has exploded over the past decade. The success of COTS
devices means that a pervasive network of human-sensing
technology is becoming a reality. However, there is
still much to learn about how these new-generation
technologies for tracking physiological signals (e.g., [225]
and [226]), eye gaze (e.g., [12] and [227]), and vocal
audio (e.g., [6]) can inform about learner engagement.
Recent research cautions that the effectiveness of different
COTS-derived indicators of mental states decreases when
clean signals gathered in controlled settings (e.g., digital
learning in a lab) are applied to real-world domains (e.g.,
digital learning from home) [165]. Thus, leveraging these
abundant human-sensing options will take considerable
effort and testing in naturalistic environments but will
unlock the potential for findings to quickly scale to large
populations rather than smaller numbers of learners using

specific digital learning platforms or sensing-enabled
classrooms.

3) Embracing Multimodal, Multicomponential, and Multi-
temporal Complexity: Engagement in any context, not just
learning, entails cognitive, behavioral, and affective states
(multicomponential) expressed in a variety of manners
(multimodal, e.g., focused eye gaze, note-taking, and dis-
cussions) and over momentary and long-term time scales
(multitemporal). Most research has focused on one or two
of these areas, but none has yet investigated the complexity
of interactions among all three. Multimodal measurement
(e.g., video, audio, and logs) offers more relevant channels
through which engagement is expressed and can help
to improve ML model robustness. Though multimodal
measures may not always prove unbiased or useful when
predicting constructs (e.g., [52]), they at least offer a
practical advantage in that the presence of one secondary
signal can compensate when a primary signal is unavail-
able (e.g., muddled speech, blurry camera focus, and
occluded face). Furthermore, capturing multicomponential
information yields a more complete view of engagement,
and it may be best achieved through multimodal signal
capture. For instance, eye gaze and central physiology
are best suited for cognitive engagement [228], [229],
[230], [231], [232], facial features and peripheral physiol-
ogy for affective engagement [233], [234], [235], [236],
and interaction features for behavioral engagement [115],
[237], [238], [239]. Multimodal measures (capturing mul-
ticomponential aspects of engagement) that operate across
multiple timescales ranging from milliseconds (physiolog-
ical signals), milliseconds to seconds (bodily responses),
and seconds to minutes (interaction patterns) would likely
improve modeling of different components of engagement
that manifests across different timescales [240].

4) Incorporating Theories of Engagement-Related Expe-
riences: As we mentioned earlier in this section, little
research on machine-aided engagement prediction focuses
on divergent validity. Thus, when learner engagement is
predicted to be low, it is uncertain whether the learner is
disengaged or whether the model simply is inaccurate in
this case. This can be remedied in part by training the
model to accurately predict disengagement as well, but
more can be done. For instance, theories of disengagement
can be strategically incorporated into the measurement
process where indicators of different types of disengage-
ment (e.g., boredom, distraction, and disinterest) can
inform and improve the accuracy and diagnosticity of
the reason(s) for disengagement. Boredom, for example,
can stem from multiple factors: understimulation, percep-
tion that effort is forced, underchallenge, lack of value,
lack of interest, or even a dislike of the teacher [75],
[241]. Hence, making an accurate disengagement assess-
ment is helpful, but, if it can be correctly attributed to
boredom, for example, then subsequent steps aimed at
enhancing engagement can directly address the sources of
boredom.
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5) Blending Person-Oriented and Context-Oriented Perspec-
tives and Proactive and Reactive Design: Reactive inter-
ventions, which aim to address disengagement when
it occurs in a person-oriented manner, are a powerful
paradigm to promote engagement (see Section IV-B).
Proactive designs with context-oriented perspectives have
been less studied (see Fig. 1), but several examples
of successful designs exist. Well-designed video games,
for example, lie somewhere between a context-oriented
and person-in-context-oriented design, and many success-
fully capture attention and produce hours of engaged
interactions [242], [243].

We anticipate that the most successful systems
for measuring and enhancing engagement will blend
both person- and context-oriented approaches and
both proactive and reactive designs. For example,
researchers are exploring how to embed both cog-
nitive (focusing on improving learning) and affec-
tive (focusing on improving affective/motivation)
supports in a video-game design [36], [244],
thereby aiming to improve both liking and learning
outcomes.

VI. C O N C L U S I O N
Engagement is one of the most fundamental aspects of the
human experience, yet its ubiquity defies its complexity.
We presented an accessible overview and selective review
of affective computing research on conceptualizing, mea-
suring, and enhancing engagement with an emphasis on
educational applications. We conceptualized engagement
as a multicomponential construct (i.e., affective, cognitive,
and behavioral) situated within a context over time where
an ebb and flow of influence between a learner and learn-
ing context (i.e., the engagement continuum) constantly
impact engagement levels. We examined traditional (man-
ual) and affective computing-based (automated) methods
for measuring and enhancing engagement and discussed
major challenges to the broad adoption of these techniques
and technologies across learning contexts and periods
of time. Finally, we discussed promising future research
directions embracing heterogeneous perspectives and the
multimodal, multicomponential, and multitemporal nature
of engagement to get one step closer to generalizable,
scalable, and effective technologies for enhancing learner
engagement and improving learning outcomes.
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