arXiv:2311.10928v1 [cs.CL] 18 Nov 2023

fei CAMRA: Copilot for AMR Annotation

Jon Z. Cai and Shafiuddin Rehan Ahmed and Julia Bonn

Kristin Wright-Bettner and Martha Palmer and James H. Martin
University of Colorado Boulder
jon.z.cai@colorado.edu

Abstract

In this paper, we introduce CAMRA (Copilot
for AMR Annotatations), a cutting-edge web-
based tool designed for constructing Abstract
Meaning Representation (AMR) from natural
language text. CAMRA offers a novel ap-
proach to deep lexical semantics annotation
such as AMR, treating AMR annotation akin
to coding in programming languages. Leverag-
ing the familiarity of programming paradigms,
CAMRA encompasses all essential features
of existing AMR editors, including example
lookup, while going a step further by integrat-
ing Propbank roleset lookup as an autocom-
plete feature within the tool. Notably, CAMRA
incorporates AMR parser models as coding co-
pilots, greatly enhancing the efficiency and ac-
curacy of AMR annotators. To demonstrate the
tool’s capabilities, we provide a live demo ac-
cessible at: https://camra.colorado.edu!

1 Introduction

Abstract Meaning Representation (AMR) stands
as one of the most widely embraced formalisms
for deep lexical semantic representation within the
NLP community. It effectively captures the lexi-
cal semantics present in multiple sentences by em-
ploying a directed, acyclic graph, wherein graph
nodes form predicate-argument structures locally in
Neo-Davidsonian fashion (Banarescu et al., 2013).
AMR can address both superficial semantic in-
quiries, encompassing aspects like "Who did what
to whom, when, where, and how," as well as the
intricate relationships between various events and
states. Beyond these merits, AMR offers an in-
valuable advantage through its transparent sym-
bolic representation of the semantics inherent in
natural language text, significantly benefiting tasks
reliant on semantic inference and necessitating in-
terpretability.

'publish upon acceptance, demo video link: https://
youtu.be/mS3tzDVVaU8

Over the past decade, NLP researchers have
meticulously transcribed tens of thousands of natu-
ral sentences into AMR graphs (Knight et al., 2014,
2017, 2020; May, 2016; Bonial et al., 2020; Bonn
et al., 2020), providing a critical source for the sta-
tistical machine learning approach to semantic pars-
ing. While these resources are invaluable, produc-
ing AMRs is difficult, involving many sub-tasks,
such as the annotation of nouns/named-entities,
predicate-argument dependencies, co-reference res-
olution, discourse connectives, negation, and tem-
poral relations. On top of this, annotators would
need to be thoroughly trained to navigate a complex
annotation tool interface in the process.

Traditional AMR editors typically begin by hav-
ing the annotator construct a root node and then add
additional nodes as children through graph traver-
sal. Nodes are added either through a dashboard
made up of a combination of buttons, menus, and
entry fields or, through a command-line-like inter-
face with a series of learned commands. Both ver-
sions add yet another layer of learning complexity
to the already intricate AMR structure. However,
this is not simply an AMR problem but a prob-
lem for all semantic annotation tasks that involve
complex structural layers of annotation.

obligate-01

:arg2 (p / obligate-01

:arg0” :polarity

Figure 1: AMR for sentence "The boy must not go."
in conventional graph representation format (left) and
PENMAN encoding language format (right)

:arg2 (g / go-02
:arg0 (b / boy)
:polarity -))

https://camra.colorado.edu
https://youtu.be/mS3tzDVVaU8
https://youtu.be/mS3tzDVVaU8

We present an example AMR in Figure 1 for
the sentence “The boy must not go.” In an AMR
graph, predicates and their corresponding argu-
ments are represented by nodes. In this example,
the go-02 predica‘[e2 (Palmer et al., 2005; Pradhan
et al., 2022) has one argument, which is boy. AMR
specifies the role of each argument with labeled
edges. Core roles, like stereotypical agent, patient,
and thematic role, are typically denoted by arg®,
argl, and arg2, respectively. Other non-core
roles, which are usually predicate-specific, are di-
rectly labeled with their names, such as location,
direction, time, and duration. AMRSs can be
expressed in various formats, but graphically anno-
tating their complex structure is impractical. To ad-
dress this researchers adapted PENMAN notation
(Goodman, 2019, 2020), which represents graph
structures using bracketing syntax. Labeled edges
are encoded with the preceding colon symbol, and
opening brackets indicate new AMR nodes. Termi-
nal nodes are denoted by closing parentheses.

Advancements in large language model-based
coding assistance, like Codex (Chen et al., 2021)
and Copilot by OpenAl and Microsoft have been
revolutionizing program synthesis for software
engineering tasks. These models are trained
for both natural languages and programming lan-
guages, enabling them to intelligently complete
programs based on code history and human instruc-
tion. Drawing inspiration from code-completion
approaches, we take a similar path by integrating
an AMR parser model alongside a human annotator.
This unique combination allows us to streamline
the AMR construction process, handling easier yet
tedious tasks like named entity sub-graph construc-
tion through the parsing assistant. At the same
time, more intricate annotation decisions, such as
predicate sense distinction, discourse connections,
and co-reference resolutions, can be moderated by
the annotators themselves, ensuring a balanced and
effective approach to AMR annotation.

We summarize our contributions to the semantic
annotation task as follows:

* We designed and implemented an innovative on-
line AMR annotation tool that treats semantic
annotation as a coding task streamlining the an-
notation process.

* We present the annotator-centric tool equipped
with local Propbank snippet autocomplete and

2From PropBank, https://propbank.github.io/

full generative model-based suggestions, enhanc-
ing the annotation experience for both beginner
and experienced annotators.

* We introduce an intuitive click-based matching
process for AMR concept alignment, simplify-
ing and accelerating the alignment step for a
smoother annotation experience.

Our highly modularized implementation enables
easy swapping of language syntax and assistant
models, creating a flexible "programming as anno-
tation" paradigm adaptable to various languages
and structures.

2 Related Work

The two most widely used AMR annotation tools
are ISI AMR Editor (ISI-Editor) (Hermjakob,
2013) and Anafora (Chen and Styler, 2013). Both
are web-based text annotation tools that focus on
different levels of AMR annotation. ISI-Editor is
primarily designed for lexical-level AMR annota-
tion, while Anafora is commonly used to construct
document-level AMRs based on existing sentence-
level AMRs. Our work with CAMRA is primar-
ily comparable to ISI-Editor, as we also focus on
sentence-level AMR construction. However, it is
worth noting that editing cross-sentence relations,
such as inter-sentential coreference resolution, can
also be accomplished through CAMRA with rel-
ative ease. We will later showcase how to use
ISI-Editor in comparison to our approach.

The ISI editor offers comprehensive support for
editing an AMR graph through various operators,
including fop to initiate an AMR graph and add to
create an AMR triplet relation. Figure 2 illustrates
an example of this functionality’. In the first view,
we enter the add operator in the command field and
submit it to activate the Action template view. Here,
we proceed to fill in the new role with the specified
head variable, role label, and argument concept
node. ISI Editor processes the template form with
verification to ensure the action is valid, resulting
in an updated AMR displayed in the viewport. In
total, annotators have access to 8 core operators
that allow them to modify the AMR graph in PEN-
MAN encoding form with shortcuts for advanced
users. Additionally, the ISI Editor provides help-
ful annotation facilitations, such as the ability to

3To demonstrate the interaction of the interface in a
straightforward manner, we use diagrams in Figure 2 instead

of real screenshots. These diagrams faithfully represent the
relative positions and interactive logic of the ISI editor.

https://propbank.github.io/

(-~ -~ -~ -~ - -~ -~ -~ -~ - - -~-~-~-"-~-"-~-~-~----"--°-- u]
! (w / want-01)

Enter text command: [add

e e e e e e e e e e e e e e e e === J
____________________________ submit

r .l :

' ‘(w / want-01) v

1 |<

! Enter text command:[} !

| head var: @ :

|| Action template [add] role: :

| arg .

U --------—---—--—----=--=-=<)
____________________________ submit

r :

'l(w / want-01 b

/| :arg0 (s / she) ;o

| Enter text command:{] :

L J

Figure 2: Adding a new argument to predicate node (w
/ want-01) with ISI editor’s interface. Each dashed
line box represents an updated view after submitting the
mini form. Blue colored fields of each form represent
fields that are required to be filled before submitting

search for existing AMR data and perform error
checks on demand. These functionalities are orga-
nized within a dashboard interface, equipped with
menu buttons that trigger specific features. Using
ISI Editor becomes a process of sequentially filling
small forms.

There are other annotation tools available for
various complex linguistic-driven tasks, such as
the UCCAApp (Birch et al., 2016) for Universal
Conceptual Cognitive Annotation (Abend and Rap-
poport, 2013), the brat rapid annotation tool (Stene-
torp et al., 2012) for universal dependency tree con-
struction, TreeEditor for Rhetorical Structure The-
ory (Pajas and Stdpanek, 2008). However, unlike
AMR, which can exist without explicit alignment
of concept nodes to the natural language surface
text, these mentioned tasks are tightly anchored to
the surface text. Consequently, they require click-
selection-based interactions with the user to initiate
the annotation process. Knowtator is another an-
notation tool that facilitates ontology construction
in Protege from text, the UI design of Knowtator
(Ogren, 2006) also relies on small form filling.

Furthermore, most syntactic tasks involve a lim-
ited number of relationships, typically not exceed-
ing a dozen, in contrast to AMR, where the number

of rolesets directly corresponds to the number of
predicates in a given language. In languages like
English, the number of predicates can easily sur-
pass 5000. The unique challenge of annotating
AMR, coupled with the lack of support for other
formalisms, has motivated us to create an anno-
tation tool equipped with a formal language cod-
ing environment. This tool aims to enhance the
efficiency and accuracy of AMR annotation and
provide a novel solution to handle its distinctive
complexities.

Recently, significant strides have been made in
advancing the development of the model-in-the-
loop annotation style, aimed at fostering machine-
assisted human annotations. Popular tools, such
as Prodigy* and INCEpTION (Klie et al., 2018),
primarily focus on providing annotation sugges-
tions for Text Classification, Named Entity Recog-
nition, and Entity Relation Extraction. More recent
methodologies have expanded these capabilities to
encompass entity and event coreference resolution
(Bornstein et al., 2020; Ahmed et al., 2023). How-
ever, the field of machine-assisted annotations for
AMR remains relatively under-explored. Our work
endeavors to address this gap, contributing to the
enhancement and expansion of this vital aspect of
the annotation landscape.

3 Design and Features

To enhance the effectiveness of annotator-computer
interaction, it is essential for the computer to play
an active role in the annotation process, rather than
serving merely as a passive typewriter. At the same
time, it is important to minimize the need for anno-
tators to frequently shift their attention among dif-
ferent views to memorize local predicate-argument
structures temporarily while completing AMR an-
notations. To address these concerns, we have for-
mulated the following design principles:

* Upon looking up dictionaries like Propbank role-
sets or existing annotation examples, the anno-
tator can take advantage of two options. Firstly,
they can directly invoke the desired frame within
the coding environment, leading to the automatic
completion of the target structure. Alternatively,
they can easily copy relevant sections from exam-
ples and paste them into the coding environment,
streamlining the annotation process.

*www.prodi.gy

= AMR Editor

Ron p |ate e the cake ¢ with the mittens m.

1 (e / eat-01
:ARGO(p / person
:name (n / name
:opl "Ron"))
:ARGl(c / cake)

:instrument (m / mitten)) 6 :ARGL (z

parser suggestion

(20 / eat-01
:ARGO (z1 / person
swiki -
:name (z2 / name
:opl "Ron"))
/ cake)
:instrument (z4 / glove))

Figure 3: an overview of the CAMRA editor with an annotated example sentence. Left panel is the surface text area
with dynamic variable carryover from the constructed AMR code. The middle panel is the main AMR editing area
where the string complies with the PENMAN encoding syntax for AMR. The right text panel renders the parser
suggestions. Note: this screenshot contains only nonempty part of the UI, the Ul is window size responsible.

* The produced AMR should undergo active pars-
ing to ensure its legality and provide valuable
feedback to the annotators.

* To make the annotation experience akin to cod-
ing, the editor needs to incorporate additional
text editing tool features, such as multiple se-
lections, code difference highlight, and editing
capabilities, thereby optimizing the annotators’
workflow and overall experience.

* The design of the copilot editing environment
should be versatile and adaptable to different an-
notation projects. It should support a general-
purpose approach, enabling similar annotation
tasks to be accomplished with ease by merely
switching formal language syntax as needed.

3.1 Features

We show the main app interface in Figure 3.

3.1.1 Annotation panels

CAMRA is primarily composed of three horizon-
tally laid-out panels. The leftmost panel is designed
for rendering the surface text and aligning AMR
concept nodes to the corresponding text. This panel
displays two blocks of information: the surface text
itself and the AMR node variable names present in
the middle panel.

The middle panel serves as the AMR text editor,
equipped with common code editor features, such
as syntax highlighting, auto bracket matching and
closing, and snippet auto-complete. Writing AMR
in this text editor closely resembles writing code in
a programming language.

Finally, we utilize the right panel to render the
AMR generated by the parser. Annotators have the
option to use any part of the parser-suggested AMR
by simply copying the text over to the middle panel,
facilitating a seamless integration of the parser’s

suggestions into the annotator’s workflow. This
three-panel layout ensures a smooth and intuitive
annotation process for CAMRA users.

3.2 Autocomplete

CAMRA is equipped with two levels of auto-
completion mechanisms: local autocomplete and
global autocomplete. The local auto-complete fea-
ture considers only the nearest string to provide
suggestions for reserved keywords and Propbank
templates. This proves useful in cases where AMR
relation prompting is required, as it relieves annota-
tors from the burden of remembering every relation
precisely. This is particularly helpful for non-core
AMR relations, which can be quite lengthy and
prone to errors. Additionally, local autocomplete is
computationally less intensive compared to global
autocomplete, utilizing substring matching as the
search algorithm and edit distance as the ranking
algorithm when invoked.

Moreover, when snippet autocomplete is acti-
vated, the editor holds field-like text spans in mem-
ory, allowing annotators to simply type in the value
and switch to the next field by pressing the
key, significantly reducing navigation time within
the code.

In contrast, the global autocomplete from the
machine learning-based parser considers both the
surface text and its generated history, making it
more comprehensive than the local autocomplete.
However, due to its higher computational cost, the
parser suggestion is invoked only once per sentence.
We keep the parser suggestion API open to backend
updates, enabling the possibility of further tailored
parser suggestions that take the users’ input into
account for even more personalized and refined
suggestions.

» Propbank Lookup

@ about:blank

make.01

Description: create

pag-0: creator
prd-1: creation
vsp-2: created-from, thing changed
gol-3: benefactive
example 1
make-v: basic transitive: Loews Corp makes Kent cigarettes.
REL: makes
Arg0-: Loews Corp
Arg1-: Kent cigarettes
example 2

Figure 4: When looking up in the Propbank rolesets
for the keyword "make," a persistent new window will
appear at the annotator’s disposal on the side of the
CAMRA’s main interface.

3.3 Manual Search

CAMRA also incorporates a similar search func-
tion for both Propbank and the existing AMR cor-
pus. This feature functions similarly to the ISI
editor’s search, popping up with a more updated
UI design when invoked. In Figure 4 and Figure 5,
we demonstrate the search results for the keywords
“make” in Propbank and "must" in LDC2020T02
AMR corpus (Knight et al., 2020).

To ensure a clutter-free main annotation win-
dow, we have dedicated individual windows to host
the search results. These search windows persis-
tently update their content whenever a new search
is launched. Annotators can easily browse and per-
form (Cvi+f) searches within these windows.

In organizing and highlighting the AMRs in the
existing corpus search, we have maintained the
same format as the main AMR editing panel. This
facilitates straightforward copy-pasting of any de-
sired part of the AMR into the AMR editing panel,
providing annotators with direct access to the infor-
mation they need for a more efficient and stream-
lined annotation process.

3.4 Utility Functions

All managerial and administrative functions are
conveniently placed in a hidden menu accessible
through the top left corner drawer icon. This menu
houses various actions, including uploading a new
workset (a text file containing all the target text to
be annotated), uploading an annotation checkpoint,
profile management, and more. As these function-
alities are not the primary focus of our CAMRA
and do not represent critical components for this

® LDC Release Lookup

@ about:blank

If it fails , a new cargo spaceship must be launched to
transport cargo to the orbital station .
AMR

(o / obligate-01
tARG2 (1 / launch-01
:ARG1 (s / spaceship
imod (c / cargo)
:ARG1-of (n / new-01))
rpurpose (t / transport-01
1ARGO s
1ARG1 (c2 / cargo)
:ARG3 (s2 / station
:ARGO-of (02 / orbit-01))))
rcondition (f / fail-e1
ARGL (i / it)))

S T RO F T SO USSP S T

Figure 5: When looking up in the existing AMRs cor-
pora for the keyword "must", another persistent new
window will appear at the annotator’s disposal on the
side of the CAMRA'’s main interface.

paper, we have opted to exclude them from further
discussion but let the reader explore in demonstra-
tion.

3.5 Language Servers

The core active assistance feature of our annotation
tool is powered by language servers on the backend.
As elaborated in Section 3.2, we have two layers
of language support: a local one and a global one,
achieved through two REST-API servers.

Handling managerial tasks such as login, data
storage, Propbank and release searching, and parser
inquiries is a Django (Django Software Foundation)
REST API server’s responsibility. In addition, we
have set up a separate REST API server dedicated
to hosting pre-trained AMR parser models. This
division allows for enhanced flexibility in resource
distribution. For example, the managerial server
can efficiently manage data transactions from the
front end without requiring GPU support. On the
other hand, most state-of-the-art AMR parser mod-
els are large neural network models that greatly
benefit from GPU or other accelerating devices’
computational power.

The design of CAMRA revolves around modu-
larity as a critical principle, enabling the easy inte-
gration of various assistant models. For instance,
when annotating unique domains of text, parsers
previously trained on different domains may per-
form poorly, limiting the support they can offer
to annotators. By being modular, our system can

(a)

(b) (c)

30 4

Response Time (s)
&
[H
T
|
Response Time (s)

Hoor Fol
ELE BBt
| L%T% | 18]

5T

1= &

:
)

,ﬂ
=}
a

Hh

,i
I~
&

Frequency
"
5
3

|-
T

~
&

w
=]

~
&

§ 18 28 38 48 58 63 73 88 98 108
Number of Tokens

T T T T T T T T U U T 0 T y T u T
8 18 28 38 48 58 68 78 88 98 108 0 20 40 60 80 100
Number of Tokens

Number of Tokens

Figure 6: An overview of the AMR parser server’s response time is shown for the same 1000 randomly selected
sentences from the LDC2020T02 AMR corpus training set. Figure (a) displays the response time box chart without
GPU support, while Figure (b) shows the response time box chart with a single GPU support. Additionally, Figure
(c) represents the frequency distribution of sentence lengths among the 1000 sentences. The red middle line of each
box candle represents the median, the box specifies the interquartile range (IQR), and the whiskers indicate the 1.5

IQR range.

readily adapt to such scenarios. Additionally, this
modularity facilitates the distributed deployment
of our system.

At present, we offer support for the SPRING
AMR parser (Bevilacqua et al., 2021) trained on
LDC and spatial AMR corpus (Bonn et al., 2020)
respectively as parsing assistance. However, the
flexibility of our design makes it possible to include
other assistant models tailored to specific needs in
the future. The base model of the SPRING parser is
BART-large (Lewis et al., 2020) with nearly 140M
parameters and requires approximately 2.2 GB of
memory for inference. The integration of the parser
facilitates model-in-the-loop learning processes,
which can be adapted based on user requirements
without significant difficulty.

4 Discussion

The primary user experience factor for our annota-
tion tool is the response time of the parser-based
language server. To evaluate this response time
in relation to sentence length, we conducted tests
using 1000 randomly selected sentences from the
training set of LDC2020T02. The results are de-
picted in Figure 6. The average sentence length
among these sentences is 21.72 tokens (tokenized
by BART tokenizer), with a standard deviation of
14.76. With and without GPU support, the average
response times are 1.62 and 4.47 seconds, respec-
tively, with corresponding standard deviations of

0.86 and 3.32 seconds. We present a box chart il-
lustrating the response time distribution in relation
to sentence length (token numbers n), considering
the BART model’s theoretical inference complex-
ity of O(n?) and the prior distribution of sentence
lengths. The testing machine has 2.2GHz Intel
Xeon (R) CPU (24 cores), 256GB RAM and a
NVIDIA Titan Xp GPU (12GB).

5 Conclusion and Future Works

CAMRA introduces a novel semantics annotation
paradigm with considerable potential for enhance-
ment. Given the similarity of the parser structure,
integrating LLM into autocomplete and suggestion
output is seamless. We are actively working on fine-
tuning LLMs to make parsing copilot suggestions
more interactive. To assess the language server’s
impact compared to traditional AMR annotation
tools, we will conduct a human study involving an-
notators. Furthermore, we aim to expand the pool
of potential annotators, serving the dual purpose
of broadening our annotator base and supporting
computational semantics education. Collaborating
with NLP communities, we plan to extend support
to other formalisms and annotation schemes. More-
over, we envision the integration of large language
models into the language server, providing more
natural language assistance from Al. This advance-
ment could lead to yet another valuable application
of large language models, enhancing their inter-

pretability and error resilience through the fusion
of neural and symbolic approaches. Such devel-
opments offer exciting possibilities for safer and
more innovative applications.

Limitations

CAMRA’s language server support may encounter
biases or challenges related to domain shift, as the
underlying model’s training data could be skewed
towards specific text domains(such as newswire
text). This might result in inaccuracies or reduced
performance when dealing with text from differ-
ent domains. Furthermore, while AMR serves as a
versatile formalism, our PENMAN syntax design
predominantly caters to English, potentially limit-
ing its effectiveness for other languages. Expand-
ing the PENMAN syntax to encompass a wider ar-
ray of languages would not only improve its cross-
linguistic applicability but also enhance the overall
usability and inclusivity of the annotation tool.

Ethics Statement

In addition to the limitations highlighted in the pre-
vious section, CAMRA has a core objective of en-
hancing human-computer communication through
Ul design and Al assistance. An essential aspect of
this endeavor is to ensure that CAMRA users have
a comprehensive grasp of how the language server
operates and how it impacts annotations. This is
achieved through transparent documentation and
the provision of mechanisms for understanding the
tool’s decision-making process. Furthermore, we
place significant emphasis on effective communi-
cation with annotators to consider the cultural and
domain-specific sensitivities inherent in the text
being annotated. Recognizing these nuances is cru-
cial, as any misinterpretation or misrepresentation
of cultural contexts could result in erroneous se-
mantic annotations.

Acknowledgement

This research was supported by the NSF National
Al Institute for Student-Al Teaming (iISAT) under
grant DRL 2019805. The opinions expressed are
those of the authors and do not represent views of
the NSF. The authors extend their heartfelt grati-
tude to Adam Zheng, Brad Johnson, Skatje Myers,
Elizabeth Spaulding and Jie Cao for their unwa-
vering support in handling hosting technicalities.
Additionally, Dr. Alexis Palmer’s suggestions in
shaping the user study design.

References

Omri Abend and Ari Rappoport. 2013. Universal Con-
ceptual Cognitive Annotation (UCCA). In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 228-238, Sofia, Bulgaria. Association
for Computational Linguistics.

Shafiuddin Rehan Ahmed, Abhijnan Nath, Michael
Regan, Adam Pollins, Nikhil Krishnaswamy, and
James H. Martin. 2023. How good is the model in
model-in-the-loop event coreference resolution anno-
tation? In Proceedings of the 17th Linguistic Annota-
tion Workshop (LAW-XVII), pages 136—145, Toronto,
Canada. Association for Computational Linguistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th linguis-
tic annotation workshop and interoperability with
discourse, pages 178-186.

Michele Bevilacqua, Rexhina Blloshmi, and Roberto
Navigli. 2021. One SPRING to rule them both: Sym-
metric AMR semantic parsing and generation without
a complex pipeline. In Proceedings of AAAIL

Alexandra Birch, Omri Abend, Ondfej Bojar, and Barry
Haddow. 2016. HUME: Human UCCA-based eval-
uation of machine translation. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1264—1274, Austin,
Texas. Association for Computational Linguistics.

Claire Bonial, Lucia Donatelli, Mitchell Abrams,
Stephanie M. Lukin, Stephen Tratz, Matthew Marge,
Ron Artstein, David Traum, and Clare Voss. 2020.
Dialogue-AMR: Abstract Meaning Representation
for dialogue. In Proceedings of the Twelfth Lan-
guage Resources and Evaluation Conference, pages
684-695, Marseille, France. European Language Re-
sources Association.

Julia Bonn, Martha Palmer, Zheng Cai, and Kristin
Wright-Bettner. 2020. Spatial AMR: Expanded spa-
tial annotation in the context of a grounded Minecraft
corpus. In Proceedings of the Twelfth Language
Resources and Evaluation Conference, pages 4883—
4892, Marseille, France. European Language Re-
sources Association.

Ari Bornstein, Arie Cattan, and Ido Dagan. 2020.
CoRefi: A crowd sourcing suite for coreference an-
notation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 205-215, Online.
Association for Computational Linguistics.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen

https://aclanthology.org/P13-1023
https://aclanthology.org/P13-1023
https://aclanthology.org/2023.law-1.14
https://aclanthology.org/2023.law-1.14
https://aclanthology.org/2023.law-1.14
https://doi.org/10.18653/v1/D16-1134
https://doi.org/10.18653/v1/D16-1134
https://aclanthology.org/2020.lrec-1.86
https://aclanthology.org/2020.lrec-1.86
https://aclanthology.org/2020.lrec-1.601
https://aclanthology.org/2020.lrec-1.601
https://aclanthology.org/2020.lrec-1.601
https://doi.org/10.18653/v1/2020.emnlp-demos.27
https://doi.org/10.18653/v1/2020.emnlp-demos.27

Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Wei-Te Chen and Will Styler. 2013. Anafora: A web-
based general purpose annotation tool. In Proceed-
ings of the 2013 NAACL HLT Demonstration Session,
pages 14-19, Atlanta, Georgia. Association for Com-
putational Linguistics.

Django Software Foundation. Django.

Michael Wayne Goodman. 2019. AMR normalization
for fairer evaluation. In Proceedings of the 33rd
Pacific Asia Conference on Language, Information,
and Computation, pages 47-56, Hakodate.

Michael Wayne Goodman. 2020. Penman: An open-
source library and tool for AMR graphs. In Proceed-
ings of the 58th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations,
pages 312-319, Online. Association for Computa-
tional Linguistics.

Ulf Hermjakob. 2013. Amr editor: A tool to build
abstract meaning representations. Marina del Rey,
CA. USC Information Sciences Institute.

Jan-Christoph Klie, Michael Bugert, Beto Boullosa,
Richard Eckart de Castilho, and Iryna Gurevych.
2018. The inception platform: Machine-assisted and
knowledge-oriented interactive annotation. In Pro-
ceedings of the 27th International Conference on
Computational Linguistics: System Demonstrations,
pages 5-9. Association for Computational Linguis-
tics. Event Title: The 27th International Conference
on Computational Linguistics (COLING 2018).

Kevin Knight, Bianca Badarau, Laura Baranescu, Claire
Bonial, Madalina Bardocz, Kira Griffitt, Ulf Herm-
jakob, Daniel Marcu, Martha Palmer, Tim O’ Gorman,
and Nathan Schneider. 2017. Abstract meaning rep-
resentation (amr) annotation release 2.0. Linguistic
Data Consortium, LDC2017T10.

Kevin Knight, Bianca Badarau, Laura Baranescu, Claire
Bonial, Madalina Bardocz, Kira Griffitt, Ulf Herm-
jakob, Daniel Marcu, Martha Palmer, Tim O’ Gorman,
and Nathan Schneider. 2020. Abstract meaning rep-
resentation (amr) annotation release 3.0. Linguistic
Data Consortium, LDC2020T02.

Kevin Knight, Laura Baranescu, Claire Bonial,
Madalina Georgescu, Kira Griffitt, Ulf Hermjakob,
Daniel Marcu, Martha Palmer, and Nathan Schnei-
der. 2014. Abstract meaning representation (amr)
annotation release 1.0. Linguistic Data Consortium,
LDC2014T12.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871-7880, Online. Association for Computa-
tional Linguistics.

Jonathan May. 2016. SemEval-2016 task 8: Mean-
ing representation parsing. In Proceedings of the
10th International Workshop on Semantic Evaluation
(SemEval-2016), pages 1063—-1073, San Diego, Cali-
fornia. Association for Computational Linguistics.

Philip V. Ogren. 2006. Knowtator: A protégé plug-in
for annotated corpus construction. In Proceedings
of the Human Language Technology Conference of
the NAACL, Companion Volume: Demonstrations,
pages 273-275, New York City, USA. Association
for Computational Linguistics.

Petr Pajas and Jan Stépanek. 2008. Recent advances
in a feature-rich framework for treebank annotation.
In Proceedings of the 22nd International Conference
on Computational Linguistics (Coling 2008), pages
673-680, Manchester, UK. Coling 2008 Organizing
Committee.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated corpus of
semantic roles. Computational linguistics, 31(1):71-
106.

Sameer Pradhan, Julia Bonn, Skatje Myers, Kathryn
Conger, Tim O’gorman, James Gung, Kristin Wright-
bettner, and Martha Palmer. 2022. PropBank comes
of Age—Larger, smarter, and more diverse. In Pro-
ceedings of the 11th Joint Conference on Lexical and
Computational Semantics, pages 278-288, Seattle,
Washington. Association for Computational Linguis-
tics.

Pontus Stenetorp, Sampo Pyysalo, Goran Topié,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsujii.
2012. brat: a web-based tool for NLP-assisted text
annotation. In Proceedings of the Demonstrations
Session at EACL 2012, Avignon, France. Association
for Computational Linguistics.

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://aclanthology.org/N13-3004
https://aclanthology.org/N13-3004
https://djangoproject.com
https://www.aclweb.org/anthology/2020.acl-demos.35
https://www.aclweb.org/anthology/2020.acl-demos.35
https://www.semanticscholar.org/paper/A-Tool-to-Build-Abstract-Meaning-Representations-Way-Rey/416e13800ea40b9c9f5c0d3452e59799c0001776
https://www.semanticscholar.org/paper/A-Tool-to-Build-Abstract-Meaning-Representations-Way-Rey/416e13800ea40b9c9f5c0d3452e59799c0001776
http://tubiblio.ulb.tu-darmstadt.de/106270/
http://tubiblio.ulb.tu-darmstadt.de/106270/
https://doi.org/10.35111/s444-np87
https://doi.org/10.35111/s444-np87
https://doi.org/10.35111/44cy-bp51
https://doi.org/10.35111/44cy-bp51
https://doi.org/10.35111/0ync-7404
https://doi.org/10.35111/0ync-7404
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/S16-1166
https://doi.org/10.18653/v1/S16-1166
https://aclanthology.org/N06-4006
https://aclanthology.org/N06-4006
https://aclanthology.org/C08-1085
https://aclanthology.org/C08-1085
https://doi.org/10.18653/v1/2022.starsem-1.24
https://doi.org/10.18653/v1/2022.starsem-1.24

