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Abstract 
Team science research heavily relies on communication data—
that is, data derived from audio, video, or text-chat 
communication streams between team members. Between 
transcription and content analysis, significant overhead is 
required to work with these data.  Recent developments in 
natural language processing (NLP) may help ameliorate time 
constraints in this domain. Using transcript data, the present 
study, presented as a proof-of-concept, assesses how the BERT 
NLP model performs in a team communication categorization 
task, in comparison to ground truth measures. This work builds 
upon past work that relied on human-coded transcripts 
to identify phase transitions in team collaboration. Results 
suggest BERT’s capabilities at phase change detection are 
promising for experienced teams, though further iteration is 
needed on the methods in the current study. Applications of this 
work extend to real-time collaboration with an artificial agent, 
as this requires the real-time semantic processing of human 
communication data.    

Keywords: NLP; BERT; teams; planning; collaborative 
problem solving; phase changes  

Introduction 
Increasingly, everyday tasks—whether they be at work, at 
home or at play—rely on teams of actors to complete. 
Methods are needed for studying team coordination that rely 
less on resource-intensive human assessment and more on 
automated assessment. Here, we present a proof-of-concept 
of a method for automatically detecting transitions in team 
problem solving using the natural language processing (NLP) 
tool BERT (Devlin et al., 2018). This method relies on the 
analysis of communication data and falls under the 
theoretical purview of Interactive Team Cognition (ITC; 
Cooke, et al., 2013), which is introduced below.  

Historically, approaches to team cognition have posited 
that static knowledge structures exist in the minds of 
individual team members (e.g., shared mental models; Salas 
& Fiore, 2004). Team cognition then becomes the study of 
the overlap in these knowledge structures across team 
members. Under this approach, it is challenging to 
truly observe team cognition because it is reduced to latent 
and static cognitive products. In contrast, ITC posits that team 
cognition is: (1) an activity; (2) something only understood 
at the team level; and (3) embedded in the context of the task 
environment (Cooke et al., 2013). In this framework, team 
cognition becomes observable. Moreover, through direct 
observation of team cognition via measures such as team 
communication, we can assess how cognition unfolds over 
time. Cognition, then, is not  a static product, but rather 

a dynamic state analyzable at the team level, while team 
members interact, where time is a central variable.   

Team collaboration is the process by which parties with 
distinct information and roles interact to search for solutions 
to a problem (Gray, 1989). The focus of the present study is 
the identification of phase changes. Phases are 
conceptualized as “qualitatively different subperiods within a 
total continuous period of interaction in which a group 
proceeds from initiation to completion of a problem 
involving group decision” (Bales & Strodbeck, 1951, p. 485). 
Teams move through and revisit different phases to 
accomplish their collective tasks (Wiltshire et al., 2017). The 
shifts between phases can be, but are not always, sudden and 
are referred to as phase transitions (Kelso, 2009). There is a 
dearth of studies that identify these changes empirically; 
more work is needed to create bottom-up measures of team 
collaboration phase changes (Gorman et al., 2012).  

The present study builds upon work by Wiltshire and 
colleagues (2017) applying the ITC approach to recognize 
collaborative problem solving (CPS) phase transitions in a 
dyadic task. They developed a method of recognizing phase 
transitions in team collaboration using task transcripts. Such 
CPS phases included knowledge construction, team problem 
model, team consensus, and evaluation/revision, and are 
understood to be important to successful teamwork (Fiore et 
al., 2010; Wiltshire et al., 2017). Qualitative content codes 
were applied to transcripts of teams completing a task by 
human raters. These annotations noted the content of 
utterances as they applied to the four different CPS phases 
listed above. Through a sliding window entropy measure, 
Wiltshire and colleagues identified peaks in 
communication instability, represented by peaks in entropy, 
which indicated that the current collaboration phase is 
becoming unstable. These entropy peaks aligned with CPS 
phase transitions.  

The present study adopts a similar approach. However, the 
goal is to develop a method of working with communication 
data for phase change detection and phase identification that 
does not rely on human raters. The innovation here is to 
apply the NLP model BERT (Devlin et al., 2018) to 
automatically (1) detect phase transition points and (2) 
identify the content within a given phase.   

Our approach follows that of Gorman and colleagues 
(2016) who used an earlier model of word meaning, Latent 
Semantic Analysis (LSA), to analyze team communication 
during CPS. They computed successive cosine similarity 
ratings of utterances in a task transcript. This measure 
estimates the degree of semantic similarity between any two 
pieces of discourse. Their prediction, that semantic coherence 
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would break down at phase transitions was not supported. We 
borrow their approach of generating successive cosine 
similarity ratings, but instead using the more modern and 
much larger BERT model. We chose BERT because, unlike 
most other NLP models, it examines utterances 
bidirectionally (i.e., both from left to right and right to left). 
Thus, a higher level of contextual understanding is built 
(Devlin et al., 2018).  

The first research goal is to use BERT to automatically 
detect phase transitions from semantic content. We expected 
it to outperform LSA in this regard. The second research goal 
is to use BERT to automatically detect the subgoal that is 
being discussed in each phase of the teams’ transcripts.  

The present study analyzes data collected as part of a study 
by Dunbar and Gorman (2020). Here, we analyze the 
transcripts of eight dyads completing the Non-combatant 
Evacuation Operation planning task (NEO task; Warner et 
al., 2003). Dyads were required to work together to plan a 
rescue mission of Red Cross workers trapped in a church on 
a remote island, while avoiding rebel forces and other 
environmental hazards on the island. The task required the 
development of plans around three subgoals: 1) getting 
rescuers to the shore of the island, 2) arriving at the church 
and 3) returning to safety. These are the three phases of team 
collaboration we sought to automatically identify using our 
methods. Task transcripts are particularly rich in semantic 
content pertaining to each of the three subgoals (i.e., 
phases), as each member of the dyad received different 
information pertaining to the evacuation plan. Thus, both 
individuals had to discuss the task in detail.  

From our two research goals followed the following 
predictions and hypotheses. First, we predicted phase 
transitions would coincide with valleys of successive cosine 
similarity scores generated using BERT, as semantic 
content across phases should be less related than semantic 
content within a phase (Hypothesis 1; see Figure 1). We also 
predicted that BERT would be able to accurately categorize 
utterances as relevant to a given subgoal, thus automatically 

recognizing the purpose of each phase (Hypothesis 2). The 
benchmark against which we compared the BERT model was 
the coding of a human rater.  

Method  

Participants 
Forty-six participants (23 dyads) were recruited by Dunbar 
and Gorman (2020) from the Georgia Tech psychology 
participant pool. The present study assessed transcripts from 
four of the six teams who completed the NEO task (numbered 
Teams 3, 12, 20 and 23). Dunbar and Gorman (2020) reported 
average participant age as M = 19.70 (SD = 1.77) and a 
71.74% male sample. Participants were compensated with 
course credit. The protocol was approved by the local IRB. 

Procedure  
After obtaining informed consent, dyads had 15 minutes to 
familiarize themselves with the NEO task materials. They 
then had 15 minutes to collaborate with their interaction 
partner to complete the NEO task. They then completed the 
task a second time with a different interaction partner. In one 
task sessions, they worked with another novice participant to 
plan the rescue mission. In the other, they worked with an 
experimenter to plan the rescue mission. The experimenter-
participant groups are considered more experienced teams in 
the present study, as the experimenter had performed the task 
numerous times and was familiar with the material given to 
both team members. Though both participants in the novice 
dyads completed the task with the experimenter, for the 
current analysis, we only assessed the transcripts of the two 
novice participants completing the task together and 
Participant 1 completing the task with the experimenter. This 
equated the sample size between the two types of dyads.  

Members of the dyads worked in separate rooms, such that 
they only had verbal interactions over a push-to-
talk microphone and headset channel. Participants and 
experimenters used computers with dual monitors to 
complete the NEO task. They wore EEG headsets as they 
completed the experimental task, which did not affect 
communication behaviors assessed in the present 
study. Upon completion of the task sessions, participants 
completed demographic questionnaires, were debriefed and 
then dismissed. The sessions lasted two hours. 

Experimental Task  
The NEO task was adapted from a three-person task 
developed by the Navy to a dyadic task by Dunbar and 
Gorman (2020). The mission was based on a hypothetical 
scenario that required the coordination of a rescue mission of 
Red Cross workers on a remote island. Subgoals of the task 
required participants to consider 1) which aircraft(s) and/or 
watercraft(s) they would use to reach shore; 2) how they 
would arrive to the church from the shore; and 3) how they 
would return the rescuers and Red Cross workers to safety 
within a 24-hour period.  

Figure 1: A visualization of our hypotheses, wherein 
phase transitions will correspond to low values of 

successive cosine similarity. 
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While both teammates were apprised of the general 
requirements needed to rescue the workers within 24 
hours and general information on the island, only one 
teammate received detailed information on weapons 
resources, while the other received information on 
intelligence resources and the island’s environment.  This 
interdependency between the teammates’ roles required them 
to communicate to accomplish each subgoal. Participants 
were instructed to record the timeline of their hour-by-hour 
plans in a shared document.  

Measures of Communication Content  
A human rater first annotated the eight transcripts for teams’ 
transitions into and out of the three subgoals. The human 
coding of the transcripts served as the ground-truth 
demarcation of CPS phase transitions in the NEO task. 
Below, we describe the criteria used by the human rater and 
BERT for detecting phase transitions.  
 
Human Rater Coding Scheme A human rater reviewed the 
eight transcripts—four from novice participant teams and 
four from experimenter-participant teams. A nominal code 
associated with one of the three subgoals was ascribed to each 
relevant utterance in the transcripts. If an utterance pertained 
to other matter—experimental procedures, making notes in 
the shared document, or minor difficulties with the push-to-
talk system—then a code of 0 was assigned and, as such, it 
was not ascribed to a particular subgoal. Short utterances 
(e.g., “yeah”, “OK”, etc.) were ascribed to the subgoal for 
which they were responding. In other words, the context of 
the surrounding utterances was taken into consideration when 
assigning the nominal codes. If an utterance pertained to 
more than one subgoal, the code most prominent in either the 
utterance and/or the context immediately surrounding it 
was chosen. This practice ensured each utterance applied to 
at most one subgoal.  

Example utterances, one from each of the three subgoals, 
include, “Um I think the helicopter will work, because we 
don't really need to carry more than fifteen people, because 
there are only three workers” (subgoal 1); “Yeah it says the 
local military has three trucks, bikes, and donkeys” (subgoal 
2); and “Um, so on the way back we should probably not have 

them walking, right? So we maybe put them in the tank” 
(subgoal 3).  

  
BERT Phase Change Recognition Criteria  We used 
the nli-bert-large model which, as the name suggests is pre-
trained on the Natural Language Inference (NLI) data 
(Reimers, n.d.).  NLI is used in supervised transfer 
tasks, and the utterance data is analyzed for how well 
subsequent ideas build on each other (Choi, 2021), making 
this BERT model particularly appropriate to quantify 
successive cosine similarity values. Devlin and colleagues’ 
(2018) found that using a larger BERT model tends to be 
beneficial for analyzing task-specific text data. Because the 
present study assesses transcripts tied to a specific task, we 
employ a large BERT model here.   

First, consider how we used BERT to identify phase 
transitions. Using the model described above, a pair 
of utterances from the task transcripts was passed in, 
encoded, and the cosine similarity between the two 
encoded utterances calculated. Here, similarity 
quantifies how well the utterances in one window 
build on the ideas in another window. A sliding window 
approach was used to assess utterance similarity. Using a 
window size of five utterances generates, on the first 
iteration, the utterance pairs of (1,2), (1,3), …, (1,5), (2,3), 
…, (4,5). For the second iteration, the pairs were defined over 
utterances 2-6, and so on. For each iteration, the similarities 
between all pairs of utterances were averaged to arrive at a 
single similarity measure for that window. These successive 
cosine similarity calculations were used to determine the 
points at which a phase transition might have occurred, 
wherein valleys of cosine similarity, recognized visually as 
local minima, were predicted to align with phase transitions.  

We compared the effectiveness of window sizes 
of two, five, and ten (Figure 2). A window size 
of two produced graphs that made it more difficult to visually 
interpret phase transitions, as there are frequent sudden 
spikes and valleys. A window size of ten produced graphs 
that were smoothed too much, such that peaks and valleys 
were not prominent and could not be visually identified as 
phase transitions. A window size of five produced peaks and 
valleys that were still pronounced but occurred at a frequency 
aligned with that of the NEO task structure, and was therefore 
used.    

Figure 2: Example from a dyad in Team 20 demonstrating the effect of window size (2, 5, 10) on cosine similarity scores. 
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Next, consider how we used BERT to identify the phase of 
problem solving. The vertical lines below the black 
successive cosine similarity line, as seen in Figure 1, are 
color-coded to indicate the most likely phase for each 
window. This was determined by first combining the five 
utterances in a window into a single vector. The cosine 
similarity between this vector and a vector encoding the key 
words of the textual description of the first phase (i.e., 
subgoal) was then computed. The process was repeated for 
the second and third phases (i.e., subgoals). The maximal 
similarity value gives BERT’s identification of the current 
phase. 

Thus, the successive cosine similarity metric was 
calculated to designate where phase transitions occur, while 
the maximal cosine similarity values were calculated 
to determine what was being discussed within each window 
of neighboring utterances.  

Lastly, we note that at the beginning of the task, some 
groups engaged in off-task conversation for a few utterances 
to get oriented to the directions and materials given to them. 
Phase 0 is associated with this off-task or 
task logistics conversation toward the beginning of the 

transcripts. Once BERT detected a phase other than Phase 0, 
the algorithm no longer compared the subsequent utterances 
against the Phase 0 bag of words.   

Results  
For this proof of concept, we randomly selected four teams 
to evaluate the hypotheses. Teams 3 and 20 were randomly 
selected to assess Hypothesis 1. Teams 12 and 
23 were randomly selected to assess Hypothesis 2.  

Hypothesis 1: Automatic Phase Change Detection   
As Figure 1 depicts, phase transitions as detected by the 
BERT model were predicted to be marked by low 
successive cosine similarity values, as this 
would indicate prior utterances did not relate strongly 
to subsequent utterances, consistent with a shift in subgoal 
topic. Maximal cosine values were used to categorize 
utterances to a respective phase. They were predicted to be 
most variable at valleys of successive cosine similarity; in 
other words, at successive cosine similarity valleys 
categorization would be noisy. In Figure 3 we see the results 
of these metrics from Teams 3 and 20. The green circles in 

Figure 3: Successive and maximal cosine values plotted for Teams 3 and 20. Green circle indicate, results consistent 
with Hypothesis 1, whereas red circles indicate results in violation of this hypothesis. 
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this figure indicate  results that are consistent 
with Hypothesis 1, whereas the red circles indicate  results 
that are in violation of this hypothesis. There does not appear 
to be a systematic relationship between 
successive cosine similarity and phase transitions as detected 
by the BERT model. Phase transitions do not consistently 
occur at valleys—and only at valleys. Moreover, variability 
in the categorization of the current phase (i.e., subgoal) is 
present at both valleys, as predicted, but also at peaks. Thus, 
successive cosine similarity does not appear to capture phase 
transitions in the NEO planning task. The failure of the BERT 
model in detecting phase transitions parallels the failure of 
LSA observed in earlier work (Gorman et al., 2016).  

Hypothesis 2: Automatic Phase Identification  
To evaluate the understand how successful BERT is at 
categorizing utterances, we assessed its performance at phase 
transition detection and identification against that of a 
human rater. Hypothesis 2 predicted that the maximal cosine 
values used to assign each window of utterances to a specific 
phase (i.e., subgoal) would align with the 
human categorization. In Figure 4, we see that although 
BERT tends to be more “jittery” than the human rater, the 
two detect phase transitions at roughly the same locations, 
and assign roughly the same phase (i.e., subgoal) labels.  

Overall, BERT had approximately a 40% success rate for 
the four teams, where success is defined as agreement with 
the human rater. The Participant-Only teams had rates of 
33.99% and 47.46%, while the Experimenter-Participant 
teams had rates of 43.01% and 43.33% (for Teams 12 and 23, 
respectively). Moreover, BERT’s agreement rate was 
relatively consistent across all four teams. The differences in 

these rates for the two Participant-Only teams may be driven 
by the preponderance of longer utterances in Team 23. With 
more words in the vector, BERT had more semantic content 
to consider when making its categorization. Many of the 
shorter utterances found in Team 12’s dialogue did not 
contain semantic content, which may have contributed to 
noise in BERT’s categorization.  

Examination of the Experimenter-Participant dyads shows 
that Team 12 had a more organized flow of communication 
through the three subgoals.  Team 23, on the other hand had 
disjointed dialogue. In particular, their dialogue did not 
involve an initial information share, and thus they 
frequently had to check in on resources available to them 
instead of planning how to use those resources. Despite these 
differences, BERT agreed with the human rater to the same 
degree. BERT may be more reliable at detecting phase 
changes in experienced teams as their 
conversations contain more semantic content that is relevant 
to task subgoals. This result supports findings from Gorman 
and colleagues (2016), wherein submarine crews’ transcripts 
could be clustered by experience level using a cosine measure 
of semantic relatedness. Thus, BERT’s detection of phase 
transitions may be more appropriate for experienced teams.   

Discussion  
Our hypotheses were not fully supported by the results of the 
present study. Nevertheless, automated detection of team 
collaboration phase transitions is important for the 
advancement of team science, and we believe the application 
of BERT and other NLP models is worth exploring further 
(Gorman et al., 2012; Wiltshire et al., 2017). 

 
Figure 4: Phase identifications made by BERT and by the human rater.  
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Hypothesis 1 predicted phase changes to be marked by 
valleys in the cosine similarity graphs. The results depicted a 
more complicated picture wherein phase changes occur at 
both valleys and peaks in successive utterance cosine 
similarity ratings, and, at times, randomly in the similarity 
distribution. Thus, we conclude that there is no systematic 
relationship between phase transition behavior and 
successive cosine similarity values. This finding is consistent 
with Gorman and colleagues’ (2016) conclusion that 
successive cosine values generated by LSA did 
not identify task transitions.  

Hypothesis 2 predicted BERT’s maximal cosine similarity 
values would perform similarly to a human rater in 
identifying the phase (i.e., subgoal) of an utterance. This 
approach to phase transition detection was more 
successful. There was an approximately 40% success rate 
across the four team transcripts between BERT’s 
categorizations of utterances and those of the human rater. 
Ideas for future iterations and improvement upon this 
approach are provided below. 

Future Directions  
Different NLP Models The current study used the nli-bert-
large BERT model. It is possible that a different BERT model 
might have produced better results. We explored another 
model within this famil, stsb-bert-large, but the results were 
not promising. Future research should also explore other NLP 
models of word semantics such as word2vec (Mikolov et al., 
2013a; 2013b) and Global Vectors (GloVe; Pennington et al., 
2014), which have had some success in modeling cognitive 
science data.  
 
Utilizing the BERT Toolbox We calculated (1) the average 
cosine similarity for automatic phase transition detection and 
(2) the maximal cosine similarity (for automatic phase 
identification. We did so within a range of content specified 
by a window size of five utterances. This windowed approach 
enables a role for context. However, a strength of BERT is 
that it enables the use of context directly. For example, 
BERT has a tool called Next Sentence Prediction (NSP) that 
enables it to predict what the next sentence/utterance will be 
based on prior context (Devlin et al. 2018). Assume that 
BERT takes on the role of both participants talking back and 
forth. Comparing the BERT vs. human utterances may give 
some insight into BERT’s ability to capture how the two 
group members interact. These results could give more 
insight into the effectiveness of BERT as an analysis tool for 
investigating how teams work together as a team to 
accomplish some common goal. 

Limitations  
Ground Truth Ratings It is worth noting that this initial 
effort took the human rater’s categorizations as ground truth. 
These categorizations may have been biased in this proof-of-
concept study because the human rater was not blind to the 
task, and may have expected three distinct sequential phases, 
i.e., that the first x utterances belong to Phase 1, the 

next y utterances align with Phase 2, and the rest are assigned 
to Phase 3, with some Phase 0 assignments scattered 
intermittently. The present study employed only a single rater 
due to time constraints. However, the continuation of this 
work will ensure interrater agreement across raters who are 
blind to hypotheses. This limitation points to an interesting 
opportunity: Due to unavoidable bias and noise in human 
ratings—even with multiple raters—NLP methods should 
continue to be explored as a solution to transcript annotation, 
since they do not embody expectations of task structure.  
 
Phases 1 & 3 are Semantically Similar Based on 
the BERT results, Phase 3 is frequently detected near the 
beginning of each transcript, though it was not discussed until 
the end of the task. Additionally, Phase 1 is occasionally 
detected near the end. This is because the descriptions of the 
two phases are semantically similar to each other, even if the 
associated subgoals are quite different. This ambiguity may 
be an inherent barrier in applying NLP models to automatic 
phase transition detection and phase (i.e., subgoal) 
identification. If so, future studies might explore the utility of 
ascribing utterances to multiple phases. This approach would 
perhaps enable the study of ambiguity in collaborative 
problem solving, or parallel pursuit of multiple goals, as a 
single utterance may contain information relevant to multiple 
parts of the solution. 

Conclusion  
Team science research continues to rely on human raters for 
transcript analysis. This practice can be costly, time intensive 
and unreliable. The further development of NLP tools and 
continued iteration on the methods described here may lead 
to more automatic and accurate semantic processing of task 
transcripts, lifting the current time constraints when 
processing communication data. Word embedding tools like 
BERT, in conjunction with automatic speech recognition 
(ASR) used for transcription (e.g., Dale et al., 2022), may 
reduce the time burden of working with communication data.  

Additionally, real time team metrics of team collaboration 
are of increasing interest. With the development of automated 
semantic coding of communication data to the ASR methods 
currently employed by the field, it is possible to imagine the 
realization of real-time collaboration with an artificial agent. 
For example, Pugh and colleagues (2021) have employed 
real-time semantic analysis methods using ASR and BERT to 
identify CPS skills, with the envisioned application of 
providing immediate post-task feedback to students working 
on CPS tasks. Other current real-time communication 
processing methods rely on communication flow, i.e., who is 
speaking and when (Gorman et al., 2020). Iterations on the 
methods employed in the present study may extend to real-
time analysis of communication content as well.  

Acknowledgements  
This research is supported by the NSF National AI Institute 
for Student-AI Teaming (iSAT; subaward 1559732 from 
NSF Grant DRL2019805). Any opinions, findings and 

2362



conclusions, or recommendations expressed in this paper are 
those of the authors and do not necessarily reflect the views 
of the funding agency. 

References   
Bales, R. F., & Strodtbeck, F. L. (1951). Phases in group 

problem-solving. The Journal of Abnormal and Social 
Psychology, 46(4), 485. 

Choi, H., Kim, J., Joe, S., & Gwon, Y. (2021). Evaluation of 
BERT and ALBERT Sentence Embedding Performance 
on Downstream NLP Tasks. arXiv preprint at arXiv: 
2101.10642   

Cooke, N. J., Gorman, J. C., Myers, C. W., & Duran, J. L. 
(2013). Interactive team cognition. Cognitive 
science, 37(2), 255-285.  

Dale, M. E., Godley, A. J., Capello, S. A., Donnelly, P. 
J., D'Mello, S. K., & Kelly, S. P. (2022). Toward the 
automated analysis of teacher talk in secondary ELA 
classrooms. Teaching and Teacher Education, 110, 
103584.  

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). 
Bert: Pre-training of deep bidirectional transformers for 
language understanding. arXiv preprint 
arXiv:1810.04805.  

Dunbar, T. A., & Gorman, J. C. (2020). Using 
communication to modulate neural synchronization in 
teams. Frontiers in Human Neuroscience, 14. 

Fiore, S. M., Smith-Jentsch, K. A., Salas, E., Warner, N., 
& Letsky, M. (2010). Towards an understanding 
of macrocognition in teams: developing and defining 
complex collaborative processes and 
products. Theoretical Issues in Ergonomics 
Science, 11(4), 250-271.  

Gorman, J. C., Cooke, N. J., Amazeen, P. G., & Fouse, S. 
(2012). Measuring patterns in team interaction sequences 
using a discrete recurrence approach. Human 
Factors, 54(4), 503-517. 

Gorman, J.C., Grimm, D.A., Stevens, R.H., Galloway, T., 
Willemsen-Dunlap, A.M., & Halpin, D.J. (2020). 
Measuring real-time team cognition during team training. 
Human Factors, 62, 825-860. 

Gorman, J. C., Martin, M. J., Dunbar, T. A., Stevens, R. H., 
Galloway, T., Amazeen, P. G., & Likens, A. D. (2016). 
Cross-level effects between neurophysiology and 
communication during team training. Human Factors, 58, 
181-199. 

Gray, B. (1989). Negotiations: Arenas for reconstructing 
meaning. Unpublished working paper, Pennsylvania State 
University, Center for Research in Conflict and 
Negotiation, University Park, PA. 

Kelso, J. A. (2009). Coordination dynamics. In R. A. Myers 
(Ed.), Encyclopedia of complexity and systems 
science (pp. 1537–1565). New York: Springer.  

Mikolov, T., Corrado, G., Chen, K., & Dean, J. (2013). 
Efficient Estimation of Word Representations in Vector 
Space. Proceedings of the International Conference on 
Learning Representations (ICLR 2013), 1–12. 

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). 
Distributed Representations of Words and Phrases and 
their Compositionality. NIPS, 1–9 

Pennington, J., Socher, R., & Manning, C. D. (2014). 
Glove: Global Vectors for Word Representation. 
Proceedings of the 2014 Conference on Empirical 
Methods in Natural Language Processing, 1532–1543 

Pugh, S. L., Subburaj, S. K., Rao, A. R., Stewart, A. E., 
Andrews-Todd, J., & D'Mello, S. K. (2021). Say What? 
Automatic Modeling of Collaborative Problem 
Solving Skills from Student Speech in the 
Wild. International Educational Data Mining Society.  

Reimers, Neil. (n.d.). SentenceTransformers Pre-trained 
Models. Google 
Sheets. https://docs.google.com/spreadsheets/d/14QplCdT
CDwEmTqrn1LH4yrbKvdogK4oQvYO1K1aPR5M/edit#
gid=0  

Salas, E. E., & Fiore, S. M. (2004). Team cognition: 
Understanding the factors that drive process 
and performance. Washington, DC: American 
Psychological Association. 

Wiltshire, T. J., Butner, J. E., & Fiore, S. M. (2017). 
Problem‐solving phase transitions during team 
collaboration. Cognitive science, 42(1), 129-167. 

 

2363




