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Abstract

In this paper, we present a novel, end-to-end 6D object

pose estimation method that operates on RGB inputs. Our

approach is composed of 2 main components: the first com-

ponent classifies the objects in the input image and proposes

an initial 6D pose estimate through a multi-task, CNN-

based encoder/multi-decoder module. The second compo-

nent, a refinement module, includes a renderer and a multi-

attentional pose refinement network, which iteratively re-

fines the estimated poses by utilizing both appearance fea-

tures and flow vectors. Our refiner takes advantage of the

hybrid representation of the initial pose estimates to predict

the relative errors with respect to the target poses. It is fur-

ther augmented by a spatial multi-attention block that em-

phasizes objects’ discriminative feature parts. Experiments

on three benchmarks for 6D pose estimation show that our

proposed pipeline outperforms state-of-the-art RGB-based

methods with competitive runtime performance.

1. Introduction

Accurate 6D object pose estimation is crucial for

many real-world applications, such as autonomous driving,

robotic manipulation, and augmented reality. For instance,

a 6D pose estimator for robot grasping needs to balance ac-

curacy, robustness, and speed to be realistically deployable

in real-world scenarios.

Some approaches [31, 34] have relied upon depth infor-

mation in order to boost reliability and accuracy. However,

depth sensors suffer a variety of failure cases, have high en-

ergy and monetary costs, and are less ubiquitous than their

non-depth counterparts. Ultimately, pose estimation from

RGB alone is a more challenging problem, but also a far

more attractive option.

This paper presents a novel, end-to-end 6D pose estima-

tion approach from RGB inputs. In Figure 1, we show an

overview of our approach. First, the Pose Proposal Network

Figure 1. An overview of our proposed approach, consisting of a

pose proposal module and a pose refinement module. The pose

proposal module (PPN), outputs an object classification and an

initial pose estimation from RGB inputs. The pose refinement

module consists of a differentiable renderer and an iterative re-

finer called MARN. The renderer initializes the rendered crop of

the detected object using its initial pose estimate and its 3D model.

The refinement step utilizes a hybrid representation of the initial

render and the input image, combining visual and flow features,

and integrates a multi-attentional block to highlight important fea-

tures, to learn an accurate transformation between the predicted

pose and the actual, observed pose.

(PPN) extends the region proposal framework to classify

and regress initial estimates of the rotations and translations

of objects present in the RGB input. Notably, our proposed

PPN method requires no additional steps, unlike methods

that use PnP [9] or matching with pre-engineered code-

book. Second, the pose refinement module consists of a

differentiable renderer and a Multi-Attentional Refinement

Network (MARN). MARN can be depicted as two main

components: first, visual features from both the input crop

and the rendered crop are fused using the flow vectors to

learn better object representations. Second, a spatial multi-

attention block highlights discriminative feature parts, insu-

lating the network from adverse noise and occlusion effects.

MARN is designed to allow iterative refinement; MARN

outputs an estimated pose that directly maps to MARN’s in-

2382



put. In our experiments, we typically found that the greatest

performance gains occurred within a couple of refinement

iterations.

Finally, our entire pipeline is trained end-to-end and

achieves state-of-the-art results across a range of experi-

ments and datasets.

In summary, our work makes the following contribu-

tions:

1. An end-to-end 6D pose estimation approach that out-

performs state-of-the-art RGB-based methods on three

commonly used benchmarks.

2. A pose proposal network (PPN) that is fully-CNN-

based, yielding fast and accurate pose estimations in

a single pass from RGB images, without additional

steps.

3. A pose refinement network (MARN) that uses a hybrid

intermediate representation of the input image and the

initial pose estimation by combining visual and flow

features to learn an accurate transformation between

the predicted object pose and the actual observed pose.

4. The integration of a spatial multi-attentional block that

highlights important feature parts, making the refine-

ment process more robust to noise and occlusion.

2. Related Work

6D pose estimation has a long and storied history [32],

but, due to space constraints, we will limit this section to

RGB based methods. Traditional RGB methods for pose es-

timation typically match detected local keypoints or hand-

crafted features with known object models [1, 6, 18, 30].

These methods maintain scale and rotation invariance, and

hence are often faster and more robust to occlusion. How-

ever, they become unreliable with low-texture objects or

low-resolution inputs. Deep learning methods tend to be

more robust to these issues. More recent variants of these

methods mostly rely on deep learning to either learn feature

representations or create 2D-3D correspondences [2, 14].

Most existing RGB-based methods [13, 20, 21, 23] take

advantage of deep learning techniques used for object detec-

tion [5, 10, 16, 25] or image segmentation [17] and lever-

age them for 6D pose estimation. For example, one tech-

nique involves utilizing CNNs to extract object keypoints,

and solving the 6D poses using PnP [23, 29]. Sundermeyer

et al. [27] utilizes an encoder-decoder that learns feature

vectors and matches them to a pre-generated codebook of

feature vectors to determine the 6D pose of an object. Our

work is different from these methods in that we integrate

a pose estimator based on a region proposal framework,

that estimates object poses in a single forward pass through

the network with no additional codebook matching steps.

Kehl et al. [13] and Tekin et al. [28] use region proposal

framework to detect objects within the input image and then

use additional steps (such as PnP [9]) to solve their poses.

Though our approach also integrates a pose estimator in-

spired from region proposal frameworks, our work lever-

ages the framework in an encoder/multi-decoder network

for 6D pose estimation and extends it into a novel end-to-

end pose estimation and refinement network.

6D pose refinement has been utilized to improve the

performance of several pose estimation methods [31, 33].

Recent refinement methods have been deep-learning based

[31, 19], relying on CNNs to predict a relative transforma-

tion between the initial pose prediction and the target pose.

Li et al. [15] relies on Flownet’s [12] deep feature repre-

sentation, extracted from the input image and the render-

ing of the estimated object pose to learn the pose residuals.

Though our refiner was inspired from [15], our approach is

fundamentally different as it relies on the synergy between

the optical flow vectors and the appearance features to cap-

ture the pose transformation from the prediction to the target

pose. Further, we employ a multi-attentional block that ef-

ficiently highlights discriminative feature parts, improving

the robustness of our refiner to noise and occlusion.

3. Methods

In this paper, we estimate the 6D poses of a set of known

objects present in an RGB image. We propose a novel two

step approach: First, a pose proposal module (PPN) (§ 3.1)

that regresses initial 6D pose proposals from different re-

gions of objects in an RGB image. Second, a pose refine-

ment module, which includes i) a differentiable renderer,

that outputs a render of the detected object using its ini-

tial pose estimate and 3D model, and ii) a multi-attentional

refinement network (MARN) (§ 3.2), to further refine the

initial pose estimates.

In the following, the 6D pose is represented as a homo-

geneous transformation matrix, p = [R|t] ∈ SE(3), com-

posed of a rotation matrix R ∈ SO(3) and a translation

t ∈ R
3. R can also be represented by a quaternion q ∈ R

4.

3.1. Pose Proposal Network

We reframe the object pose estimation as a combined

object classification and pose estimation problem, regress-

ing from image pixels to region proposals of object cen-

ters and poses. Figure 2 illustrates our 6D object pose pro-

posal network architecture. Our architecture has two stages:

first, a backbone encoder, modeled on the YOLOv2 frame-

work [26], extracts high-dimensional region feature repre-

sentations from the input image. Second, the obtained fea-

ture representations are embedded into low-dimensional,

task-specific features extracted from three decoders which

output three sets of region proposals for translations, rota-

tions, and object centers and classes.We note that, similar
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Figure 2. Our Pose Proposal Network (PPN) Architecture. The encoder/multi-decoder takes an RGB image, A. encodes it into high

dimensional feature embedding, and B. decodes it into 3 task-specific outputs, which correspond to the rotation, translation, and confidence

in the presence and class of the detected object. Detailed architecture of the three blocks is provided in supplemental material.

to [28], we rely on the YOLOv2 framework (§ 2) to extract

feature representations from the input image. However, the

application of the YOLOv2 network in our work is funda-

mentally different in the sense that it serves only the pur-

pose of extracting appearance features from the input image

which will be used as input to the second stage consisting

of three decoders to ultimately estimate the objects poses.

Specifically, the backbone encoder (Figure 2A) produces a

dense feature representation F by dividing the input image

into a S × S grid, each cell of which corresponds to an

image block, that produces a set of high dimensional fea-

ture embeddings {Fi,j}, with Fi,j ∈ R
d for each grid cell

(i, j) ∈ G2 s.t. G = {1, . . . , S} and d is the embedding

size. F is decoded by 3 parallel convolutional blocks (as

shown in Figure 2B) that produce a fixed-size collection of

region proposals {(Confok
i,j , T

ok
i,j , Q

ok
i,j)} for each object in

the set of target objects ok ∈ {o1, . . . , oC}, where C is the

number of target objects. The detailed architectures of the

three blocks are depicted in supplemental material.

Block A: This block is a rotation proposal network that

regresses a 4-dimensional quaternion vector Qok
i,j for each

image region and object class.

Block B: This block is a translation proposal network

that regresses a 3-dimensional translation vector T ok
i,j for

each image region and object class. Rather than predicting

the full translation vector T = [tx, ty, tz]
T , which can be

cumbersome for training as discussed in [33], we regress the

object center coordinates in the image space c = (cx, cy)
T

and the depth component tz . The two remaining compo-

nents of the translation vector are then easily computed with

the camera intrinsics and the predicted information:

tx =
(cx − px)tz

fx
,

ty =
(cy − py)tz

fy

(1)

where fx and fy denote the focal lengths of the camera, and

(px, py) is the principal point offset. To regress the object’s

center coordinate, we predict offsets for the 2D coordinates

with respect to (gx, gy) ∈ G2, the top-left corner of the as-

sociated grid cell. We constrain this offset to lie between

0 and 1. The predicted center point (cx, cy) is defined as:

cx = f(x) + gx and cy = f(y) + gy where f(·) is a 1-D

sigmoid function.

Block C: This block is an object center proposal net-

work, which returns high class confidence in regions where

the object is present and low class confidence in regions

where it is not. Specifically, for each image region, Block

C predicts a confidence value for each object class corre-

sponding to the presence or absence of that object’s center

in the corresponding region in the input image.

3.1.1 Duplication Removal:

After the inference of object center detection and pose es-

timation, which is done by one pass through our PPN, we

apply non-maximal suppression to eliminate duplicated pre-

dictions when multiple cells have high confidence scores for

the same object. Specifically, the inference step provides

class-specific confidence scores, referring to the presence

or absence of the class in the corresponding grid cell. Each

grid cell produces predictions in one network evaluation,

and cells with low confidence predictions are pruned using

a confidence threshold. We then apply non-maximal sup-

pression to eliminate duplicated predictions when multiple

cells have high confidence scores for the same object and

only consider the predictions with the highest confidence

score, assuming either the object center lies at the intersec-

tion of two cells or the object is large enough to occupy

multiple cells. We specifically measure the similarity of

the projected bounding boxes of the 3D models given the

predicted poses by computing the overlap score using inter-

section over union (IoU). Given two bounding boxes with

high overlap score, we remove the bounding box that has
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the lower confidence score. This step is repeated until all of

the non-maximal bounding boxes has been removed for ev-

ery class. Two projections are considered to be overlapping

if the IoU score is larger than 0.3.

3.2. Multi­Attentional Refinement Network

Our proposed multi-attentional refinement network

(MARN) iteratively corrects the 6D pose estimation error.

Figure 3 depicts the MARN architecture and illustrates a

typical refinement scenario. Two color crops ( Iim and Ir
), corresponding to an observed image and an initial pose

estimate of the object in the image, are input into MARN,

which outputs a pose residual estimate to update the initial

predicted pose. This procedure can be applied iteratively,

potentially generating finer pose estimation at each itera-

tion.

3.2.1 Input Crops:

Input Crops are sampled from a given predicted 6D pose p.

Crops circumvent the difficulty of extracting visual features

from small objects. Two crops, a rendered and an RGB,

are generated. Images are cropped under the assumption

that only minor refinements are needed. Both crops will

be used as input to the refinement network. The rendered

crop is generated by rendering the 3D object model viewed

according to the predicted pose p using a differentiable ren-

derer provided by Pytorch3D library [24]. The RGB crop

is generated from the original input image. We compute

a bounding box, that bounds the object’s 3D model, pro-

jected on the image space using the predicted pose p. We

pad the bounding box by epsilon pixels for each side to

take into account the error introduced by the pose predic-

tion. The enlarged bounding box is then used as a mask

applied to the RGB image. Note that the mask cancels out

the background, it does not crop the images. The images are

cropped with a fixed size window H ×W , where the crop

center corresponds to the object center, as defined by the 2D

projection of the predicted pose p. Predicting (∆cx,∆cy)
consists of estimating how far the object center is from the

image center.

3.2.2 Feature Extraction Block:

MARN refines the estimated pose by predicting the rela-

tive transformation to match the rendered view of the ob-

ject to the observed view in the original image. To this

end, MARN’s feature extraction block is composed of two

different networks: 1) a visual feature embedding network

that captures visual features of the object, and 2) a flow

estimation network that estimates the object “motion” be-

tween the rendered image and the observed image. The net-

work takes two input crops: Ir ∈ R
H×W×3 and Iim ∈

R
H×W×3. Both crops are processed through the shared

visual feature embedding network to extract visual feature

representations Fim ∈ R
H×W×dem for the image crop and

Fr ∈ R
H×W×dem for the render crop. Each pixel location

of the embedding is a dem-dimensional vector that repre-

sents the appearance information of the input image at the

corresponding location. Simultaneously, the flow estima-

tion network, based on the FlowNetSimple architecture [7],

produces the optical flow between the rendered image and

the observed image.

Subsequently, the visual feature map Fr, extracted from

the render crop, is warped toward the visual feature map

of the image crop Fim, guided by the flow information.

Specifically, the warping function W , extracted from the

Flow estimation network, computes a new warped fea-

ture map Fw from the input Fr following the flow vectors

flowr−→im ∈ R
H×W×2:

Fw = W(Fr, f lowr−→im) (2)

Following [12], the warping operation is a bilinear function

applied on all locations for each channel in the feature map.

The warping in one channel l is performed as:

F l
w(xw) =

∑

xr

I(xr,xw + δxw)F l
r(xr) (3)

where I is the bilinear interpolation kernel, xr = (xr, yr)
T

is the 2D coordinates in the visual feature embedding Fr,

and xw = (xw, yw)
T is the 2D coordinates in the visual

feature embedding Fw. For backpropagation, gradients to

the input CNN and flow features are computed as in [12].

Furthermore, the estimated optical flow flowr−→im is con-

catenated with the feature map extracted from the image

crop Fim to produce F+
im ∈ R

H×W×(dem+2).

3.2.3 Spatial Multi-Attention Block:

Estimating an object’s relative transformation between two

images first requires successful localization of the target

object within the two inputs. MARN handles this in the

spatial multi-attention block by localizing discriminative

parts of the target object with spatial multi-attention maps,

which robustly localize discriminative parts of the target.

Therefore when the target is partially occluded, our multi-

ple attention module can adaptively detect the visible parts

while ignoring the occluded parts. Attention maps A =
{a1, a2, . . . , aN}, where ai ∈ R

H×W for i ∈ {1, . . . , N}
and N is the number of attention maps, are extracted by

generating summarized feature maps si ∈ R
H×W for i ∈

{1, . . . , N} by applying two 1× 1 convolutional operations

to feature map Fw, extracted by the feature extraction block.

Each attention map ai ∈ A, corresponding to a discrimina-

tive object part, is obtained by normalizing the summarized
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Figure 3. Our proposed multi-attentional refinement network (MARN) takes a proposed pose and iteratively refines it. Both the initial pose

estimate, represented as a rendered image crop, and a real image crop are input into MARN. The network simultaneously extracts visual

feature representations from the inputs, and an optical flow estimation between the inputs to warp the extracted features of the rendered

crop towards the actual image crop (the Feature Extraction Block). Then, multiple attention maps, which correspond to different parts of

the target object, are extracted from the warped features and applied to the feature representation of the real image crop, highlighting the

important feature parts (the Spatial Multi-Attentional Block). Subsequently, the highlighted features are used to refine the pose estimate

(the Residual Pose Estimation Block). The output refined pose estimate can be input into the refinement module for iterative refinement

feature map si using softmax:

ai =
exp (si)

∑H

h=1

∑W

w=1 exp (si,h,w)
, i = 1, . . . , N (4)

Finally, the attention map ai and the feature map F+
im are

element-wisely multiplied to extract the attentional feature

map F̄i:

F̄i = Ai · F
+
im, i = 1, . . . , N (5)

where Ai ∈ R
H×W×(dem+2) is the replication of the at-

tention map ai, (dem + 2) times to match the dimensions

of F+
im. F̄ ∈ R

H×W×(dem+2)N is the final extracted multi-

attentional feature representation obtained by concatenating

the attentional feature maps {F̄i}i=1,...,N .

3.2.4 Residual Pose Estimation Block:

This block processes the residual pose estimation. First, the

embedding space of the extracted feature map F̄ is reduced

the from (dem+2)N to 8 with three 3×3 convolutional op-

erations. The resulting feature map is then fed into one fully

connected layer, whose output is then fed into two separate

fully connected and final output layers, one corresponding

to the regressed rotation and the other corresponding to the

translation. As explained in §3.2.1, MARN outputs an esti-

mated relative rotation quaternion ∆q ∈ R
4 and a relative

translation [∆cx,∆cy,∆tz]
T . The refined pose prediction

is then computed with regard to the the initial pose predic-

tion p̂ = [R̂|t̂] using cx,new = cx+∆cx, cy,new = cy+∆cy ,

t̂z,new = t̂z +∆tz , and R̂new = ∆R ∗ R̂, where (cx, cy) is

the center of the object in the image space using p̂, ∗ is the

matrix multiplication and ∆R is the relative rotation matrix

obtained from ∆q. t̂x,new and t̂y,new are then computed

using (1).

3.3. Losses:

In order to achieve accurate pose estimation, we must

provide a criterion which quantifies the quality of the pre-

dicted pose. The different components of our approach are

trained jointly in an end-to-end fashion with a multi-task

learning objective:

Ltotal = LPPN + LMARN

= αLpose + βLconf + γLref + κLorth

(6)

where α, β, γ and κ are weight factors. Our multi-task

learning objective is composed of four loss functions. First,

a composite L2 loss function to optimize the PPN pose and

center detection parameters:

LPPN = αLpose + βLconf

where Lpose = avg
x∈Ms

∥

∥

∥
(Rx+ t)− (R̂x+ t̂)

∥

∥

∥

2

and Lconf = ‖confgt − confpr‖2

(7)

where ‖·‖2 is the L2 norm. Lconf is the loss term used

to train the confidence block. Lpose is the loss term used to

train the pose regression. Lpose is similar to the average dis-

tance (ADD) measure (further discussed in § 4). p = [R|t]
is the ground truth pose and p̂ = [R̂|t̂] is the estimated pose.

R̂ and R are the rotation matrices computed from the pre-

dicted quaternion q̂ and the ground truth quaternion q, re-

spectively. confgt and confpr are the ground-truth and the
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predicted confidence matrix, respectively. Ms ∈ R
M×3 is

a set of points sampled from the CAD model. Lpose is only

used for asymmetric objects. To handle symmetric objects,

we instead use:

Lpose,sym = avg
x1∈M

min
x2∈M

∥

∥

∥
(Rx1 + t)− (R̂x2 + t̂)

∥

∥

∥

2
(8)

Second, MARN’s loss function is defined as:

LMARN = γLref + κLorth

where Lref = avg
x∈Ms

∥

∥

∥
(Rx+ t)− (R̂newx+ t̂new)

∥

∥

∥

2

(9)

Lref is the same loss term used in PPN. Symmetric ob-

jects are handled similarly to PPN. R̂new and t̂new are the

refined rotation and translation estimates.

Lorth is a regularization term used to discourage multi-

ple attention maps locating the same discriminative object

part. The regularization emphasizes orthogonality among

the attention maps as proposed by [22]:

Lorth =
∥

∥

∥
ÃT Ã− I

∥

∥

∥

2
(10)

where Ã = [ã1, . . . , ãN ] ∈ R
HW×N and ãi ∈ R

HW is the

vectorized attention map of ai.

3.4. Architectural and Training Details:

Below we present details about both our training pro-

cedures and system architecture. These details specifically

pertain to experiments which follow.

Our model is optimized with Adam optimizer with

weight factors (α, β , γ, κ) set to (0.1, 0.05, 0.1, 0.01).

3.4.1 PPN:

The backbone encoder in PPN consists of 23 convolution

layers and 5 max-pooling layers, following the YOLOv2 ar-

chitecture [26]. Additionally, we add a pass-through layer

to transfer fine-grained features to higher layers. Our model

is initialized with pre-trained weights from YOLOv2, with

the remaining weights being randomly initialized. Input im-

ages are resized to 416 × 416 and split into 13 × 13 grids

(S = 13). The feature embedding size of the backbone net-

work, d, is set to be equal to 1024.

Initially, we use an additional weight factor, λ, that we

apply to the confidence block output. Specifically, PPN is

trained with λ set to 5 for the cells that contain target ob-

jects and 0.5 otherwise. This circumvents convergence is-

sues with the confidence values because otherwise the early

stages of training tend to converge on all zeros (since the

number of cells that contain objects is likely to be much

smaller than the cells that do not). In later training stages,

λ is updated to penalize false negatives and false positives

equally (λ = 1 for all cells). The number of points M , in

the set of 3D model points Ms, is set to 10, 000 points.

3.4.2 MARN:

For our visual feature embedding network, we use a

Resnet18 encoder pre-trained on ImageNet followed by 4

up-sampling layers as the decoder. During training, the two

networks are fine-tuned with shared weight parameters. We

set the embedding size of the extracted features from the

visual feature embedding network, dem, to be equal to 32.

The flow estimation network is the FlowNetS architecture

populated with pre-trained weights following [7]. The net-

work weights are frozen for the first two training epochs

and unfrozen in later epochs. Once the weights are un-

frozen, the component is trained in an end-to-end manner

along with the other MARN components. The initial weight

freeze increases training stability and ensures the output of

the flow estimation network is meaningful. FlowNet out-

put is up-sampled to match the input image crops. After

a hyperparameter search, the padding offset for the mask ǫ

was set to 10 pixels and the cropping window size is set to

H × W = 256 × 256 applied to the original input image.

Pose perturbations are used to create training data by adding

angular perturbations (5 deg to 45 deg) and/or translational

perturbations (0 to 1 relative to the object’s diameter) to ob-

tain a new noisy pose and rendering an image. The net-

work is then trained to estimate the target output which is

the relative transformation between the perturbed pose and

the ground-truth pose.

4. Experiments:

The full model was implemented with PyTorch and all

experiments were conducted on a Ubuntu server with a TI-

TAN X GPU with 12 GB of memory. All models and code

will be made publicly available soon.

In this section, our pose estimation models are com-

pared against state-of-the-art RGB-based methods across

three datasets, YCB-Video (§ 4.2), LINEMOD (§ 4.3), and

LINEMOD Occlusion (§ 4.4), and obtain state-of-the-art re-

sults on all datasets, with competitive runtimes. Given a

480×640 input image, PPN alone runs at 50 fps and the full

model runs at 10 fps, with two refinement iterations, which

is efficient for real-time pose estimation. We also show in

Supplemental material that our PPN alone has competitive

performance when compared with methods that do use such

information.

4.1. Evaluation Metrics:

Two standard performance metrics are used. First, the

2D-projection error, analogously to [21], measures the aver-

age distance between the 2D projections in the image space
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Table 1. Comparison of our approach with state-of-the-art RGB-

based methods on YCB-Video dataset in terms of 2D-Proj, ADD

AUC and ADD(-S) metrics, averaged over all object classes for

each method. We use a threshold of 2 cm for the ADD(-S) metric
Methods HMap[20] PVNet[21] DeepIM†[15] OURS†

2D-Proj 39.4 47.4 - 55.6

ADD AUC 72.8 73.4 81.9 83.1

ADD(-S) (< 2cm) - - 71.5 73.6
† denotes methods that deploy refinement steps.

of the 3D model points, transformed using the ground-truth

pose and the predicted pose. The pose estimate is consid-

ered to be correct if it is within a selected threshold. 2D-Proj

denotes the percentage of correctly estimated poses using a

2D Projection Error threshold set to 5 pixels. For symmetric

objects, the 2D projection error is computed against all pos-

sible ground truth poses, and the lowest value is used. The

second metric, Average 3D distance (ADD) [11], measures

the average distance between the 3D model points trans-

formed using the ground-truth pose and the predicted pose.

For symmetric objects, we use the closet point distance, re-

ferred to as ADD-S in [33]. In our experiments, we denote

as ADD(-S), following [33], the metric that measures the

percentage of correctly estimated poses using a ADD(-S)

threshold. Unless specified, in our experiments the thresh-

old is set to 10% of the 3D model diameter. When evaluat-

ing on the YCB-Video dataset, we also report the ADD(-S)

AUC as proposed in [33].

4.2. Evaluation on YCB­Video Dataset:

The YCB-Video dataset [33] has 21 objects [4] across 92

video sequences. In our experiments, we divide the data as

in [33], using 80 sequences for training and 20 sequences

for testing. We augment our training with 80k synthetically

rendered images released by [33]. Pose predictions on the

test set was refined with four MARN iterations.

4.2.1 Results:

The results in Table 1 suggest that our approach signif-

icantly outperforms state-of-the-art RGB-based methods

with an average 2D-Proj accuracy of 55.6%. Compared to

DeepIM [15], which also deploys refinement steps, our pro-

posed approach achieves better performance by a margin of

1.2% and 2.1% in terms of ADD AUC and ADD(-S) re-

spectively. Detailed results, broken down by object, can be

found in the supplemental material. Our approach achieves

the best results in 12 object classes out of 21 compared to

other methods.

4.2.2 Ablation Study on The Refinement:

We performed an ablation study on MARN’s components

(detailed in § 3.2) to measure the effect of each of its com-

Table 2. Results of the ablation study on different components of

MARN on YCB-Video dataset. We use the same 2cm thresh-

old for ADD(-S). AUC means ADD(-S) AUC. Each variant was

refined with 4 iterations

Experiments flow vectors visual features Attention maps ADD(-S) AUC

Variant 1 None X None 63.7 77.2

Variant 2 X X None 68.9 79.8

Variant 3 X X single 71.2 81.9

Variant 4 X X multiple 73.6 83.1

ponents. In all, we test four variants: In variant 1, MARN

only uses visual features extracted from the two input crops.

In variant 2, MARN uses the flow estimation features but

not the attention component, instead fusing the extracted

feature map F+
im and the warped feature map Fw with sim-

ple concatenation. In variant 3, spatial attention is added,

but only a single attention map is used. Variant 4 is the pro-

duction variant of MARN. Each variant refined the pose 4

times. We break down the results of the ablation study in

Table 2. First, we notice that variant 1 refinement, though

the simplest, still improves the pipeline performance signif-

icantly by a margin ADD(-S) of 5.2%. This finding proves

that visual features help in capturing the relative transfor-

mation between two inputs, and thus helps refine the pose.

Variant 2, which adds in optical flow estimation improves

the performance of our refiner by 2.3% over variant 1. We

conjecture that the predicted flow ensures that the network

learns to exploit the relationship between both crops and

thus capture the relative transformation of the object be-

tween them. Variants 3 and 4 show that the addition of

attention maps helps to improve the performance of the re-

finer. The improvement of variant 4 over variant 3 demon-

strates that multiple attention maps help achieve better per-

formance than a single attention map. We suspect the ability

of multiple attention maps to capture various salient parts

of the objects helps the model highlight important features,

and makes the refinement process robust to various degrees

of occlusion in the dataset. We confirm these findings on

the LINEMOD dataset (§ 4.3) in the supplemental material.

4.3. Evaluation on LINEMOD Dataset:

LINEMOD [11] contains 15,783 images of 13 objects,

and includes 3D models of the different objects. Each im-

age is associated with a ground truth pose for a single ob-

ject of interest. The objects of interest are considered as

texture-less objects, which makes the task of pose estima-

tion challenging. The train/test split is chosen following [3]

— 200 images per object are used in the training set and

1, 000 images per object in the testing set. When using the

LINEMOD dataset, we opt for online data augmentation

during training, to avoid over-fitting. Using this method,

random in-plane translations and rotations are applied to the

image along with random hues, saturations, and exposures.
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Figure 4. Pose estimation results using our method. The first row shows results from the LINEMOD dataset. The second row shows

results from the LINEMOD Occlusion dataset. Cyan bounding boxes correspond to predicted poses and red bounding boxes correspond to

ground-truth poses

Finally, we change the images by replacing the background

with random images from the PASCAL VOC dataset [8].

Note that for testing on the LINEMOD dataset, two MARN

iterations were used for refinement.

4.3.1 Results:

As shown in Table 3, our approach achieves better results

than other RGB-based methods in terms of ADD(-S), with

an average accuracy of 93.87% accuracy compared to an

average accuracy of 88.6% for DeepIM, the second best

performing method. Detailed results are shown in the sup-

plemental material. Compared with other methods, our ap-

proach had the highest performance on 9 of the 13 object

classes. Some examples of pose estimation results using the

proposed approach on the LINEMOD dataset are shown in

Figure 4. More qualitative results are shown in the supple-

mental material.

4.4. Evaluation on Occlusion Dataset:

The Occlusion dataset [2] is an extension of the

LINEMOD dataset. Unlike LINEMOD, the dataset is

multi-object — 8 different objects are annotated in each sin-

gle image, with objects occluded by each other. Our mod-

els are trained with the same online data augmentation pro-

cedure described in the LINEMOD dataset (§ 4.3), further

augmented by adding in image objects extracted from the

LINEMOD dataset. Four MARN iterations were used for

refinement on the Occlusion dataset.

Table 3. Results of our approach compared with state-of-the-

art RGB-based methods on the LINEMOD dataset in terms of

ADD(-S) and 2D-Proj metrics. We report percentages of correctly

estimated poses averaged over all object classes
Method Tekin[28] PVNet[21] SSD6D†[13] DeepIM†[15] OURS†

ADD(-S) 55.95 86.27 79 88.6 93.87

2D-Proj 90.37 99.0 - 97.5 99.19
† denotes methods that deploy refinement steps.

Table 4. Comparison of our approach with state-of-the-art RGB-

based algorithms on Occlusion Dataset in terms of ADD(-S) and

2D-Proj metrics. We report percentages of correctly estimated

poses averaged over all object classes
Method HMap[20] PVNet[21] BB8†[23] DeepIM†[15] OURS†

ADD(-S) 30.4 40.77 33.88 55.5 58.37

2D-Proj 60.9 61.06 - 56.6 65.46
† denotes methods that deploy refinement steps.

4.4.1 Results:

Results in Table 4 show that, our approach achieves sig-

nificant improvements over all state-of-the-art RGB-based

methods. Specifically, our approach surpasses DeepIM by

an ADD(-S) margin of 2.87% and PVNet by 17.6%. Fur-

thermore, our approach significantly outperforms HMap,

which was explicitly designed to handle occlusion, by an

ADD(-S) margin of 27.97%. The significant improvement

in performance on the Occlusion dataset, shows the im-

portance of the different components of our MARN, and

mainly the spatial multi-attentional block, in robustly recov-

ering the poses of objects under severe occlusion. In Fig-

ure 4, we show examples of pose estimation results using

the proposed approach on Occlusion dataset. Even when

most objects are heavily occluded, our approach robustly

recovers their poses.

5. Conclusion

We have proposed a novel end-to-end method for RGB-

only 6D pose estimation. Specifically, our end-to-end ap-

proach is mainly composed of two modules. First, PPN, is a

fully-CNN-based architecture that produces a one-pass pose

estimates. Second, MARN, is a pose refinement network

that combines visual and flow features to estimate accu-

rate transformations between the predicted and actual object

pose. Further, MARN utilizes a spatial multi-attentional

block to emphasize important feature parts, making the

method more robust. Our full end-to-end model achieves

state-of-the-art results on three separate datasets.
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