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ABSTRACT 

We investigated the feasibility of using automatic speech 

recognition (ASR) and natural language processing (NLP) to 

classify collaborative problem solving (CPS) skills from recorded 

speech in noisy environments. We analyzed data from 44 dyads 

of middle and high school students who used videoconferencing 

to collaboratively solve physics and math problems (35 and 9 

dyads in classroom and school environments, respectively). 

Trained coders identified seven cognitive and social CPS skills 

(e.g., sharing information) in 8,660 utterances. We used a state-

of-the-art deep transfer learning approach for NLP, Bidirectional 

Encoder Representations from Transformers (BERT), with a 

special input representation enabling the model to analyze 

adjacent utterances for contextual cues. We achieved a micro-

average AUROC score (across seven CPS skills) of .80 using 

ASR transcripts, compared to .91 for human transcripts, 

indicating a decrease in performance attributable to ASR error. 

We found that the noisy school setting introduced additional ASR 

error, which reduced model performance (micro-average AUROC 

of .78) compared to the lab (AUROC = .83). We discuss 

implications for real-time CPS assessment and support in 

schools. 
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1. INTRODUCTION 
The modern world will increasingly require teams of 

heterogeneous individuals to coordinate their efforts, share skills 

and knowledge, and communicate effectively in order to solve 

complex and pressing problems like the global pandemic and 

climate change. Accordingly, collaborative problem solving 

(CPS) – defined as two or more people engaging in a coordinated 

attempt  to construct and maintain a joint solution to a problem 

[57] – has been identified as a critical skill for the 21st century 

workforce [23, 27]. Despite its increasing importance, the most 

recent 2015 Programme for International Student Assessment 

(PISA) assessment revealed troubling deficiencies in CPS 

competency worldwide [49]. As a result, improving CPS 

proficiency has become a priority in educational research and 

policy [7, 8, 16, 37, 49]. 

Technology has fundamentally transformed both the modern 

workplace and classroom. Co-located teams in shared spaces are 

becoming less common, while distributed teams that work and 

collaborate remotely through virtual interfaces are on the rise 

[22, 36]. In 2020, the COVID-19 pandemic thrust this issue to 

the forefront of our attention, as workers and students across the 

globe were forced to adapt to a remote environment for extended 

periods of time. Accordingly, educational practitioners have 

emphasized the importance of providing students with the skills 

necessary to effectively collaborate in virtual settings [60]. 

The rise of videoconferencing in both workplace and learning 

environments brings with it the exciting opportunity to develop 

next-generation collaborative interfaces that can aid in teaching, 

assessing, and supporting CPS. Here we focus on the task of 

assessing CPS skills from spoken language with an eye for 

downstream applications including reflective feedback and 

dynamic interventions to improve CPS skills.  

Like any latent construct (e.g., intelligence, knowledge), 

assessment of CPS skills entails identifying objective evidence 

for those constructs. Because collaboration inherently involves 

communication, one promising approach is to analyze 

communication between team members [58]. Indeed, the content 

of communication during CPS provides information about a 

team’s cognitive and affective states, knowledge, information 

sharing, and coordination [27], and can serve as evidence of 

relevant CPS skills [3, 4]. 

However, analyzing the large amounts of data generated during 

open-ended collaboration is time consuming and costly, requiring 

trained human coders to review large corpus and hand code 

individual items for indicators of CPS. Previous work [24, 29, 

58, 65] has attempted to automate this coding process using 

natural language processing (NLP) techniques. However, with 

the exception of [65], this has been limited to restricted forms of 

communication such as text chat, rather than open-ended verbal 

communication, which is characteristic of most real world CPS. 

As we elaborate below, the one study [65] that successfully 

analyzed spoken communications for evidence of CPS skills used 

data collected in a highly controlled lab environment, leaving 

open the question as to whether this approach will succeed in the 

wild, such as in noisy classroom environments. 

In this work, we address the challenge of using speech 

recognition and NLP to automatically analyze open-ended 

student speech during videoconferencing-enabled collaborative 

problem solving in both real-world schools and in lab 

environments. Pursuing technologies capable of automatically 

capturing and analyzing spoken language during open-ended 

verbal CPS in authentic environments, whether face-to-face or 

via videoconferencing, is an important avenue of research. These 

technologies hold the potential for significantly improving real-

 



time assessment and support of CPS [58], whether by providing 

teachers with feedback on CPS in student groups or enabling 

just-in-time interventions to steer groups of problem solvers in 

the right direction. 

1.1 Background and Related Work 
We first present a brief discussion on theoretical frameworks of 

CPS to situate the CPS skills modeled in this study within the 

CPS literature. Then, we discuss prior work on computational 

models of CPS, specifically focusing on language-based models. 

1.1.1 Frameworks of CPS 
CPS has been defined as problem solving activities that involve 

interactions among a group of individuals [47]. One early attempt 

to conceptualize CPS was by Roschelle and Teasley [57] who 

proposed a joint problem space model that emphasized shared 

understanding of the task as a central aspect of CPS. More 

recently, the Assessment and Teaching of Twenty-First Century 

Skills (ATC21S) framework [28, 30] described CPS through a 

measurable and teachable set of social and cognitive skills based 

on interaction, self-evaluation and goal setting. Relatedly, the 

PISA 2015 [49] framework conceptualized CPS as a complex 

process involving three collaborative dimensions that overlap 

with four problem-solving processes resulting in 12 CPS skills.  

Building on these frameworks, Sun et al. [68] proposed a 

generalized competency framework for CPS skills based on 

interactions among triads, which defines a hierarchical CPS 

model involving three high-level facets of CPS, each composed 

of sub-facets and associated behavioral indicators. Another 

approach, and the framework adopted in this work, is the in-task 

assessment framework [34]. Informed by principles of evidence-

centered design [41], this framework characterizes CPS through a 

hierarchical ontology [3], which lays out theoretically-grounded, 

generalizable CPS  skills along with behavioral indicators of 

these skills. 

1.1.2 Computational Models of CPS 
The stream of interactions generated during problem solving is 

considered the richest source of information about a team’s 

knowledge, skills, and abilities [27, 38]. Accordingly, prior 

research has used non-verbal behavioral signals like facial 

expressions to detect rapport loss in small groups during open-

ended discussions [43]. Multimodal combinations of facial 

expressions, acoustics and prosody, eye gaze, and task context 

have been explored to predict CPS outcomes like task 

performance [42, 67]. Additionally, learning gains [32, 50], 

subjective performance [72] and CPS competence [13, 14] have 

been modelled using multimodal signals.  

Focusing our review on studies that explored the use of language 

and speech based data, researchers have successfully used 

language to model CPS processes like idea sharing [24, 29], 

negotiation [65], and argumentation [58], as well as CPS 

outcomes such as task performance [10, 44, 51] and learning 

gains [55]. A common NLP approach involves quantifying the 

frequency of words and word phrases (n-grams) [24, 29, 44, 54, 

58]. Further, some research has experimented with the use of 

additional lexical features like punctuation [24, 29, 58], part-of-

speech tags [21, 44, 58], or emoticons [29]. In addition to using 

lexical features from language itself, researchers have derived 

features from conversational data which index team and 

conversational dynamics (e.g., turn taking). This approach has 

been used to provide feedback on collaboration [59], identify 

sociocognitive roles [20], and model intra- and interpersonal 

dynamics [19] during CPS.  

Closely related to our work, Hao et al. [29] used pre-selected n-

grams and emoticons to model four CPS facets of sharing ideas, 

negotiating, regulating problem-solving activities, and 

maintaining communication. Their study involved data collected 

from 1000 participants with at least one year of college 

experience randomly grouped into dyads. They used a linear 

chain conditional random field and extracted lexical features 

from sequential text chats between dyads. They found that 

sequential modeling achieved an average accuracy of 73.2%, 

which outperformed a majority-class baseline accuracy of 29%, 

and slightly outperformed standard classifiers (accuracies of 

66.9% to 71.9%).  

Whereas the Hao study analyzed text-chats among dyads, Stewart 

et al. [65] modeled the three CPS facets of construction of shared 

knowledge, negotiation and coordination, and maintaining team 

function from spoken trialogues (conversations among triads). 

The study involved 32 triads of undergraduate students from a 

medium-sized private university, engaged in a 20-minute 

computer programming task using video conferencing software in 

a lab setting. They used ASR to generate transcripts of the 

team’s speech during problem solving, from which they derived 

n-gram features for modeling. They obtained area under the 

receiver operating characteristic curve (AUROC) scores of .85, 

.77 and .77 for the three CPS facets using random forest 

classifiers, exceeding chance baselines of 0.5. In a follow-up 

study [66], they investigated whether including additional 

modalities (facial expression, acoustic-prosodic features, task 

context) in addition to language improved classification accuracy. 

They found that a combination of language and task context 

yielded slight improvement over unimodal language models. 

1.2 Current Study and Novelty 
There are several novel aspects of this work. First, although 

recent work [65, 66] has successfully used ASR and NLP to 

automatically analyze speech during CPS in the lab, it is 

currently unknown whether this approach can be effective in the 

wild, for example in noisy real-world classrooms where CPS 

interactions would occur. Lab environments have the advantage 

of being free from ambient noises, distractions from other 

students, and various other complicating factors present in school 

environments.  

Further, previous work has been limited to adults, namely 

undergraduate students. However, given the importance of CPS, 

it is imperative that technologies be developed that can help 

instruct and support CPS in middle and high school-aged 

students. Therefore, a second important question is whether this 

approach can be applied to children, who may have differing CPS 

abilities and communication styles. An accompanying question is 

whether ASR can provide sufficiently accurate transcripts of 

children’s speech, as research has documented the degradation of 

ASR performance on children’s speech due to ASR systems 

primarily trained on adult speech, and age-dependent spectral 

and temporal variability in speech signals [26, 45, 53].  

We address these questions by recording audio of remote CPS 

among middle and high school students in both the lab and 



computer-enabled classrooms with multiple teams interacting. 

We show for the first time that in noisy school environments, 

ASR can provide transcripts of sufficient accuracy to model CPS 

skills. Additionally, we quantify the decrease in predictive 

accuracy that can be attributed to ASR error (vs. NLP error) by 

comparing with models trained on human transcripts, and 

comparing lab- vs. classroom- environments. 

Finally, an open question in this domain is which NLP 

algorithms should be used to automatically analyze CPS 

language. We explore the use of deep transfer learning for this 

NLP problem. Recent advances in state-of-the-art NLP have been 

attained by adapting attention-based language models [71], pre-

trained on large amounts of unlabeled data, to specific NLP tasks 

(e.g., text classification) [31]. We demonstrate the efficacy of this 

approach, using the popular Bidirectional Encoder 

Representations from Transformers (BERT) model [18] for our 

NLP task, and compare results with a more traditional n-gram 

approach using random forest classifiers. We also investigate 

whether a sequential classifier, which considers adjacent (i.e. 

previous, subsequent) utterances for contextual cues, yields 

improved performance over single utterance classifiers. We 

present a method, similar to the approaches used in [12, 69], to 

capture adjacent utterances for context by constructing a special 

input representation for the BERT model, which improves 

classification accuracy. 

2. METHOD 

2.1 Data Collection 
2.1.1 Contexts 
Our primary data collection occurred in one United States east 

coast public middle school and one public high school from the 

same district. The study was run over two data collection 

periods. The first period included 61 students in the high school 

and 44 students in the middle school. Here, students participated 

in two 43 minute class periods. The second collection included 

18 students from the same middle school. Because we did not 

have control over the acoustic environment in the school context, 

we also collected supplementary data from 18 students in the lab. 

In the second collection, students completed one 90 minute 

session. In both collections, students in the school environment 

completed the study from a computer lab in the school in which 

other students were also participating in the study. Data 

collection occurred prior to the COVID-19 pandemic, and as such 

classrooms were at normal capacity. Students in both 

environments were equipped with a personal headset and 

microphone (MPOW 071 USB Headset). 

2.1.2 Participants 
In all, 141 middle and high school students (age range: 12-15) 

completed some or all of the study. However, only a subset of 74 

sessions (a session entails one dyad completing one of the tasks) 

were included in this analysis. Participants were excluded for the 

following reasons: we experienced technical challenges on the 

first day of data collection, either team member did not complete 

a consent form, one team member did not show up, or there were 

quality issues with the recorded audio stream. Our analyzed 

dataset consisted of 88 students (65% female; mean age = 13.6, 

SD = 0.90). The lab subset contained 18 students (50% female; 

mean age = 13.6, SD = 1.01) and the school subset contained 70 

students (69% female; mean age = 13.6, SD = 0.87). The sample 

of 88 students was quite diverse with 26.1% self-reporting as 

Black/African American, 19.3% Hispanic/Latino, 15.9% 

Multiracial, 13.6% Asian/Asian American, 12.5% White, 2.3% 

American Indian/Alaska Native, 6.8% reported “Other”, and 

3.4% did not report ethnicity.  

2.1.3 CPS Tasks 
The study involved two separate CPS tasks. In one task on linear 

functions and argumentation (T-Shirt Math Task [1]), students 

worked together through a series of task items in which they 

sought to determine which of three t-shirt companies was the 

best choice for a student council to purchase t-shirts for 

classmates. They compared three companies with differing 

variable costs (price per shirt) and fixed costs (upfront fee) to 

determine which company should be chosen given the number of 

t-shirts to be purchased. Individual questions included populating 

the cost equation y = mx + b according to the costs of each 

company (see Figure 1B), identifying the correct graph for a 

given company’s cost equation, and providing a recommendation 

as to which company was the best deal. During this task, only 

one student controlled the screen at a time (i.e. to enter responses 

to the questions), and the two students could alternate control as 

they chose. 

 
 

Figure 1. Screenshot examples of the videoconferencing setup 

and two CPS tasks. (A) Shows a level in Physics Playground, 

(B) shows a question from the T-Shirt Math Task 

(reproduced with permission from ETS).  

 

The second task (Physics Playground [62]) was an educational 

physics game designed to help students learn concepts in 

Newtonian physics. In this task, students completed a series of 

six game levels in which they were tasked with drawing objects 

(e.g., lever, ramp, springboard) to guide a ball to hit a balloon 

target (see Figure 1A in which students are drawing a weight 

attached to the springboard to launch the ball towards the 

balloon). During this task, only one student controlled the game 

at a time. One student was selected to control first, and after 



three levels had been completed (or half of the allotted time had 

elapsed), control was switched to the other student for the 

following three levels. Whereas the math task resembles more 

traditional school work and is more constrained by prior 

knowledge, the physics game provides more opportunities for 

creative exploration [35]. 

2.1.4 Procedure 
Students were randomly assigned to pairs (27 mixed-gender, 17 

same-gender pairs) and each student first individually completed 

a series of pre-surveys; details are not relevant here. Once both 

students in the pair completed the pre-surveys, a researcher 

enabled audio and video recording on each student’s computer 

using Zoom video conferencing software (https://zoom.us) to 

record students’ computer screens, faces, and voices. The student 

teams then worked together to complete the two CPS tasks, 

either on a different day or the same day (see above). The order 

of the tasks was counterbalanced so that half of the teams 

completed Physics Playground first and the other half completed 

the T-Shirt Math Task first. After completing each task students 

individually completed additional questionnaires not analyzed 

here. 

2.2 CPS Ontology and CPS Skills 
2.2.1 CPS Ontology (Framework) 
We used a competency model represented as an ontology [3, 4] 

(similar to a concept map), which lays out the components of 

CPS and their relationships, along with indicators of CPS skills. 

The development of the ontology was based on discussions with 

subject matter experts as well as a literature review in relevant 

areas such as computer-supported collaborative learning, 

individual problem solving, communication, and linguistics [30, 

39, 46, 48, 49, 64]. 

Our CPS ontology [3] includes nine high-level CPS skills across 

social and cognitive dimensions and sub-skills that correspond to 

each high-level skill. The social dimension includes four CPS 

skills: (1) Maintaining communication corresponds to content 

irrelevant social communications among teammates (e.g., 

greeting teammates or engaging in off-topic conversations); (2) 

Sharing information corresponds to task-relevant communication 

that is useful for solving the problem (e.g., sharing one’s own 

knowledge, sharing the state of one’s understanding); (3) 

Establishing shared understanding includes communication used 

to learn the perspectives of others and ensure that what has been 

said is understood by teammates (e.g., requesting information 

from teammates, providing responses that indicate 

comprehension); and (4) Negotiating corresponds to 

communication used to express agreement, express 

disagreement, or resolve conflicts that arise. 

The cognitive dimension includes five CPS skills: (1) Exploring 

and understanding corresponds to communication and actions 

used to explore the environments in which teammates are 

working or understand the problem at hand (e.g., rereading 

problem prompts); (2) Representing and formulating includes 

communication used to build a mental representation of the 

problem and formulate hypotheses; (3) Planning corresponds to 

communication used to develop a plan for solving the problem 

(e.g., determining goals or establishing steps for carrying out a 

plan); (4) Executing corresponds to actions and communication 

used to carry out a plan (e.g., taking steps to carry out a plan, 

reporting to teammates what steps you are taking, or making 

suggestions to teammates about what steps they should take to 

carry out the plan); and (5) Monitoring includes communication 

used to monitor progress towards the goal or monitor teammates 

(e.g., checking the progress or status of teammates). 

Table 1. The 7 CPS skills modeled, ordered from highest to lowest prevalence 

 

CPS Skill Base 

Rate 

Dimension Example Human Transcript Corresponding ASR Transcript 

 

Sharing Information 

 

.26 

 

Social 

 

(Math) “Okay so first I think we 

should create like three equations to 

for each company” 

 

“Okay Sir thank first we should 

create like three D creations for 

each arm company” 

Establishing Shared 

Understanding 
.25 Social 

(Math) “Which one do you think is 

the best one” 
“Twenty it’s the best” 

Negotiating .16 Social 

(Physics) “Umm no let’s just do 

another idea I don’t think it’s gonna 

work anymore” 

“Let's just do it another day I don't 

think it's going to work anymore” 

Executing .14 Cognitive 
(Physics) “Okay and now put a 

weight down on that” 

“Okay and now put a weight down 

on the” 

Maintaining 

Communication 
.07 Social 

(Physics) “(laughs) Oh no this game 

is funny bro yeah I don't know what 

to do” 

“This came funny I would like to 

do” 

Monitoring .06 Cognitive (Physics) “That didn't work oh no” “That didn't recall about” 

Planning .05 Cognitive 
(Math) “Alright now we have to 

find a graph for this one now” 

“Now we have to find a crusher this 

one now” 

 



2.2.2 CPS Coding 
Video recordings of student task sessions were segmented at the 

turn (or utterance) level and then coded by three trained raters 

using Dedoose qualitative analysis software [17]. For the coding, 

raters viewed each turn for each individual in a team and then 

labeled the turn as one of the CPS skills from the CPS ontology. 

To establish reliability, the three trained raters triple coded 20% 

of the videos. Intraclass correlations (ICCs) were used to 

estimate interrater reliability across rater judgments, as it can 

provide information about the consistency of the judgments 

among raters. The median ICC across the CPS skill ratings was 

.93, corresponding to excellent agreement [11].  

Once reliability was established, the remaining videos were split 

among the three raters and coded independently. A total of 

10,239 turns were coded across 80 CPS sessions with an average 

of 128 turns per session (SD = 70.5). Two CPS skills (exploring 

and understanding, and representing and formulating) occurred 

very infrequently (base rate < 1%) and were excluded from our 

analysis. The remaining seven CPS skills, with their base rate, 

cognitive/social dimension, and a sample utterance from the 

dataset, are shown in Table 1. 

2.3 ASR and Human Transcript Generation 
After segmenting and coding each utterance, we used the IBM 

Watson speech-to-text service [33] to generate ASR transcripts 

for each video. The service outputs transcripts with word-level 

start and stop times, as well as word-level confidence (between 0 

and 1) for each word recognized. We constructed the transcript 

for each coded utterance by concatenating transcribed words 

within the utterance’s human segmented time window. The 

confidence for each utterance was computed by taking the mean 

word confidence over all words in the utterance transcript. 

Utterances in which no words were recognized were assigned a 

confidence of 0. Because a single audio stream of each session 

was recorded (rather than individual audio streams from each 

student), the ASR transcripts can contain words from both 

speakers if there was overlap (elaborated below). 

We also manually transcribed each utterance from the CPS 

videos. Human transcribers viewed the video segment (with 

audio) of each coded utterance and transcribed the words spoken 

by the indicated speaker (each utterance was coded for an 

individual student). Speech from the other student, if present in 

the segment, was not transcribed. Prior to transcription, 

guidelines were established among the human transcribers to 

ensure consistency in transcribing informal words or phrases 

(e.g., gonna, c’mon).  

Because the segmented utterances sometimes contained speech 

from both speakers, we had alignment inconsistencies, as the 

ASR transcribed all words in a segment while the human 

transcripts only contained words spoken by the indicated student. 

To better assess ASR accuracy, we randomly sampled 10 

utterances from each CPS session (8.5% of the data) and re-

transcribed the utterances to include all words spoken in the 

segment, regardless of speaker. We refer to this as the Human 

Transcript Subset. We then computed a word error rate (WER) 

[9] for each utterance in this subset defined as (substitutions + 

insertions + deletions) / (words in human transcript), using the 

python package Jiwer [70]. 

2.4 Analyzed Dataset  
Our dataset contains 74 CPS task sessions from 44 teams. This 

includes 30 teams with both the math and physics tasks in the 

dataset, nine teams with only the math task and five teams with 

only the physics task. 18 of the 74 sessions occurred in the lab, 

and the remaining 56 sessions occurred in school environments. 

The dataset consists of 8,660 utterances coded with CPS skills, 

and corresponding transcripts. Of these utterances, 2,751 (32%) 

were from lab sessions and the other 5,909 (68%) were from 

school sessions. 

2.5 Machine Learning 
We adopted a supervised classification approach to predict the 

ground truth CPS skill for each utterance. We first implemented 

a bag-of-n-grams approach using a Random Forest Classifier, as 

recent literature [65] has shown this method to be effective for 

the classification of CPS utterances. Next, we explored deep 

transfer learning as a means to improve upon this method. In 

particular, we leveraged pre-trained language models and 

employed the popular Bidirectional Encoder Representations 

from Transformers (BERT) model [18]. Additionally, we tested a 

method (BERT-seq) which takes a sequence of utterances as 

input (the utterance to classify plus the previous and subsequent 

utterances) to capture contextual information, in order to 

determine if including adjacent utterances improves 

classification accuracy. We trained separate models (RF, BERT, 

and BERT-seq) using the ASR transcripts and human transcripts 

as input. 

2.5.1 Random Forest N-Grams 
We first followed the approach outlined in [65] and trained 

Random Forest Classifiers to predict the CPS skill for each 

utterance using n-gram features. We used unigrams (words) and 

bigrams (two-word phrases) as the features for our Random 

Forest classifiers. Trigrams and beyond were not used since very 

few unique trigrams (only 6) occurred in >1% of utterances. We 

explored excluding n-grams that occurred at less than a minimum 

frequency in the training dataset, testing values of 0% (no 

filtering), 1% and 2% as hyperparameters. We used the scikit-

learn [52] library’s implementation of the Random Forest 

Classifier with 200 estimators. 

2.5.2 BERT 
We used a transfer learning approach and fine-tuned pre-trained 

BERT models to predict the CPS skill for each utterance. This 

entailed starting with a BERT model pre-trained on a large 

amount of unlabeled data, then fine-tuning it on our dataset of 

transcribed utterances and corresponding labels (CPS skills). We 

first processed the transcribed utterances using WordPiece 

tokenization [61]. This process entailed splitting an utterance 

into a sequence of words, or parts of words. Each unique word or 

word piece was then converted to an integer (called a token) 

according to BERT’s pre-specified vocabulary. Finally, special 

tokens ([CLS] and [SEP]) were appended to the beginning and 

end of this sequence of integers and the sequence was provided 

as input to BERT (see Figure 2A). BERT mapped each input 

token to a 768-dimensional embedding, which serves as a 

semantic representation of the input token (the embedding of the 

special [CLS] and [SEP] tokens capture a semantic 

representation of the entire sequence of input tokens).  



 
 

Figure 2.  (A) The traditional BERT model used for text classification. (B) Our BERT-seq model which captures contextual 

information from the previous and subsequent utterances during classification. 

For classification, the embedding of the [CLS] token was used as 

input to a fully connected layer (classifier), which output 

predicted probabilities for the seven CPS skills. We used 

multiclass learning, meaning that all seven CPS skills were 

predicted by one model. 

2.5.3 BERT-seq 
We propose a method to incorporate contextual utterances during 

classification by creating a special input representation, without 

augmenting the BERT architecture. This method takes a 

sequence of three utterances as input (the utterance to classify 

plus the previous and subsequent utterances), which are used to 

train two separate BERT models, each including either the 

previous or subsequent utterance in the BERT input (see Figure 

2B). To add a pair of adjacent utterances to the input, we first 

processed each utterance individually using WordPiece 

tokenization as described above. The special [CLS] token was 

then added to the beginning of this sequence, and a [SEP] token 

was added to the end of both the first and second utterances. To 

classify the utterance, the embedding of the corresponding [SEP] 

token was used as input to a fully connected layer, which output 

predictions for the 7 CPS skills. Finally, the predicted 

probabilities of the previous and subsequent utterance models 

were averaged. This method of representing a sequence of 

utterances enables the self-attention layers of BERT to leverage 

contextual information from the previous and subsequent 

utterances, while still utilizing the pre-trained BERT weights. 

For both BERT and BERT-seq we started with the transformers 

[73] library’s implementation of the BertModel with the “bert-

base-uncased” pre-trained weights, and used the BertTokenizer 

to process our utterances. We then fine-tuned the models for 

three epochs using a batch size of 16. We found that fine-tuning 

beyond three epochs did not substantially improve model 

performance. 

2.5.4 Cross Validation 
We used team-level 10-fold cross-validation to assess the 

accuracy of our classifiers. With our dataset of 44 teams, this 

entailed training a model with utterances from 90% of teams (39 

or 40 teams), then evaluating the model’s predictive accuracy on 

a test set containing utterances from the 10% of teams withheld 

during training (4 or 5 teams). This process was repeated ten 

times, such that every team appeared in the test set once. To 

compute accuracy metrics, predictions from all ten folds were 

aggregated and a single metric was computed on the full dataset. 

Team-level cross validation yields a better assessment of the 

method’s generalizability to new teams because it ensures each 

model is never trained and evaluated on utterances from the 

same speaker. We used identical cross-validation folds for the 

RF, BERT and BERT-seq models as well as the human and ASR 

transcripts to ensure that differences in performance were not an 

artifact of the folds used. This experiment was repeated for 5 

iterations, and different randomized cross-validation folds were 

used for each iteration. 

3. RESULTS 

3.1 ASR Accuracy 
We compared WER in the lab and school subsets in order to 

quantify the speech recognition error that could be attributed to 

noisy school environments, as opposed to other factors such as 

difficulty recognizing children’s speech, whispering or 

mumbling, audio quality, or inevitable ASR mistakes. We used 

the Human Transcript Subset as described in Section 2.3 for this 

comparison. The distributions of WER in the lab and school 

environments are shown in Figure 3. We found that WER was 

much lower in the lab environment than in schools (mean WER 

of .54 and .76, median WER of .50 and .91, respectively), 

indicating that significant ASR error is due to noisy school 

environments. We performed a non-parametric Kruskal-Wallis 

test [40] to statistically compare WER in the lab and school 

samples, and found that they differed significantly (χ2(1) = 62.13, 

p < .001).  

As evident in Figure 3, a large proportion (47%) of the school 

utterances had a WER of 1 (compared to 19% for lab data), 

meaning no words were correctly recognized. However, WER 

was also high in the controlled lab environment, suggesting that 

speech recognition error may in part be attributable to factors 

beyond the complications of noisy school environments. 



 
Figure 3. Gaussian kernel density estimates of the 

distribution of word error rates in the lab and school 

environments.  

We also investigated the correlation between WER and ASR 

confidence to determine whether the confidence values produced 

by the ASR provided a good estimate of transcript accuracy. We 

found that WER and ASR confidence were significantly 

correlated (Spearman rho = -.74, p < .001). 

3.2 Model Comparison 
Next we compared the performance of our three NLP models 

(RF, BERT, BERT-seq). The models output a probability from 0 

to 1 that an utterance is coded with each CPS skill. Accordingly, 

we report the area under the receiver operating characteristic 

curve (AUROC) for each skill, a common accuracy metric for 

model performance [6] which takes into account the true positive 

and false positive tradeoff across classification thresholds. Mean 

AUROC scores (over the five iterations) for the RF, BERT and 

BERT-seq models, using both human and ASR transcripts are 

reported in Table 2. We also report a chance baseline, created by 

randomly shuffling the labels within each CPS session and 

computing accuracy accordingly. Because shuffling is within 

sessions, the AUROCs for the shuffled models will slightly 

deviate from the 0.5 chance baseline. To determine if the three 

model’s AUROC scores were significantly different for each CPS 

skill, we used a bootstrap method to statistically compare the 

AUROC values. Since five iterations of this experiment were 

conducted, we selected the model corresponding to the median 

AUROC value across the five iterations (for both human and 

ASR transcripts) on each CPS skill for statistical analysis. We 

performed this analysis in R using the pROC package [56] with 

2,000 bootstrap permutations. Finally, we adjusted the resulting 

p-values using a false discovery rate (FDR) correction [5] to 

account for multiple testing across the seven CPS skills. 

Without exception BERT-seq quantitatively yielded the highest 

AUROC scores for all seven CPS skills using both human and 

ASR transcripts, indicating that our method of incorporating 

adjacent utterances improves performance over single utterance 

classifiers. On average, BERT outperformed the RF model on 

both human and ASR transcripts, although there were some 

skills for which the RF AUROC scores were higher. From the 

statistical analysis described above, we found that with ASR 

transcripts BERT-seq had a significant advantage over the other 

two models for most skills (four of seven for BERT, five of seven 

for RF). We also found that there was no significant difference 

between BERT and RF for six of seven skills. 

Table 2. Mean AUROC values (across 5 iterations) of the RF N-gram, BERT, and BERT-seq models on ASR and 

Human transcripts for all CPS skills. 

CPS Skill ASR Transcripts  Human Transcripts   

 
RF BERT BERT-seq  RF BERT BERT-seq  Shuffled 

Sharing Information 
0.711 0.745 R 0.756 R  0.837 0.866 R 0.877 R  0.540 

Establishing Shared Understanding 
0.713 0.724 0.740 RB  0.872 0.894 R 0.907 RB  0.509 

Negotiating 
0.721 0.719 0.741 B  0.896 0.901 0.916 RB  0.510 

Executing 
0.745 0.767 0.784 R  0.897 0.914 R 0.926 R  0.574 

Maintaining Communication 
0.673 0.667 0.750 RB  0.849 0.853 0.901 RB  0.557 

Monitoring 
0.632 0.594 0.677 RB  0.812 0.792 0.843 RB  0.513 

Planning 
0.700 0.692 0.718  0.861 B 0.818 0.872 B  0.502 

Micro Avg. 
0.773 0.782 0.799  0.887 0.895 0.914  0.607 

R and B indicate the AUROC score was significantly higher than the RF and/or BERT models, respectively. Neither RF nor BERT ever 

outperformed BERT-seq. 



We observed a similar pattern on the human transcripts, where 

BERT-seq significantly outperformed BERT on five of seven 

skills and RF on six of seven skills. Interestingly, on human 

transcripts the advantage of BERT over RF increased, with 

BERT having significantly higher scores on three skills, while 

RF was significantly better on only one. This finding suggests 

that with high quality transcripts which accurately capture the 

content of an utterance, BERT was the better model, whereas 

with noisy ASR transcripts there was no clear difference. 

These results indicate that BERT-seq quantitatively 

outperformed both the traditional BERT and the RF n-gram 

approach for all seven CPS skills, using both the human and 

ASR transcripts. However, the statistical analysis revealed that 

for some CPS skills, this advantage was not statistically 

significant. As BERT-seq was the best model across CPS skills, 

we refer to these results in our comparison of human and ASR 

transcripts, and throughout the rest of this paper.  

3.3 ASR vs. Human Transcripts 
We found that using the ASR transcripts as input, our best model 

(BERT-seq) was able to accurately classify the seven CPS skills, 

yielding a micro-average AUROC score of .799. However, when 

the human transcripts were used, this average increased to .914 

(see Table 2). We compared the human and ASR transcript 

results using the bootstrap method described above, and found 

that the human transcript AUROC scores were significantly 

(FDR corrected p < .05) higher than the ASR transcript scores 

for all seven CPS skills, an unsurprising result given the high 

word error rates in the ASR transcripts. However, we note that 

despite significant loss in performance due to speech recognition 

error, our model easily outperformed a shuffled baseline (micro-

average AUROC of .607), supporting the hypothesis that CPS 

skills can be automatically predicted from ASR transcripts.  

3.4 Classification Accuracy in Lab and School 

Environments 
Next we compared classification accuracy in the lab and school 

environments in order to investigate the extent to which higher 

rates of ASR error in the school subset affected model 

performance. We report AUROC scores for the lab and school 

environments in Table 3. We found that on average, 

classification accuracy was substantially lower in the school 

subset compared to the lab subset (micro-average AUROC of 

.783 and .830, respectively). Further, for every individual skill, 

AUROC scores were quantitatively higher in the lab subset than 

in the school subset, with differences in AUROC values for 

individual skills ranging from .031 (Executing) to .102 

(Negotiating). We again used the bootstrap method to 

statistically compare AUROC scores in the lab and school for 

each skill and found that scores were significantly higher in the 

lab subset for five out of seven CPS skills (see Table 3). 

3.5 Classification Accuracy as a Function of 

ASR Confidence 
Lastly, we examined the relationship between ASR confidence 

and classification accuracy. As discussed in section 3.1, the ASR 

confidence is a good proxy for word error rate, as the two values 

are significantly correlated. Therefore, we separated our 8,660 

utterances into ten ASR confidence bins (0.0 – 0.1, etc.) and 

computed the micro-average AUROC score for each bin. The 

distribution of utterances and corresponding AUROC scores for 

each bin are shown in Figure 4A and 4B, respectively. Figure 4B 

also shows the human transcript AUROC score as a benchmark 

of the accuracy that would be expected under conditions of near-

perfect speech recognition. The shuffled baseline is also shown 

to visualize improvement over chance. 

Table 3. Mean AUROC scores (across 5 iterations) 

for each CPS skill in Lab and School environments. Results 

are from the BERT-seq model using ASR transcripts. Values 

marked with * were significantly higher in the Lab vs. 

School. 

CPS Skill Lab School 

 AUC Base 

Rate 

AUC Base 

Rate 

Sharing Information 0.782* .25 0.743 .27 

Establishing Shared 

Understanding 

0.786* .26 0.716 .25 

Negotiating 0.807* .18 0.705 .15 

Executing 0.804 .15 0.773 .13 

Maintaining 

Communication 

0.803* .03 0.717 .08 

Monitoring 0.701 .05 0.663 .07 

Planning 0.760* .06 0.688 .04 

Micro Avg. 0.830  0.783  

We found that a large proportion of utterances (20%) fall in the 

[0.0 - 0.1) bin, indicating that the ASR had little to no confidence 

in their content. In fact, nearly all (97%) of the utterances in this 

bin have an empty ASR transcript, meaning no words were 

recognized during the utterance’s segmented time window. In 

many cases, this occurred due to the students whispering or 

mumbling, which the ASR was unable to recognize. Excepting 

the significant zero inflation, the utterances appeared to be 

normally distributed around the [0.6 - 0.7) bin. 

We observed a strong correlation between ASR confidence bin 

and classification accuracy (Spearman rho = .94, p < .001). 

Unsurprisingly, we found that for low confidence transcripts (< 

0.3) a substantial gap exists between the ASR transcript AUROC 

score and the benchmark human transcript score (see Figure 4B). 

On these low confidence transcripts, model performance is near 

the shuffled chance baseline. Interestingly, despite many (77%) 

of these low confidence transcripts containing no words, the 

model was still able to outperform the chance baseline by 

learning the distribution of skills among empty transcripts in the 

training data. We found that accuracy increases steadily among 

the medium confidence transcripts (0.3 - 0.7). For high 

confidence transcripts (≥0.7), AUROC scores are near (though 

still lower than) the benchmark human transcript values. The 



relationship between ASR confidence and classification accuracy 

indicates that it might be viable to filter out utterances with low 

confidence to improve reliability for downstream applications.  

 
Figure 4. (A) Distribution of ASR confidence on all 8,660 

utterances. (B) Model accuracy as a function of ASR 

confidence. Micro-average AUROC scores across the 7 CPS 

skills (with 95% CI across 5 iterations) are plotted for 

Human and ASR transcripts. 

4. DISCUSSION 
We investigated the feasibility of using automatic speech 

recognition and natural language processing to automatically 

classify student speech with CPS skills using data collected in 

both lab and real-world school environments. We compared 

performance using imperfect ASR transcripts with human 

transcripts, investigated differences between the lab and school 

environments, and explored three NLP approaches including bag-

of-n-grams and deep transfer learning.  In the rest of this section 

we discuss our main findings, applications of our models, as well 

as limitations and future directions of research.  

4.1 Main Findings 
We found that it is feasible to use ASR to transcribe middle and 

high school student’s speech during CPS in both lab and school 

environments. However, we found that significant speech 

recognition error is introduced when speech is recorded in 

schools (mean WER of .76), likely as a result of noisy 

environments and distractions from other students. That said, 

speech recognition error was also high in the lab environment 

(mean WER of .54), suggesting that there may still be 

fundamental limitations associated with using ASR on children’s 

speech in the context of remote CPS.  

Despite imperfect speech recognition, we demonstrated that it is 

possible to automatically predict CPS skills from student speech 

in a real-world school environment. We built team-independent 

models that were able to predict CPS skills with reasonable 

accuracy (micro-average AUROC of .80) using ASR transcripts. 

Importantly, this result outperformed a shuffled baseline (micro-

average AUROC of .61) by a significant margin. This finding is 

encouraging because it was previously unknown whether ASR 

could yield transcripts of sufficient quality to model CPS skills in 

noisy environments. Further, we demonstrated that by using 

high-fidelity human transcripts, this accuracy could be 

significantly improved (micro-average AUROC of .91). We 

demonstrated that in the absence of ASR error our NLP models 

were highly accurate, suggesting a useful upper bound of what 

can be achieved from spoken content alone. 

We also improved upon NLP approaches previously used in CPS 

literature, demonstrating the advantage of deep transfer learning 

over standard classifiers for modeling CPS language. We found 

that on average, using both ASR and human transcripts, the deep 

transfer learning model (BERT) achieved slightly better accuracy 

than the Random Forest n-gram model (though the two were 

statistically tied for 3/7 CPS skills with human transcripts and 

6/7 skills with ASR transcripts). This finding was unsurprising 

given that pre-trained language models have achieved state-of-

the-art performance on many NLP benchmark tasks, including 

text classification.  

Importantly, we found that we were able to further improve 

classification accuracy by constructing an input representation 

that enables BERT to capture information from adjacent 

utterances. This method showed significant improvement over 

the single utterance BERT and RF models, providing preliminary 

evidence of its viability. This finding suggests that in CPS, the 

context of an utterance (what was said before and after) may be 

important for accurate identification of particular CPS skills.  

Finally, we examined the relationship between ASR confidence – 

a proxy for transcription quality – and classification accuracy. 

We found that the two were highly correlated, suggesting that 

downstream applications may be able to improve reliability of 

predictions by filtering out low confidence transcripts.  

4.2 Applications 
A key application of this work is the automatic assessment of 

CPS skills from open-ended speech in classrooms and beyond. 

As previously discussed, analyzing verbal communication for 

evidence of CPS skills is a costly and time-intensive process 

when trained human coders are used. Our findings suggest that 

automated methods using ASR and NLP may provide a viable 

alternative to the human-coding process. These automated 

methods hold great potential in improving the assessment and 

training of CPS skills, a priority of modern education [49]. 

However, given the imperfect accuracy of our models, and 

unanswered questions regarding how this approach may 

generalize to students with differing communication styles or 

cultural and linguistic backgrounds, this approach should be 

limited to formative assessment [63] focused on learning and 

improvement, rather than evaluation.  

Our approach could advance this goal in several ways. For 

example, automatically generated reports could be sent to a 

teacher monitoring many groups of students engaged in CPS, 

informing the teacher of the extent to which each group is 

demonstrating CPS skills. Such a system could help the teacher 



identify which groups need support and allocate their limited 

presence toward assisting those groups. Similarly, these reports 

could be used to identify individual student’s strengths and 

weaknesses, and set appropriate goals for improvement. For 

instance, a student who frequently shares information yet seldom 

engages in negotiation or establishing shared understanding 

could be encouraged to listen to the ideas of their teammates and 

work to build on those ideas together. 

In addition to passive assessment and off-line feedback, this 

approach could be leveraged by next-generation intelligent 

systems that actively monitor ongoing CPS and dynamically 

intervene in real time to yield improved CPS outcomes [15], or 

provide personalized on-line feedback to students. For example, 

a group frequently engaging in off-topic conversation could be 

prompted by the system to focus back on the problem-solving 

task, or a particular student within a group who hasn’t shared 

information could be encouraged to share their ideas with the 

team. The specific intervention strategies, including when to 

intervene, how to present the intervention, and who the 

intervention should be targeted at (whole group vs. individual 

student) await design, testing, and refinement.  

Importantly, a technology devised to assist in the training and 

assessment of CPS does little good if it is confined to the lab. 

Thus, the present results take a step towards the development of 

a system that can support CPS in real-world classrooms by 

monitoring open-ended verbal communication for CPS skills. 

4.3 Limitations 
There were some limitations of this work. First, although we 

used an automated approach for utterance transcription and CPS 

skill prediction, the sessions were segmented into utterances 

beforehand by human coders. This is a limitation because a fully 

automated pipeline would require the ASR to automatically 

detect and segment recorded speech into individual utterances, 

an already difficult task that may be further complicated by noisy 

school environments or the peculiarities of children’s speech. 

Another related limitation is that due to the utterance 

segmentation and ASR transcription process we used, our ASR 

transcripts contain all speech that was recognized during an 

utterance’s segmented time window. This means that some ASR 

transcripts contain words from both speakers, which introduces 

alignment inconsistencies between the ASR transcript and the 

coded CPS skill because utterances were coded at the individual 

student level. In particular, this introduces noise into the ASR 

transcripts when student’s utterances overlap. 

Another limitation of this work is that we considered only 

linguistic features to predict the coded CPS skills. We expect 

that model performance can be improved by modeling not only 

what students say (language), but considering how they say it 

(acoustic-prosodic information) and in the context of what 

they’re doing (task-specific information). We hypothesize that 

the inclusion of these additional modalities may particularly 

improve performance for low confidence ASR transcripts, where 

the language transcribed by the speech recognizer is either 

missing altogether, or is a poor representation of what was 

actually said. Finally, although we demonstrated that our method 

for capturing contextual information from adjacent utterances 

improved accuracy, we did not compare this with other methods 

for incorporating contextual utterances such as conditional 

random fields or recurrent neural networks. 

4.4 Future Work 
The findings and limitations discussed in this section present 

several possibilities for improvement in future research. First, in 

order to develop a fully automated approach for modeling CPS 

skills, we plan to incorporate automatic utterance segmentation 

and speaker diarization into our ASR pipeline. Further, we plan 

to explore methods for incorporating information from other 

modalities in addition to language. For instance, including 

features such as acoustic-prosodic information, task context, 

facial expression, or body movement may enable more accurate 

prediction of CPS skills in cases where ASR fails to capture the 

content of an utterance. 

Another direction of future research involves further exploration 

of how contextual utterances can be used to improve 

classification accuracy. We demonstrated a method for 

incorporating adjacent utterances in our model input, which 

improved performance over single utterance classifiers. In future 

work, we will explore methods for capturing contextual 

information beyond the previous and subsequent utterances (e.g., 

the five previous utterances). We also plan to investigate how the 

approach demonstrated in this paper, which leverages the 

model’s attention mechanism to capture context, compares with 

other approaches (e.g., recurrent neural networks).  

In addition to exploring methods for improving the accuracy of 

our models, we plan to investigate the utility of our CPS models. 

An open question is how accurate model predictions need to be 

to provide useful and actionable estimates for assessment, 

feedback, or intervention. Specifically, recent work [2, 25] has 

clustered students using the frequency of CPS skills to derive 

theoretically grounded profiles of collaborative problem solvers 

(e.g., active collaborators, social loafers). We plan to investigate 

whether model-derived estimates of CPS skill frequencies will 

yield high agreement to the clustering produced using human 

codes. 

5. CONCLUSION 
We combined automatic speech recognition and natural language 

processing to automatically predict CPS skills from student 

speech during problem solving in both lab and real-world school 

environments. Our findings suggest that despite significant 

speech recognition error in school environments, it is possible to 

predict expert-coded CPS skills using automatically generated 

transcripts. These findings open many possibilities for next-

generation technologies that can further the goal of improved 

CPS training, assessment, and support in schools.  
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