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Abstract 

Given significant concerns about fairness and bias in the use of artificial intelligence (AI) and 

machine learning (ML) for psychological assessment, we provide a conceptual framework for 

investigating and mitigating machine learning measurement bias (MLMB) from a psychometric 

perspective. MLMB is defined as differential functioning of the trained ML model between 

subgroups. MLMB manifests empirically when a trained ML model produces different predicted 

score levels for different subgroups (e.g., race, gender) despite them having the same ground-

truth levels for the underlying construct of interest (e.g., personality), and/or when the model 

yields differential predictive accuracies across the subgroups. Because the development of ML 

models involves both data and algorithms, both biased data and algorithm training bias are 

potential sources of MLMB. Data bias can occur in the form of nonequivalence between 

subgroups in the ground truth, platform-based construct, behavioral expression, and/or feature 

computing. Algorithm training bias can occur when algorithms are developed with 

nonequivalence in the relation between extracted features and ground truth (i.e., algorithm 

features are differentially used, weighted, or transformed between subgroups). We explain how 

these potential sources of bias may manifest during ML model development and share initial 

ideas for mitigating them, recognizing that new statistical and algorithmic procedures need to be 

developed. We also discuss how this framework clarifies MLMB but does not reduce the 

complexity of the issue.  

 

 

  



 

 

A Conceptual Framework for Investigating and Mitigating Machine Learning 

Measurement Bias (MLMB) in Psychological Assessment 

 

With the growing pervasiveness of artificial intelligence (AI) and machine learning (ML) 

applications throughout society, concerns have intensified over systematic inequalities and 

unfairness that such applications may create or perpetuate. Multiple examples of bias have 

emerged across fields and applications of algorithms in society. In the business space, an AI tool 

for resume screening developed by Amazon favored men over women (Dastin, 2018). In the 

healthcare space, a popular algorithm used to identify patients with healthcare needs generated 

differential risk scores for Black versus White patients (such that sicker Black patients are 

assigned risk scores equivalent to healthier White patients), which can cause disparities in 

healthcare access (Obermeyer et al., 2019). In the context of surveillance and security, facial 

recognition technology has been shown to be less accurate for darker-skinned females than 

lighter-skinned males (Buolamwini & Gebru, 2018; Najibi, 2020), which can contribute to 

greater racial inequities such as differential rates of false indictments. 

In psychology and related fields, there has been a surge of research utilizing AI and ML 

to automate and/or guide assessments and decisions about people (i.e., ML-based psychological 

assessment, or ML measurement in short), which are also increasingly incorporated into practice 

(Adjerid & Kelley, 2018; Harlow & Oswald, 2016; Woo, Tay, & Proctor, 2020). Researchers 

have investigated the validity of social media data for inferring personality (Kosinski, Stillwell, 

& Graepel, 2013; Park et al., 2015) and depression (De Choudhury, Gamon, Counts, & Horvitz, 

2013), video data for capturing emotion (Dhall, Ramana Murthy, Goecke, Joshi, & Gedeon, 

2015), college applications for prospectively predicting graduation (Hutt, Gardner, Duckworth, 

& D'Mello, 2019), and narrative comments for estimating job performance ratings (Speer, 2018). 

In industry, organizations are increasingly adopting ML measures to assess applicants’ 



 

 

psychological attributes and aid (or even replace) human judgments (e.g., Campion, Campion, 

Campion, & Reider, 2016).  

Across these domains, significant concerns have been raised about potential bias, 

unfairness, and discrimination, which are largely untested (Oswald, Behrend, Putka, & Sinar, 

2020). Failure to adequately address measurement bias in ML measurements can have far-

reaching effects as ML measurements are often used to guide (or even automate) high-stake 

decisions with real-life consequences. For example, using biased automated assessments of job 

interviews may disproportionately exclude underrepresented (gender/racial) minorities from a 

job or occupation (Booth et al., 2021). In other instances, ML measurements are increasingly 

applied to clinical and medical diagnosis (Hosseinifard, Moradi, & Rostami, 2013; Kononenko, 

2013), and biased ML measurements can lead to inequalities in the provision of mental health 

care.  

One significant barrier to systematic research on the topic of ML bias (also referred to as 

“algorithmic bias”) is the lack of methodological guidelines for defining and empirically 

investigating ML bias in its full complexity. Given its prevalence in psychology, our paper 

focuses on issues of bias in ML measurements, where ML is used to infer (i.e., assess or 

measure) individuals’ psychological attributes and experiences such as knowledge, skills, 

abilities, personality, attitudes, and emotions. As such, our goal is to provide an integrative 

conceptual framework for investigating and mitigating measurement bias in ML measurements. 

Within this framework, we define what machine learning measurement bias (MLMB) is, 

describe how it can manifest in ML measurements, and delineate key sources of MLMB to 

inspire strategies for mitigating bias. In doing so, we draw connections to the existing 

psychological literature on measurement bias.   



 

 

Our paper is structured as follows: (a) we describe how ML models are typically 

constructed in psychology; (b) we describe measurement bias and, by extension, MLMB and 

how it empirically manifests in psychological assessment; and (c) we delineate the possible 

sources of MLMB (biases in data and algorithms) and offer possible directions for testing and 

mitigating these sources of MLMB. Researchers familiar with ML may wish to skip straight to 

the section, Defining and Examining Machine Learning Measurement Bias. Our goal is to 

explicate overarching conceptual issues (rather than statistical issues and procedures) and 

address growing concerns about ML bias and fairness by developing a framework for researchers 

and practitioners – in psychology and beyond – to identify and address MLMB.  

Fundamentals of Traditional Machine Learning for Psychological Applications 

 This section introduces ML and key terms typically used for ML measurement (see Table 

1 for terms and definitions). Arthur Samuel (1959) coined the term machine learning, which 

referred to computers, or machines, learning how to achieve a specific output using the input 

data provided. Simply put, ML entails the learning of a computational model (a computer 

program) from data rather than being explicitly programmed by humans. While ML is distinct 

from pattern recognition, it can be applied to learn patterns in the data (Anzai, 1992). There are 

two characteristics of ML. First, learning occurs because machines or computers can improve 

their predicted outputs over time as more data is provided. Second, learning in this context is a 

functional one, meaning that there is traditionally less concern about explaining how learning 

occurs–instead, increasing the accuracy of predicted outputs is evidence of learning. As such, 

ML is often thought of as advancing prediction rather than explanation in psychological science 

(Yarkoni & Westfall, 2017), though more recent advances also point to the importance of 

explanatory ML models (Gilpin et al., 2018). 



 

 

[Insert Table 1] 

 There are multiple ML approaches (see Ayodele, 2010), but for our paper, we focus on 

what psychologists and social sciences have heavily used: supervised ML (see Types of ML in 

Table 1). In supervised ML, computers are provided examples of inputs and outputs, and 

algorithms are trained to develop models of the relationship between them, as illustrated in 

Figure 1. The goal is to automatically predict the outputs from the given inputs. Therefore, even 

simple logistic and linear regressions between predictor variables (i.e., inputs) and outcomes 

(i.e., outputs) can serve as useful ML algorithms (D’Mello, Southwell, & Gregg, 2020). Often, 

psychologists use ML to refer to computers learning the relation between inputs and outputs in a 

single time period rather than creating a continuous learning system that improves over time (as 

traditionally envisioned; Samuel, 1959). When seeking to evaluate the ML model, researchers 

apply the trained ML model to new, previously unseen evaluation data. The ML model predicts 

outputs (i.e., ML predictions) that are compared to the known outputs—the higher the 

convergence (e.g., Pearson’s or Spearman rank-order correlation for continuous variables; 

accuracy, precision, recall, and/or F-1 scores for discrete variables) between ML predictions and 

known outputs, the greater the predictive accuracy. 

[Insert Figure 1] 

The application of ML in psychology can be further understood in terms of the 

characteristics of the data it is typically used to handle. This is also presented in Table 1 in our 

definition of ML. 

Inputs 

ML is typically used in psychological research when we use information gleaned from 

newer forms of data beyond surveys (e.g., text, video, voice) (Woo et al., 2020). These newer 



 

 

forms of data are usually included as inputs to predict outputs – e.g., using social media language 

(inputs) to predict personality (Park et al., 2015) or life satisfaction (Schwartz, Eichstaedt, Kern, 

Dziurzynski, Lucas, et al., 2013) (outputs), or using video data (inputs) to predict personality 

(outputs) (Hickman, Tay, & Woo, 2019; Hickman et al., 2021). Unlike typical numeric data from 

quantitative surveys, which are organized into rows (values) and columns (variables), these 

alternate forms of data (e.g., text, video, voice) are often referred to as “unstructured” data 

(however, this term is a misnomer since these data sources do have structure, for example, pixels 

in an image). Nevertheless, such data typically require additional computer processing to 

transform them into inputs to train the ML model (Chen & Wojcik, 2016). For example, 

computer programs can process and transform natural language text into many quantitative 

features (e.g., word counts, phrase counts) for analysis (Kern et al., 2016). See the “Machine 

Learning data” portion of Table 1.  

Additionally, the newer forms of data are often not designed and curated for a particular 

research purpose but are captured as part of a technological ecosystem. These “organic data” can 

nevertheless be applied to assess a psychological construct or address a research question. For 

example, emails, text messages, or social media activity are not designed to assess personality 

but can contain information about personality. In this context, ML may be viewed as a sieve 

designed to pick out relevant information from organic data. In contrast, “designed data” (see 

Roberts, 2011) such as surveys, interviews, and assessments are developed with the goal of 

obtaining specific types of information as part of the research design. For example, the use of 

Likert-type personality questions to assess personality.   

Also, ML is usually employed when psychology researchers are seeking to create a 

model from substantially more inputs (i.e., predictors) than what is typically handled with 



 

 

standard statistical techniques. For example, when we use ordinary least squares regression, we 

need to have enough sample size (n) for a set of input predictors to uniquely estimate the 

regression parameters (p). In other words, the number of parameters (p) needs to be smaller than 

our sample size (n) (Faraway, 2014). In ML, there are often many more parameters to be 

estimated than the sample size (i.e., p>>n) (e.g., Joel et al., 2020; Sheetal, Feng, & Savani, 

2020).  Algorithms can handle p>>n and includes methods to address overfitting when there are 

many predictors (Putka, Beaty, & Reeder, 2018). Many ML algorithms can also model nonlinear 

relationships between predictors and outcomes as well as capture multiple levels of interactivity 

among predictors (see D’Mello, Kappas, & Gratch, 2018 for illustration). Because of this, ML 

techniques can be useful with many predictors (i.e., p>>n scenario), even when using traditional 

surveys (vs. text, video, voice). However, we note that the highly multidimentional nature of 

organic data often creates a scenario where we have many predictors. For example, analyzing 

social media text data in terms of counts of single words can lead to many predictors due to the 

wide variety of words each individual uses. Similarly, video data is inherently multimodal since 

it contains nonverbal, paraverbal, and verbal information. 

 Algorithms 

ML algorithms essentially learn computational models (computer programs) from data. 

These models are designed for generalizability in that they aim to jointly optimize both fitting to 

the data (model fit) and generalizing to new data (model generalizability). The computational 

model can take on many forms, such as an equation, a set of rules, a table of probabilities, a 

decision tree, a forest of decision trees, or a neural network. For example, a simple algorithm 

may take the form of a linear regression equation that psychologists are familiar with: 

yi = β0 + β1x1 + β2x2 + … βpxp + ei  where i = 1, …, n  (Equation 1) 



 

 

yi denotes the output of interest, such as personality trait scores, β0 denotes the regression 

intercept, βp denotes the feature weights, xp denotes the features, such as social media text 

features, used as input predictors, and ei  denotes the error term. 

ML algorithms can go beyond the traditional linear modeling techniques (e.g., linear 

classification models) by modeling nonlinearity (e.g., random forest, support vector machines, 

and neural networks; see Glossary in Appendix for more information on ML algorithms). In 

other words, we can move beyond the assumptions of a linear relationship between inputs and 

output. For example, some ML algorithms can distinguish between clusters of data points 

arranged in the form of a target, with a bullseye (class A) and a surrounding ring (class B), in 

two-dimensional space by performing nonlinear transformations of the data (D’Mello, Kappas, 

& Gratch, 2018). Linear classification models would fail in this case because no line separates 

classes A and B. Several ML algorithms (e.g., decision trees) also inherently capture interactivity 

among predictors (e.g., high pitch predicts high extraversion but only when accompanied with 

loud speech – here, the interaction is between pitch and loudness). Although our discussions are 

focused on traditional ML models, we refer interested readers to the Appendix for information 

about Deep Neural Learning models. 

Outputs  

Another characteristic of ML is that researchers often use ML models to automatically 

predict outputs in new data. With supervised ML, researchers first provide training data with 

inputs and outputs to “train” ML algorithms. Once the trained ML models are created, they can 

be used to predict outputs (i.e., outcomes) from new input data. The outputs are typically 

psychological constructs of interest. For example, Park et al. (2015) trained an ML algorithm on 

the Facebook posts (i.e., social media language as inputs) of more than 60,000 users to predict 



 

 

their self-reported personality (i.e., personality as output). This ML model can then be used to 

automatically predict personality from Facebook users’ language (i.e., inputs) (Park et al., 2015). 

These outputs used for training and evaluating the ML models are referred to as ground truth in 

ML parlance. For instance, in the case of personality, ground truth typically comes from self-

reports (e.g., self-reported personality) or observer scores (e.g., observer-rated personality judged 

from social media posts). The ground truth can also come from other sources such as 

demographics (e.g., age, gender; Kosinski et al., 2013) or standardized test scores. Another term 

for ground truth is labeled data. For consistency with past work in psychology, we use the term 

ground truth (Tay, Woo, Hickman, & Saef, 2020). 

 In another example, which focuses on measuring health-related outputs, an ML algorithm 

may be trained using the occurrences and frequency of Google Searches of flu-related terms to 

predict flu trends within the United States (Ginsberg et al., 2009; Santillana, Zhang, Althouse, & 

Ayers, 2014). Ground truth in such a case would be localized CDC-reported flu statistics over 

time. Once the ML algorithm is trained, the goal is to automatically predict flu trends from recent 

frequencies of Google search terms related to the flu. An advantage of such an approach is that 

we can quickly obtain predicted flu statistics over time based on recent Google searches, much 

faster than a manual collection of flu statistics.  

 Further, an ML algorithm can be trained to forecast future trends using past longitudinal 

data (e.g., called forecasting, which uses time series analysis) (Jebb, Tay, Wang, & Huang, 

2015). For example, ML algorithms have been applied to predict future COVID-19 trends; these 

algorithms rely on COVID-19 statistics collected across the world as ground-truth inputs (Wang, 

Zheng, Li, & Zhu, 2020). Therefore, the inputs are past COVID-19 statistics, and the outputs are 

near-future COVID-19 statistics. The ground truth for evaluating the accuracy of these predicted 



 

 

outputs would be future, retrospectively collected COVID-19 statistics. Similarly, forecasting 

with ML algorithms can be applied to psychological constructs. 

At this juncture, it is important to note that ground truth does not necessarily represent 

objective truth, nor is the goal to engender philosophical discussions of what truth is. 

Researchers should view the term “ground truth” as data that is provided to ML models to 

predict. It has all the limitations of regular data, whether it be reliability or validity issues. To the 

extent that the ground truth is fallible, ML algorithms trained to predict such ground truth will 

provide fallible predictions (Tay et al., 2020). This is not to say that ML models should be 

dismissed because ground truth will never be perfect. Rather, the same types of critical 

evaluations applied to the typical statistical modeling of fallible outcomes in psychological 

research will need to be applied to ML models. For example, when using ordinary least squares 

regression to predict personality scores, we appraise how personality scores were obtained and if 

they were measured in a reliable and valid manner; the same concerns apply to ML models. 

Summary   

In short, (supervised) ML is typically applied in psychology – and beyond –when one or 

more of the following occur: (1) use of “unstructured” and/or organic data; (2) having many 

predictors resulting in p>>n; (3) modeling nonlinearity and interactivity; and (4) a goal of 

automatic prediction beyond training data (i.e., generalizability). This is summarized in Figure 1. 

Importantly, just as for traditional assessments, it is helpful to recognize that ML algorithms can 

exhibit measurement bias when trained on fallible inputs and outputs, and the algorithms may 

also be inadequate for capturing the relationship between inputs and outputs across subgroups, 

both of which can cause MLMB. 

Defining and Examining Machine Learning Measurement Bias 



 

 

In order to understand what MLMB is, we seek to first clarify that it is distinct from 

fairness. In the broad field of AI and ML, the term fairness is often used in concert with, or even 

interchangeably with, bias (e.g., Chouldechova & Roth, 2020). However, for clarity of 

communication and productive discussions moving forward, it is helpful to construe fairness as a 

broader concept that goes beyond measurement bias and MLMB. According to the Standards for 

Educational and Psychological Testing (American Psychological Association, American 

Educational Research Association, & National Council on Measurement in Education, 2014) and 

the Principles for the Validation and Use of Personnel Selection Procedures (2018), adopted as a 

policy statement of the American Psychological Association (APA), fairness is a social concept. 

In this vein, there are multiple meanings of fairness: (1) equal group outcomes; (2) equitable 

treatment of all in the measurement procedure; (3) comparable access to constructs measured in a 

procedure; and (4) lack of measurement bias and predictive bias. Notably, it does not consider 

the first notion of fairness — equal group outcomes (wherein subgroups obtain the same average 

scores) — as relevant to measurement bias. ML-based personality assessment (or prediction) 

may be picking up on genuine differences between subgroups. For example, with regard to 

personality, self-reports of extraversion, agreeableness, and neuroticism are generally higher in 

women than men (Weisberg, Deyoung, & Hirsh, 2011). Nevertheless, relying on these ML 

models for assessment to select individuals, such as recruiting students for college or hiring 

employees for work, may lead to adverse impact—selecting people from one subgroup 

disproportionately more than another subgroup (e.g., Hutt et al., 2019). This can be regarded as 

unfair in terms of a lack of equal outcomes between subgroups and, therefore, should be 

scrutinized to determine whether the construct used for selection may perpetuate inequality. In 

other words, one should consider whether the construct used to select individuals is fair – and 



 

 

this is arguably independent of the assessment procedure or the trained ML models. This concept 

is distinct from measurement bias, which is concerned with whether assessment instruments, and 

by extension trained ML models, accurately reflect genuine subgroup differences (or similarities) 

or are biased because they include systematic error that magnifies or diminishes such differences 

(or similarities).  

In the following sections, we first discuss how measurement bias is defined and 

investigated in the psychometrics literature. Then, we extend measurement bias to ML-based 

assessments, and we propose how MLMB may be defined and empirically examined (see Table 

2 for a summary)1.  

Measurement Bias 

Within the psychological measurement literature, the context of measurement bias is 

evaluating potential bias in psychological measures (e.g., personality measures, skill 

assessments, cognitive tests). Measurement bias is distinct from socio-cognitive bias which is 

found in human cognitive errors in judgments or attributions (e.g., West & Kenny, 2011) or 

human preference for the ingroup and prejudices against outgroups (e.g., Brewer, 1979).  

Psychological measures are assumed to be imperfect operationalizations or proxies of 

constructs (e.g., personality, social skills, emotional intelligence) that are not directly observable. 

Therefore in typical measurement models, constructs (as latent variables) are visualized as 

circles, and assessment items (as observed variables or indicators) are visualized as boxes. 

Observed scores for the assessment usually rely on an aggregation of assessment items or 

 
1 Due to space limitations, the current article does not cover all the traditional psychometric issues regarding 

reliability, validity, fairness, and bias that should be carefully considered when using ML models for psychological 

assessment. We encourage readers to refer to both the Standards (American Psychological Association et al., 2014) 

and the Principles (2018) that present information on these topics. We also recommend reviews that specifically 

discuss psychometric properties of ML by Bleidorn and Hopwood (2019), Tay et al. (2020), and Woo et al. (2020). 



 

 

indicators, and latent scores are typically inferred from confirmatory factor analysis (CFA) 

(Brown, 2006) or item response theory (IRT) (Drasgow & Hulin, 1990) models.  

[Insert Figure 2] 

In this context, measurement bias is defined as a differential relationship between the 

latent score (i.e., psychological construct score) and the predicted observed score (i.e., predicted 

score derived from CFA or IRT), or differential functioning of the measurement tool, across 

subgroups (e.g., males vs. females) (Drasgow, 1984). In the presence of differential functioning, 

the measurement model can produce different predicted (i.e., observed) score levels for 

individuals belonging to different subgroups despite them having the same latent (i.e., true) score 

level. As an example of this, Figure 2 “MB: Case 1” depicts predicted observed scores higher for 

Subgroup 1 compared to Subgroup 2 across all levels of the latent score. This form of 

measurement bias (known as non-compensatory measurement bias) can lead to different 

predicted score distributions between two subgroups despite equivalent latent score distributions. 

Specifically, Subgroup 1 has a higher mean level in the predicted score than Subgroup 2, 

although there are no mean level differences in the latent scores2.  

Another example of differential functioning is illustrated in Figure 2 “MB: Case 2” which 

depicts different predicted slopes between Subgroup 1 compared to Subgroup 2, where the same 

latent score leads to different predicted observed scores (except for where the lines cross). This 

form of measurement bias (known as compensatory measurement bias) can lead to the same 

predicted mean level score distributions, despite the presence of measurement bias. However, the 

 
2 Note that we have created simple illustrative examples where the subgroup latent score distributions are equivalent 

for didactic purposes; this is not a necessary condition for evaluating measurement bias. There are certainly multiple 

possibilities in how subgroup score distributions can differ. However, for space considerations, we do not go into 

details about those possibilities. 



 

 

predicted score variance of Subgroup 1 is larger than Subgroup 2 despite them having the same 

latent score variance3. 

Machine Learning Measurement Bias (MLMB) 

One definition of measurement is the numeric scaling of individuals along a theoretical 

continuum (Nunnally & Bernstein, 1994). Both CFA and IRT are measurement models that 

formally represent this in linking the observed numeric scores to the latent variable (i.e., 

construct) continuum. When applied to psychological assessments, ML can be regarded as a type 

of measurement model: It assigns ML-predicted numerical scores to individuals, aligning 

individuals along a construct continuum based on their input data. However, unlike CFA and 

IRT models, the construct continuum is proxied using the ground-truth score, which itself is an 

observed score. CFA and IRT models seek to optimize the measure’s function relating the latent 

score to the observed score (shown in Figure 2). The ML models, on the other hand, seek to 

optimize the scoring algorithm’s function by utilizing input data (e.g., text, videos) to predict the 

output ground-truth data. Therefore, while ML measurement models are analogous to CFA and 

IRT measurement models, they represent a fundamentally different type of measurement 

approach. 

That said, in discussing MLMB, we focus on the relationships between the ground-truth 

score and the predicted ML score (illustrated in Figure 2). This is because we are seeking to 

evaluate whether the predicted ML score accurately reflects genuine subgroup differences (or 

 
3 Importantly, measurement bias is not defined as differences across groups in means and/or variances. Rather, score 

differences in groups are empirical manifestations of (thus can serve as evidence for) measurement bias. To this end, 

researchers have developed procedures for examining the effect of measurement bias on predicted mean score 

differences between subgroups. For instance, procedures have involved integrating subgroup line differences over a 

chosen density distribution to examine the effect of measurement bias on mean differences. It is akin to comparing 

subgroup mean differences assuming the same underlying distribution. See Nye and Drasgow (2011) and Stark, 

Chernyshenko, and Drasgow (2004). By extension, this can also impact predicted observed scores in their variances 

for the same latent distributions. 



 

 

similarities) in the ground truth or are biased because they magnify or diminish such differences 

(or similarities). MLMB occurs when there is a differential relationship between the ground-truth 

score (i.e., the observed score produced by the assessment – or the score ML model seeks to 

predict) and the ML-predicted score across subgroups. In addition, the focus of MLMB is on 

trained ML models; in other words, ML models that have been developed for assessing 

individuals.  

MLMB is defined as differential functioning of the trained ML model between 

subgroups. MLMB manifests empirically when a trained ML model produces different predicted 

score levels for individuals belonging to different subgroups (e.g., race, gender) despite them 

having the same ground-truth level for the underlying construct of interest (e.g., personality), 

and/or when the model yields differential predictive accuracies across subgroups.  

Different Subgroup Predictions for Equivalent Ground-Truth Levels between Subgroups 

The examples shown in the right half of Figure 2 parallel what was described for 

traditional measurement bias, except that the types of scores being modeled are different. In 

“MLMB: Case 1,” the ML model predicts a higher score for Subgroup 1 compared to Subgroup 

2 across all levels of the ground-truth score. In other words, individuals in different subgroups 

who have the same observed score systematically receive different ML predicted scores. Overall, 

MLMB leads to a higher predicted mean level for Subgroup 1 despite equivalent ground-truth 

score distributions. In “MLMB: Case 2,” the ML model differentially predicts scores for 

Subgroup 1 and Subgroup 2 (except for where the lines cross). Overall, MLMB leads to a larger 

predicted score variance in Subgroup 1 compared to Subgroup 2 despite equivalent observed 

score distributions.  

Differential Model Accuracy between Subgroups  



 

 

Another way that MLMB can manifest is in terms of differential accuracy—or an ML 

model that is not equally accurate across subgroups. A visual way to think about this is that the 

prediction line between the ML predicted scores and the ground-truth score for Subgroup 1 does 

not fit as well for Subgroup 2. Consider that in Figure 2, “MLMB: Case 1” that the intercept is 

higher for Subgroup 1 than Subgroup 2; and “MLMB: Case 2” that both the slopes and intercepts 

differ between Subgroup 1 and Subgroup 2. Traditional procedures for testing measurement bias 

typically rely on CFA or IRT model-fit statistics to evaluate if the measurement models function 

similarly well for each subgroup (Cheung & Rensvold, 2002; Tay, Meade, & Cao, 2015). For 

example, one can examine whether model-data fit improves substantially when separate models 

are specified across two subgroups as compared to a common model, which would indicate that 

the measurement models are fundamentally different, and hence, that measurement bias exists. 

Within ML, the notion of model functioning, or model-data fit, is tied to predictive 

accuracy: Are the ML model outputs equally accurate between subgroups (i.e., are the 

differences in the levels of convergence between predicted scores and ground-truth scores similar 

between subgroups)? As discussed previously and shown in Figure 1, ML algorithms are trained 

with inputs and outputs (i.e., ground truth), and ML predictive accuracy is evaluated in terms of 

how well predicted outputs match the ground truth. There are multiple metrics for evaluating the 

predictive accuracy of categorical outcomes (e.g., accuracy, precision, recall, F1, AUROC) 

(Kobayashi, Mol, Berkers, Kismihok, & Den Hartog, 2018) and continuous outcomes (e.g., 

correlation, R2, mean squared error) (Putka et al., 2018), and any of these could be used to 

evaluate differential accuracy between subgroups of interest. One can use a variety of metrics to 

evaluate whether ML predictive accuracies differ between subgroups—which would be evidence 



 

 

of MLMB. This is represented in Figure 1 when the ML model is operationally evaluated 

between two subgroups.  

Empirical Investigations of MLMB 

Translating the conceptual meaning of MLMB to its empirical manifestation requires 

careful consideration of the level of analysis, along with a recognition of the strengths and 

weaknesses of various methodological approaches. With regard to “different subgroup 

predictions for equivalent ground-truth level,” one can examine whether MLMB occurs at a 

specific range of ground-truth scores or on the overall distribution (i.e., means, variances, 

skewness, etc.). With regard to “differential model accuracy between subgroups,” one can 

examine whether MLMB occurs at the predictive accuracy level; one can also explicitly create a 

(regression) model to examine whether the relationship between ground-truth scores and ML 

predicted scores significantly differs between subgroups. We briefly describe each of the four 

strategies below. 

Ground-Truth Score Level 

To assess MLMB, one can sample individuals from different subgroups with the same 

ground-truth score levels and score them using the trained ML model. If the trained ML model 

produces different predicted subgroup scores, MLMB exists. With this approach, it is important 

to assess multiple ground-truth levels because certain levels may not reveal different subgroup 

predicted scores (e.g., Figure 2 MLMB: Case 2 where the subgroup lines cross). A limitation of 

this approach is that one needs sufficient sample sizes at each ground-truth level between 

subgroups. Practically, this method would often entail binning individuals into different ground-

truth score levels; categorizing a continuous ground-truth variable may not be statistically ideal. 

Ground-Truth Distribution Level  



 

 

Another way to assess MLMB is by obtaining subgroup samples with the same ground-

truth distributional properties (e.g., mean and variance). Conceptually, if there is no MLMB, the 

trained ML model should produce equivalent predicted score distributions between subgroups 

(e.g., mean and variance). An advantage of this approach (as opposed to the first approach 

described above) is that we can infer whether the effects of MLMB translate to overall 

measurement bias across subgroups. For example, how might MLMB affect the mean-level 

inference between subgroups? At the same time, one challenge with this approach is that 

obtaining sufficient subgroup samples with the same ground-truth distributions can be difficult 

because one has to recruit matched samples (i.e., matched group designs) or create statistically 

matched samples from a larger sample. Another issue is that matching may reduce the 

representativeness of the samples4. Further, at this point, it is not known how well these different 

operational procedures can create truly equivalent ground-truth distributions. 

At the ground-truth distribution level, an alternative to matching subgroup samples on 

their ground-truth distributions is to examine whether the ML predicted scores accurately reflect 

the raw unmatched observed ground-truth subgroup distributions. MLMB occurs to the extent 

that the ML predictions systematically enlarges or reduces the extant subgroup ground-truth 

distributional differences (e.g., ML predicted scores exhibit larger subgroup mean differences 

than ground-truth scores). An advantage of this approach is that it does not require matching 

subgroup samples on ground-truth distributions. A potential downside is that differences in ML 

 
4 Some readers may be concerned about potential problems of generalizability with matching samples (e.g.,  

Thorndike, 1942). However, there are statistical methods to address matched sampling to infer causal effects (Rubin, 

2006). Also, it is important to note that the goal of ML model training is not to infer causal manipulation effects on 

matched samples, and thus the issue of generalizability in the experimental findings is less applicable in the current 

context. 



 

 

predictions cannot be straightforwardly interpreted as evidence of MLMB, but needs to be 

compared to extant ground-truth distributional differences. 

A general limitation of assessing MLMB at the distributional level is that the subgroup 

ground truth differences may be accurately recovered in terms of the ML predicted scores despite 

the presence of MLMB. For example, ML predicted scores show no subgroup mean level 

differences in Figure 2 MLMB: Case 2 due to the compensatory nature of MLMB across the 

ground-truth continuum. In other words, detecting subgroup distributional differences in ML 

predicted scores when none is expected based on equivalent subgroup ground-truth distributions 

would indicate MLMB; but, detecting no subgroup distributional differences in ML predicted 

scores are insufficient for stating that there is no MLMB.  

Predictive Accuracy  

In terms of model functioning, one can assess MLMB by examining whether the ML 

model is equally accurate across subgroups. Researchers can use one or more predictive accuracy 

metrics and compare subgroups. An advantage of this approach is that it does not require 

equivalent subgroup ground-truth distributions. That said, we need to be aware that subgroup 

differences in ground-truth distributions can affect the magnitude of these predictive accuracy 

metrics. For example, range restriction (a methodological artifact) on a subgroup’s ground-truth 

distribution can attenuate correlation estimates (see Sackett & Yang, 2000). More research is 

needed to understand how different predictive accuracy estimates can be affected by different 

subgroup sample sizes and distributions and ways to correct them.  

Modeling Ground-Truth Scores and ML Predicted Scores  

Differential model functioning can also be examined by applying a (regression) model 

between the ground-truth scores and ML predicted scores to determine if the models between 



 

 

subgroups are significantly different. For example, applying a regression model to determine 

whether a common regression line fits both groups equally well or if there need to be two 

separate regression lines (as shown in Figure 2). Moderated multiple regression is typically 

conducted in assessing predictive bias5 of psychological assessment (i.e., is there a differential 

relationship between psychological assessment scores and a criterion of interest such as cognitive 

ability test and academic performance; Bonaccio, Reeve, & Winford, 2012). Similar to the 

predictive accuracy approach, this approach does not require equivalent subgroup ground-truth 

distributions. However, it should also be noted that methodological artifacts (e.g., subgroup 

sample sizes, range restriction, subgroup means) can alter the statistical inferences (Aguinis, 

Culpepper, & Pierce, 2016; Aguinis & Stone-Romero, 1997). 

Additional Remarks 

 The next section illustrates the possible sources of MLMB and corresponding mitigation 

strategies. The goal is to help researchers concretely understand the possible causes of MLMB 

and how to identify them empirically. While MLMB can empirically manifest in multiple ways, 

we have chosen to focus our discussion on a scenario where there is ground-truth distributional 

equivalence (e.g., equivalent mean levels and variances) between subgroups of interest. In the 

presence of equivalent ground-truth distributions across subgroups, MLMB can be manifested 

(thus empirically tested) in two ways. (1) Different subgroup predictions for equivalent ground-

truth level: When comparing ML predicted scores between subgroups with the same ground-

 
5 In psychometric terms, predictive bias is distinct from measurement bias (Principles, 2018). Predictive bias 

concerns relational equivalence between predictor scores and criterion (i.e., outcomes of interest beyond the 

measured construct) between subgroups. For example, do tests (predictor scores) similarly predict graduate rates 

(criterion) between subgroups? Measurement bias concerns the relational equivalence between latent scores and 

predicted observed scores between subgroups. For example, does the same level of latent score on extraversion 

show the same predicted observed score on an extraversion assessment between subgroups? Although they are 

conceptually distinct, the same techniques for evaluating relational equivalence in predictive bias can be applied to 

MLMB. 



 

 

truth mean levels, any mean difference that emerges would indicate MLMB. In other words, 

MLMB is manifested in subgroup mean-level differences. (2) Differential model functioning 

between subgroups: When comparing differences in model functioning, simplifying it to the case 

where there is ground-truth distributional equivalence could reduce the possible methodological 

confounds when assessing predictive accuracy. For example, if both subgroups have similar 

ground-truth score variances, it is unlikely that differences in predictive accuracy are a result of a 

difference in their variance—where smaller variances can lead to smaller correlations due to 

range restriction (Sackett & Yang, 2000). In this case, MLMB is manifested in differential 

predictive accuracies between subgroups. 

This approach and operationalization are straightforward and illustrate the potential 

sources of MLMB and mitigation strategies. Notably, we do not claim that this is the only or best 

approach; it is simply one of many approaches, which we chose for simplicity in presentation 

and for reducing possible confounds.  

Identifying MLMB Sources and Mitigating MLMB in Psychological Assessment  

Beyond defining and operationalizing MLMB to identify its presence, it is important to 

understand why it occurs: What are the potential sources of measurement bias in ML models? By 

identifying the possible sources of MLMB, we can determine possible ways to mitigate bias. In 

this section, we elaborate on both the potential sources of MLMB and possible mitigation 

strategies. First, we expand the Brunswik (1956) lens model, typically used by psychologists to 

understand the workings of interpersonal perception (Hall, Pennington, & Lueders, 2013; Hinds 

& Joinson, 2019), and also used in social signal processing (Mehu & Scherer, 2012). Then, we 

contextualize the sources of MLMB–and present potential tests and mitigation strategies–through 

this framework. 



 

 

Expanding the Brunswik Lens Model for ML Models  

We use the example of ML for personality prediction as a foundation for understanding 

sources of MLMB in psychological assessment. A growing number of ML applications involve 

personality prediction (e.g., Azucar, Marengo, & Settanni, 2018; Gladstone, Matz, & Lemaire, 

2019; Hickman et al., 2021; Tay et al., 2020). Importantly, this schematic is applicable to other 

psychological constructs of interest, including emotions (De Choudhury, Counts, & Horvitz, 

2013), values (Kern, McCarthy, Chakrabarty, & Rizoiu, 2019), and well-being (Schwartz, 

Eichstaedt, Kern, Dziurzynski, Lucas, et al., 2013).  

[Insert Figure 3] 

ML approaches have implicitly or explicitly invoked the Brunswik (1956) lens model for 

connecting behavioral observations to the underlying psychological construct–in this example, 

personality (Hall et al., 2013; Hinds & Joinson, 2019). Fundamentally, the Brunswik lens model 

posits that individual differences manifest in behavioral cues (e.g., written text, voice, location, 

nonverbals) that are used by observers to infer the latent trait. This is represented by treating ML 

models as “observers” of the trait via behavioral cues, as shown in Figure 3. While this 

representation is useful, delineating and identifying the sources of MLMB requires expanding 

the model by including additional aspects of supervised ML algorithms. 

First, the construct measured by the input data (e.g., video data, social media data) used 

to train the ML model is often circumscribed and contextualized – by virtue of the method used 

to capture the data – compared to the broader construct of interest. This is because the platform 

or procedures used to measure behavior and assess the construct via ML constrain the 

psychological phenomenon to a specific domain or context (Tay et al., 2020). By way of 

analogy, self-report personality scales have been developed both to assess one’s typical, in 



 

 

general personality and to assess one’s workplace personality (Shaffer & Postlethwaite, 2012). 

Similarly, using social media data to assess personality emphasizes online personality (vs. offline 

personality) (Marriott & Buchanan, 2014) and using video interviews in the context of a high-

stakes selection is likely to engender self-presentation that colors personality (Paulhus, Westlake, 

Calvez, & Harms, 2013). As such, we depict the contextualized, platform-based personality 

construct as overlapping with but partially distinct from the broader personality construct in 

Figure 4.  

[Insert Figure 4] 

Second, the ground truth used to assess the personality construct may not match the 

platform-based personality construct. In our example, self-reported personality may reflect 

offline rather than online personality. Practically, personality measures contextualized to the 

situation of interest exhibit stronger relationships with situation-specific behavior than 

noncontextualized measures of personality (Shaffer & Postlethwaite, 2012). In other cases, other-

reports of personality (e.g., roommates, colleagues, family) in everyday life may be used as 

ground truth, and these ratings would similarly not match the platform-based personality 

construct. Platform-based personality may be directly assessed (and used as ground truth instead) 

via domain-specific personality measures (e.g., self-report of social media personality) or 

observer ratings of personality based on platform activity (e.g., by trained raters of social media 

profiles). We note that there may be theoretical disagreement on whether there is actually a 

platform-based personality construct. While it could be empirically examined (e.g., assessing 

similarities between general self-report personality and platform-based personality) for each 

context, the more important point is that researchers need to be mindful of whether the construct 

at hand generalizes to the platform where the data are derived.  



 

 

Third, the use of behavioral cues (e.g., verbal, paraverbal, and nonverbal behaviors) by 

ML models is mediated by features that are computed and processed from behavioral data. For 

example, verbal behavior on social media can be converted to features in multiple ways 

(Hickman et al., 2020), including by counting words in a priori dictionaries (e.g., as in Linguistic 

Inquiry and Word Count; J. W. Pennebaker, Boyd, Jordan, & Blackburn, 2015); counting the 

occurrence of words; and counting the occurrence of two- and three-word phrases (see Kern et 

al., 2016). In automated interviews, computers extract a discrete set of nonverbal behaviors such 

as facial action units (Ekman & Friesen, 1978), which can be scored based on their: activation; 

the intensity of their activation; and/or the co-occurrence of their activation with the activation of 

other facial action units (Bosch & D’Mello, 2019). Therefore, behaviors may map onto one or 

more features, as illustrated in Figure 4.  

Finally, while ML models are generally depicted as “observers” of behavioral cues and 

even represented as such (e.g., Hinds & Joinson, 2019), the algorithms used to develop ML 

models use these behavioral cues to maximize the prediction of a fallible ground-truth measure. 

In other words, supervised ML algorithms do not directly recognize personality from behavioral 

cues. Instead, they are trained to use, weight, combine, and transform behavioral cues–as 

operationalized in computed features–to maximize the prediction of ground-truth scores. We 

depict this in Figure 4 as an arrow linking the ML model to ground-truth scores. 

Identifying and Mitigating Potential Sources of MLMB 

 Using the expanded Brunswik lens model in Figure 4, we can now elaborate on the 

potential sources of MLMB. What might cause ML models to produce different subgroup score 

predictions despite equivalent ground-truth levels? What are the reasons ML models function 



 

 

differently between subgroups? These potential sources of measurement bias may occur during 

ML model training and need to be unpacked to determine what might be causing MLMB.  

As presented earlier, it is helpful to recognize that ML models (as seen in Table 1) have 

two components: ML data and ML algorithms. Correspondingly, there are two broad potential 

sources of MLMB during the ML model creation: data bias and algorithm training bias. We 

define data bias as nonequivalence in the trait-relevant information content of ML data (i.e., 

ground truth, platform-based construct, behavioral expression, and feature computing) between 

subgroups. We define algorithm training bias as algorithms developed with nonequivalence in 

the relation between extracted features and ground truth (i.e., algorithm features are differentially 

used, weighted, or transformed between subgroups).  

We should note that we view these potential sources of MLMB as underlying 

measurement biases themselves. In other words, biases in data and algorithm training lead to 

differential ML model functioning. Identifying and understanding the potential sources of 

MLMB–and the underlying biases–is necessary for mitigating MLMB. In Table 3 and the 

following, we examine potential sources of MLMB, discuss how these may manifest (i.e., 

leading to differences in predicted means or to differential predictive accuracies), and hence 

suggest ways to test for each potential source of MLMB and possible directions for mitigating 

these sources of bias.  

Data Bias Source 1: Ground Truth in Training Data 

A potential source of data bias is in the ground-truth scores used during ML model 

training. As shown in Figure 4, the ground truth typically uses observed data as a proxy for the 

latent trait. In other words, researchers use a traditional personality scale score, such as the mini-

IPIP (Donnellan, Oswald, Baird, & Lucas, 2006), as ground truth to train ML models. From a 



 

 

psychological measurement perspective, we recognize that these measures are imperfect 

assessments of the latent trait6. Therefore, this source of bias occurs when the measure exhibits 

traditional measurement bias—or when it provides different scores to individuals belonging to 

different subgroups (e.g., gender, race) with the same latent trait scores. This potential source of 

bias can also occur when the measure provides different interval scores to individuals belonging 

to different subgroups, even when the latent trait intervals are equivalent. In other words, an 

increase in one unit on the scale has different meanings between subgroups. This is well-

established in the measurement literature as measurement bias (Drasgow, 1984). The former type 

of bias (differences in predicted mean levels) is analogous to intercept differences (between the 

latent trait and the observed score). In contrast, the latter type of bias (differences in predictive 

accuracies) is analogous to slope differences (between the latent trait and the observed score, as 

illustrated in Figure 2; Vandenberg & Lance, 2000). 

In short, this source of bias occurs when the ground-truth measure exhibits traditional 

measurement bias. Given the same standing on the latent personality trait, individuals may have 

different scores because of their subgroup membership. For example, men and women may use 

personality scales differently—even though men have the same latent conscientiousness score 

levels as women, they score higher on measured conscientiousness because the scale content 

asks about behaviors more frequently enacted and endorsed by men.  

One way to test for ground-truth equivalence is to conduct measurement bias tests on the 

personality instruments used as ground truth (Tay et al., 2015; Vandenberg & Lance, 2000). 

When there is a measurement bias, mitigation strategies include using measurement models that 

 
6 This issue of imperfect measurement using human raters does not apply to situations where ML applications are 

used for predicting more “objective” ground-truth outputs such as CDC-reported flu statistics. However, there may 

be other biases in the data that are not generated by humans (e.g., due to systematic differences in data availability 

across subgroups and access to instruments used to generate ground-truth data between subgroups). 



 

 

are partially equivalent or excluding scale items that do not display measurement equivalence 

(Byrne & van de Vijver, 2010). If it is not possible to test for measurement bias, one can rely on 

past research and use personality scales that are known to be free from measurement bias across 

subgroups of interest. For example, past research has found gender measurement equivalence on 

the Mini-IPIP and the Big Five Inventory (Ock, McAbee, Mulfinger, & Oswald, 2020). 

Beyond measurement bias in self-report instruments, bias can also occur in ground truth 

when one uses observer reports. This can occur either due to traditional measurement bias, as 

described above for self-report instruments, or due to socio-cognitive biases that occur among 

observers and cause them to provide scores that favor one subgroup compared to another 

(differences in predicted mean levels), despite the subgroups having the same trait distribution. It 

can also manifest in observers providing different interval scores to individuals belonging to 

different subgroups, even when the latent trait intervals are equivalent (i.e., differences in 

predictive accuracies). To mitigate possible socio-cognitive biases, standardization (e.g., rater 

training, ensuring the same rating procedures, using similar frames of reference) and aggregation 

across multiple diverse raters should be considered (e.g., Aguinis, Mazurkiewicz, & Heggestad, 

2009; Bing, Whanger, Davison, & VanHook, 2004). 

Another possible reason for bias is that the ML model was not trained on an equivalent 

ground truth distribution between subgroups. One way of thinking about this is in terms of the 

representation of subgroups on which the ML model is trained. For example, if the ML model is 

trained only on White individuals, likely, the predictive accuracies will not generalize to other 

races resulting in differences in predictive accuracies (i.e., MLMB). Importantly though, this is 

an empirical question that will need to be examined for each ML model because it may be the 

case that the ML model works equally well for different subgroups even when there is little to no 



 

 

representation for one or more groups in the original training data. However, if MLMB is found, 

one possible reason may be a lack of representation for one or more subgroups in the data used to 

train the ML model in the first place. 

Beyond subgroup representation in the ML training sample, subgroups may not have 

similar ground truth distributions in the training data even when there is no measurement bias in 

the scale used. For example, it may be the case that MLMB occurs because even when men and 

women are equally represented in the sample used to train the ML model, the sample of men has 

a higher level of conscientiousness as compared to the sample of women. This can result in the 

ML model inadvertently using gender (and gender-related features) as a proxy for the latent trait 

and providing higher scores to men on conscientiousness as compared to women (differences in 

predicted mean levels) even when evaluated with subgroup representative samples (e.g., Barocas 

& Selbst, 2016). Similarly, this can potentially occur when, despite equivalent ground truth 

means, the ground truth variance is larger in men compared to women. This may result in the 

ML model inadvertently using more outcome-behavior relationships among men to predict 

conscientiousness compared to women, resulting in lower predictive accuracy among women 

compared to men (differences in predictive accuracies). To mitigate this, researchers can seek to 

use not only the same numbers of individuals for subgroups of interest (i.e., subgroup 

representation) but also to match subgroups of interest on ground-truth distributions during ML 

training7.  

 
7 One may be concerned if it is ever possible to establish a lack of bias in ground-truth distributions. As discussed 

earlier, ground truth is assessed with imperfect psychological measures. Therefore, this is in part an empirical 

question, as we need to examine the measures used and draw on established procedures for assessing measurement 

bias on a case-by-case basis. Philosophically, if it is assumed that there is no possibility of establishing a lack of bias 

or at least the minimization of bias in the ground truth, it means that all our psychological measurements are 

problematic to the point that we ultimately cannot make score inferences between subgroups. This does not seem to 

be a tenable view of psychological measurement and psychological science. 



 

 

Ground-Truth Matching to Probe Sources of MLMB. One operational approach 

presented here is to have equivalent ground-truth distributions (e.g., mean, variance, skewness) 

in the training sample to ensure that the effects of specific sources of bias are isolated. For 

example, under the condition that ground-truth personality scores are matched for White and 

Black individuals, observing behavioral differences between these groups on social media 

platforms can reveal a different source of bias (i.e., lack of behavioral expression equivalence). 

Therefore, for the purposes of testing other possible sources of bias, we present the case where 

subgroup samples are matched on the desired outputs (i.e., ground-truth variable) – such as 

personality traits – as shown in Figure 1.  

From Figure 4, we note that there are cascading effects of bias in the case of ML-based 

psychological measurement: ground truth → platform-based construct → behavioral expression 

→ feature computing → feature use → prediction utility. In this approach, to detect a potential 

source of MLMB at each stage, it is helpful to have ground-truth distributions matched and also 

to show that a potential source of MLMB has been resolved in the prior stages. For example, one 

can assess that there is no bias in the ground truth before assessing potential bias in the next stage 

of platform-based construct. If there is bias in the ground truth, one can seek to mitigate it and 

then assess potential bias in the next stage of platform-based construct. The accuracy of detecting 

potential bias at a specific stage would likely depend on the successful resolution of prior stages. 

This is summarized in Table 3 and discussed in the following.  

Data Bias Source 2: Platform-based construct 

Even with the same average levels of ground-truth personality (as assessed by general 

personality scales), platform-based personality may still have different average levels because it 

fundamentally depends on on how subgroups use the platform. For example, the phenomenon of 



 

 

Black Twitter, where Black Americans “perform their identities through displays of cultural 

competence and knowledge” (p. 223) (such as using the Twitter platform as a social critique 

based on the shared identities of Black Americans) suggests that there is a greater level of 

display of Black identity on Twitter as compared to White identity (Florini, 2013, p. 223). This 

may result in differential levels of, say, platform-based extraversion between Black and White 

individuals even though ground-truth levels of self-reported extraversion (in general contexts) 

are similar. Further, there may be subgroup differences in the extent to which the ground-truth 

personality construct is related to the platform-based personality construct. For example, the use 

of self-reported personality scores reflective of the ground-truth construct may be differentially 

related to LinkedIn work personality between younger and older individuals. As compared to 

other major social media platforms, LinkedIn is used more by older working adults (Pew 

Research Center, 2018). Younger individuals may not have a career-based identity (and work-

related personality) as firmly developed as compared to older working individuals (Kim & Kang, 

2017). This can result in differences in the relation between the ground-truth construct (i.e., self-

reported personality) and the platform-based personality construct (i.e., LinkedIn work 

personality) for different age groups.  

At the mean level, one way to assess platform-based bias is to examine whether there are 

mean-level differences for subgroups on platform-based personality scores even when ground-

truth scores distributions are kept equal. In other words, are there differences between subgroups 

on platform-based personality scores? At the predictive accuracy level, one can assess the 

relationship between scores on the ground-truth personality construct and the platform-based 

personality construct for the subgroups of interest. Basically, we are examining if there are 

predictive differences between subgroups on ground-truth personality scores and platform-based 



 

 

personality scores. A lack of difference between subgroups may be indicative of equivalence. In 

both cases, to test whether bias is present, it would require creating a way to assess platform-

based personality, which could be achieved by having individuals self-report their platform-

based personality or having observers judge individuals’ personalities on the platform.  

A proposed mitigation strategy is to reduce the discrepancy between the ground-truth 

personality construct and the platform-based personality construct. The latter can be obtained by 

using personality measures contextualized for the platform (e.g., social media, interview) or 

having observers rate personality as expressed on the platform itself (e.g., rating personality from 

social media posts or profiles) (Back et al., 2010). In other words, while general personality and 

platform-based personality constructs are distinct entities, we can ensure that ML models are 

trained on ground-truth scores that are closer to platform-based personality constructs. One direct 

possibility is to rely on only platform-based personality construct scores as the ground truth to 

remove this possible bias. Doing so removes the inferential gap (which contributes to possible 

bias) between platform-based personality (e.g., online personality) and the ground-truth 

personality measure. However, the same concerns in “Data Bias 1: Ground Truth” apply to 

platform-based personality scores (now used as ground truth). We note that this may not be a 

good mitigation strategy if the goal of the ML model is to predict self-report personality as 

assessed by general personality scales. 

Data Bias Source 3: Behavioral Expression 

For the same level of the platform-based personality construct, behaviors may not 

manifest similarly across subgroups. There may be subgroup differences in the quantity and type 

of behavioral expressions for the same level of a construct. For instance, women are more 

emotionally expressive than men (despite similar levels of reported emotions) (Kring & Gordon, 



 

 

1998), and groups differ in their use of language and slang to express similar ideas (Schwartz, 

Eichstaedt, Kern, Dziurzynski, Lucas, et al., 2013). Further, behaviors related to platform-based 

personality may differ across subgroups. For example, there may be a stronger association 

between platform-based extraversion and verbal behaviors on Twitter for Black individuals, as 

compared to White individuals, if they view it primarily as an outlet for identity expression 

(Florini, 2013).  

Assuming that the ground-truth personality distribution is the same between subgroups 

and there is no platform-based construct bias, one way of assessing bias in behavioral expression 

equivalence is to examine whether there are differences in the mean levels of behavioral 

expressions. Because it is important not to confound computer extracted features with behavioral 

expressions, the focus should be on using human raters to examine base rates of behaviors 

(Realistically, this can only be done for a small subset of behaviors as humans may not be able to 

judge large numbers of behaviors reliably). For example, past reviews found that in the interview 

context, where machine learning is increasingly applied (Hickman et al., 2019), females smile 

and nod more than males (Frauendorfer & Mast, 2015). Significant differences when ground-

truth distributions are matched would suggest behavioral expression bias. Bias can also be 

manifested at the level of predictive differences: platform-based personality scores correlate 

differently with behaviors between subgroups. For example, online honesty-humility levels may 

be differentially related to politeness behaviors on social media between Chinese as compared to 

Americans due to differences in how politeness is expressed (Li, Hickman, Tay, Ungar, & 

Guntuku, 2020). Where bias is detected, one mitigation strategy could be to exclude specific 

behaviors – or a set of behaviors (e.g., non-verbal behaviors) – that are shown to be biased8. 

 
8 One may be concerned that discarding behavioral information revealing differences between subgroups can lead to 

less accurate measurement. Theoretically, only biased behavioral information should be excluded because it causes 



 

 

Data Bias Source 4: Feature Computing 

Importantly, expressed behaviors do not necessarily correspond one-to-one to the ML 

features that are processed and extracted from those behaviors. Even with equivalent behavioral 

expressions, processing and extracting features may not lead to equivalent levels of features 

between subgroups. This is because the feature computing and conversion procedures may not 

apply similarly across groups. For example, the use of slang and dialects may differ across 

groups on social media (Florini, 2013), and not all text mining processes are equally sensitive to 

such idiosyncrasies. Another barrier to achieving group parity in features is that subgroup 

differences in terms of access to reliable or quality technology (e.g., microphone, video camera, 

internet speed) can lead to missing data as well as differences in the features extracted (cf. 

Kayhan et al., 2018). For instance, in video data, individuals who have a slow internet 

connection (e.g., video lags) may have more unreliable feature computations encoded as 

compared to others who enact the same behaviors but have a fast internet connection. These 

same issues can also affect the relation between behavioral units and features that lead to bias 

across subgroups. 

In some cases, the feature computation step itself relies on prior ML models, which 

themselves may be biased. For example, facial action units (e.g., a smile or an eye blink) are 

widely used as predictors in a range of ML applications (Bartlett, Littlewort, Frank, & Lee, 2014; 

Bosch & Dmello, 2019). Extracting these features from images entails the use of ML models, 

such as OpenFace (Baltru, Robinson, & Morency, 2016), which could itself be biased, thereby 

 
subgroup differences when there are no actual subgroup differences; or if it exacerbates apparent differences 

between subgroups when there is only a small subgroup difference. For example, if the inclusion of certain 

nonverbal behaviors, such as having a low vocal pitch, leads to men scoring higher in dominance when there are no 

differences between men and women in the ground truth dominance scores, we would regard this as potentially 

biased behavioral information that should be excluded. That said, one should not eliminate non-biased features that 

reveal genuine subgroup differences.  



 

 

propagating bias. Bias propagation can stack up rapidly. Consider a ML pipeline where speech is 

transcribed using a pretrained speech recognizer (which is a ML model) and then submitted to 

another pretrained ML model to compute sentiment scores (e.g., positive tone) (Zhang, Wang, & 

Liu, 2018), which are subsequently used as features for training an ML model to predict 

personality. It is widely known that automatic speech recognition algorithms are less precise for 

dialects relative to the majority group speech, or what is considered codified “standard” speech 

(Vergyri, Lamel, & Gauvain, 2010), resulting in one source of bias, which is then compounded 

when submitted to the sentiment ML model and, ultimately, to the personality models. Feature 

computing bias may also occur in the absence of ML models in the processing pipeline. For 

example, assume that pre-trained dictionaries, such as the Linguistic Inquiry and Word Count 

program (LWIC) (Pennebaker, Francis, & Booth, 2001) or the Affective Norms for English 

Words (ANEW) (Bradley & Lang, 1999), are used to measure sentiment in lieu of a ML model. 

Because these dictionary-based approaches rely on normative ratings for development or 

validation, any potential bias in the raters (ANEW raters were undergraduates in an Introductory 

Psychology course at one University so are not a representative sample) would propagate into the 

sentiment scores and then to the subsequent ML models that use the sentiment scores as features. 

At the mean level, feature computing bias can manifest in significant feature differences 

even with the same level of behaviors being expressed between subgroups, assuming a lack of 

bias in the earlier stages (i.e., ground-truth distribution; lack of platform-based construct bias). 

At the predictive accuracy level, feature computing bias can occur when there are different levels 

of association between behaviors and computed features between subgroups of interest. One 

possible way to assess this is by coding key behaviors using observers (e.g., smiles, pauses in 



 

 

speech) and then correlating it with features that were derived from the behaviors. If differences 

between subgroups are found, a mitigation strategy could be to exclude features that show bias. 

Algorithm Training Bias Source 1: Differential Feature Use  

Even when there is no data bias, there can still be MLMB attributable to the ML 

algorithm training, such that different features (amongst all features included in the input data) 

are used to predict desired outputs across subgroups. This may arise due to human subjective 

decisions or errors that could introduce bias in the trained algorithms. In psychological 

assessment, this is akin to the choice of using different measurement models for subgroups (e.g., 

the scoring for subgroup A uses different scale items than subgroup B), which would be regarded 

as bias in psychological assessment (Vandenberg & Lance, 2000). For example, consider a 

simple case where different ML algorithms were developed for each subgroup; these different 

ML algorithms may use different combinations of features to predict the desired outputs across 

subgroups. Extending the example of Equation 1, one uses different input predictors (e.g., 

different social media text features) between subgroups, where Subgroup 1 may use x1 and  x2 as 

predictors whereas Subgroup 2 may use x3 and  x4. 

One way of examining differential feature use is to see if a different list of features is 

being applied for different subgroups. For example, consider the use of two different ML models 

for different subgroups such that one subgroup uses only verbal features for predicting 

personality while another subgroup uses only facial features for predicting personality. The idea 

is to examine whether different subsets of features are used for each subgroup, which leads to the 

question of whether the algorithms trained are equivalent between subgroups. For interested 

readers, this is analogous to a lack of configural invariance within the measurement bias 



 

 

literature (Vandenberg & Lance, 2000). The mitigation strategy is to train an algorithm such that 

there is a common set of features being used and combined between subgroups. 

Algorithm Training Bias Source 2: Differential Feature Weighting and Transformations 

Even when training an ML algorithm between subgroups such that the same set of 

features is used and combined, bias can occur because researchers allow the trained algorithm to 

weight features differently between subgroups. Within psychological assessment, using different 

measurement models that weight scale items differently for subgroups (i.e., while using the same 

scale items, the scoring of subgroup A weights scale items differently from subgroup B) is 

another form of bias (Vandenberg & Lance, 2000). Extending the example of Equation 1, one 

may be using different subgroup intercepts (β0) and/or feature weights (β1, β2, …, βp) such that 

subgroup 1 has different intercepts and/or feature weights from subgroup 2. The mitigation 

strategy would be to ensure that the trained algorithms are not providing different feature weights 

to different subgroups.  

Additionally, it is also possible for researchers to apply different types of transformations 

to features (e.g., log transformation, normalization) that are subgroup-specific. Or, the same type 

of transformation but with a different mathematical function between subgroups. For example, 

when researchers normalize features for men and women separately before model training, if the 

training data for men and women have different means and variances on the features, the 

transformations are mathematically different between gender subgroups (Booth et al., 2021). 

Different subgroup transformations are regarded as a type of algorithm training bias within the 

MLMB framework.  

When different sets of features are used, or when they are weighted or transformed 

differently between subgroups, this could result in differences in predicted mean levels or 



 

 

differences in predictive accuracy between subgroups despite them having the same ground-truth 

distributions. However, we note that even there are no resultant consequential differences (e.g., 

differences on predicted mean levels and/or predictive accuracies), from the perspective of 

psychological assessment, the trained algorithm – from a traditional psychometric perspective – 

is regarded as measurement biased because it is using different yardsticks (i.e., different ML 

models) for assessing different subgroups.  

Despite this, we note that it is not uncommon to apply different ML models to different 

subgroups to maximize predictive accuracy for each subgroup, and there is a tension between 

maximizing predictive accuracy and MLMB. Another related tension is whether we are 

concerned primarily about the consequential differences (i.e., to what extent does the ML 

algorithm distort ground-truth subgroup differences in its predictions) versus the equivalence of 

ML models between subgroups. For example, researchers may create different ML models to 

mitigate the consequential differences of biased data. These key issues are elaborated on in our 

discussion section. 

Assessing Data Biases through Differential Use and Weighting in ML Algorithms 

Because the identification and mitigation approaches for data bias are likely not perfect, it 

is possible that biased data (e.g., biased features) are still included in the training of the ML 

algorithm. For example, some features may be inherently biased against women because the 

computed features are based on prior ML models that did not use representative data for women; 

these features may have “slipped through the cracks” even with the proposed mitigation 

strategies and were still included in ML training. Therefore, during the ML training process, one 

may find that certain features are not equally predictive between subgroups. For example, 

computed features for nonverbal behaviors may be less accurate for Black individuals than 



 

 

White individuals due to biased feature computations; in turn, features for nonverbal behavior 

will likely be less predictive for Black individuals than White individuals.  

As such, it is also possible to use ML algorithms to evaluate for specific biases in the 

data. One can apply the same ML algorithm for different subgroups and use a feature ablation 

approach (i.e., exclude specific features or sets of features in the ML algorithm) (e.g., Girshick, 

Donahue, Darrell, & Malik, 2014) to examine its impact on ML predicted scores. Feature 

ablation approaches identify potentially biased features when excluding specific features in the 

model reduces the discrepancy between subgroup predicted mean levels or subgroup predictive 

accuracies. In other words, these features may be biased because they lead to increased 

discrepancies between subgroups while excluding them reduces these discrepancies.  

Discussion 

This article provides an integrative framework for understanding what MLMB is, how it 

manifests, where it might originate, and what can be done to mitigate it. While we focus on 

delineating specific elements of MLMB investigations and associated mitigation strategies in the 

context of ML-based psychological assessments, many of these concepts apply to other types of 

ML applications. In this section, we first describe how our current framework goes beyond 

current bias frameworks within the computer science literature. Next, we discuss how our 

proposed framework brings greater clarity to the complex issues surrounding MLMB, 

highlighting several important tensions: maximizing predictive accuracy versus minimizing 

MLMB; the equivalence of ML algorithms versus consequential equivalence; and sample 

representativeness versus matched samples. Finally, we offer some practical guidelines for 

utilizing this framework to evaluate MLMB. 

Comparison with Frameworks in Computer Science 



 

 

Our MLMB framework has some distinctions from and similarities with current 

frameworks of evaluating MLMB (sometimes termed “fairness” in the computer science 

literature) (Gajane & Pechenizkiy, 2018). With regard to distinctions, one method for evaluating 

bias ("Individual Fairness"; Dwork, Hardt, Pitassi, Reingold, & Zemel, 2012) is where models 

are considered unbiased when they produce similar predictions for similar individuals. Notably, 

the similarity of individuals is based on the similarity of individuals in their input ML data 

regardless of subgroup membership. By contrast, the MLMB framework explicitly evaluates 

measurement bias based directly on known subgroup membership (e.g., age, sex, race, religion) 

as typically assessed in psychology. Whether ML is biased against a known subgroup is also one 

of the chief concerns rooted in anti-discrimination laws (e.g., Civil Rights Act of 1964; race, 

color, religion, sex, national origin) that is addressed through this framework.   

Another approach (i.e., fairness through unawareness) emphasizes the exclusion of any 

protected variables (e.g., race, gender, ethnicity, nationality) within the models so that they are 

“blinded” to possible differences (Gajane & Pechenizkiy, 2018). This is potentially problematic 

given that researchers may be unaware of potential biases in all the types of data included in the 

first place and that input data included in the model could serve as close proxies of these 

protected variables (Barocas & Selbst, 2016). Instead, the MLMB framework enables researchers 

to explicitly examine and test for possible sources of data and algorithm training bias. 

With regard to similarities, MLMB has conceptual similarity to evaluating the 

generalizability of ML models to different sociodemographic subgroups; the goal is to 

understand whether ML models applied to one sociodemographic group produce similarly 

accurate predictions to another group (Hutt et al., 2019). When there is no MLMB, we expect 

that it will be conceptually analogous to “counterfactual fairness” (Kusner, Loftus, Russell, & 



 

 

SIlva, 2017), where the ML models should yield similar predicted scores when individuals are 

treated as their counterpart (e.g., counterfactually treating males as females should not affect the 

scores). The MLMB framework specifically notes that this should be the case where the same 

ground-truth score should yield the same predicted ML score, regardless of group membership 

(i.e., counterfactually treating individuals as members of other groups).  

Notably, the focus of these prior mentioned frameworks emphasizes how models should 

be designed and tested for bias; and less on the potential sources of MLMB. Further, when some 

sources of MLMB are mentioned, they are not systematically developed within a holistic 

methodological framework (e.g., developed instead within a legal framework; Barocas & Selbst, 

2016; Kleinberg, Ludwig, Mullainathan, & Sunstein, 2018). The MLMB framework goes 

beyond subgroup differences in outputs and predictive accuracies to explicate the possible 

underlying sources that can cause a lack of equivalence in ML model functioning between 

subgroups. 

Maximizing Predictive Accuracy vs. Addressing MLMB 

The proposed mitigation strategies for addressing MLMB might reduce the predictive 

accuracies for one subgroup in order to reach equivalence to another subgroup (Barocas & 

Selbst, 2016). For example, a mitigation strategy that removes features that are more predictive 

for one subgroup compared to another in order to achieve predictive equivalence may reduce the 

predictive accuracy for subgroups to the lowest common denominator (i.e., the subgroup with the 

lowest predictive accuracy). This creates a tension between maximizing predictive accuracy and 

ensuring that the ML model is equivalently predictive between subgroups (i.e., no MLMB). This 

is analogous to the tradeoff between equity (i.e., ML fairness; lack of MLMB) and efficiency 

(i.e., ML performance) discussed in economics and ethics (Le Grand, 1990).  



 

 

While we do not have a solution to this tension, we believe that it is important to 

highlight this issue to advance future methodological and conceptual work. Methodologically, 

we note that the stepwise mitigation strategies are meant not only as practical procedures but also 

as illustrative tools to showcase how sources of MLMB can be identified and addressed. We are 

not beholden to these approaches and believe that future work will need to move away from 

stepwise strategies to simultaneous estimations that optimize multiple tasks (Dwork et al., 

2012)—e.g., enhancing predictive accuracy for all subgroups while also reducing predictive 

accuracy differences among them. More research is now implementing multi-objective 

optimization. For example, within the personnel selection context, Pareto-optimization 

techniques have been developed to optimize predictor weights to maximize both performance 

and diversity of selected individuals (De Corte, Lievens, & Sackett, 2007; Song, Wee, & 

Newman, 2017). In ML, adversarial learning in neural networks strives toward a similar effect 

(Calmon et al., 2017). In other words, we can train ML measurement models to both maximize 

predictive accuracy and minimize MLMB. 

 Conceptually, one may ask whether there is truly a tension between maximizing 

predictive accuracy versus addressing MLMB. In computer science, it is not uncommon to 

include subgroup membership information in order to maximize predictive accuracy (e.g., 

Kleinberg et al., 2018). In such cases, different sets of features are (implicitly) used for each 

subgroup so that it is possible to achieve high predictive accuracies that are relatively similar 

across subgroups. Yet, this raises the question of whether the ML measurement is truly 

equivalent between subgroups. From a psychometric perspective, if features are viewed as 

assessment items, we would regard assessments that use different items for different subgroups 

as inherently biased because they are not assessing the same psychological construct between 



 

 

subgroups. If ML models are using different features to achieve similarly high levels of 

prediction (e.g., tone of voice for men vs. facial features for women to predict video interview 

performance), one can similarly regard it as a case of measurement bias because members of 

different groups are not being evaluated based on the same set of standards (i.e., using different 

yardsticks across groups). 

 This issue is further complicated in the ML context because even different computed 

features may represent the same psychological construct for different subgroups. For example, 

men and women tend to use different words and linguistic expressions on social media 

(Schwartz, Eichstaedt, Kern, Dziurzynski, Ramones, et al., 2013); the same personality 

dimensions may manifest as different language usage patterns for men and women. Training 

separate ML models for each subgroup to pick up on these different uses of language between 

subgroups may lead to different ML models.  

 Importantly, our definition of MLMB still stands across all of the aforementioned 

scenarios: Differences in predicted mean scores across subgroups (given the same ground-truth 

mean levels) or differential predictive accuracy between subgroups can serve as empirical 

manifestations for MLMB. However, a lack of differential predicted mean levels or predictive 

accuracy is only prima facie evidence that the ML model is unbiased. It is possible that two 

entirely different models are being used to predict the same psychological attribute for different 

subgroups. A conceptual question is whether these computed features are similarly tapping into 

the same psychological construct. This requires a level of interpretability in the ML models 

being used and a clear conceptual rationale for what might constitute qualitatively distinct 

features resulting in nonequivalence (e.g., verbal behavioral features used for White people vs. 

nonverbal behavioral features used for Black people). 



 

 

In general, this tension is related to validity concerns. As we mentioned earlier in the 

paper, the topic of construct validity in ML measurement goes beyond issues of predictive 

accuracy and MLMB. At the same time, it is also important to recognize that MLMB 

investigations not only provide evidence for (or against) ML measurement’s generalizability 

(e.g., whether ML models apply equally well between subgroups) but also provide content-

related validity evidence (e.g., do computed features capture the desired construct content) and 

predictive validity evidence (e.g., do ML scores predict important outcomes). These issues of 

measurement validation are relevant whenever ML models are used in a psychological context 

(and beyond) (Tay et al., 2020; Yarkoni & Westfall, 2017). For example, ground-truth measures 

that are unreliable or have questionable validity can cause problems for the ML model 

(Jacobucci & Grimm, 2020) and create generalizability and replicability concerns (Loken & 

Gelman, 2017). 

Equivalence of ML Algorithms vs. Consequential Equivalence 

Related to the above discussion is whether the MLMB framework should define 

algorithm training bias as nonequivalence of algorithms (i.e., using different features, weighting 

and/or transforming features differently) between subgroups. It is understandable within a 

traditional assessment context that the use of different measurement models (e.g., using different 

test items or different weighting schemes for test items) between subgroups would be viewed as 

measurement biased. However, ML models frequently rely on organic and naturalistic behavioral 

data (Xu, Zhang, & Zhou, 2020), which are arguably quite different from curated assessment 

items9. Unlike curated data from assessment items, it is challenging to fully overcome data bias 

 
9 Unlike assessment items, these data are not easily interpretable with respect to the psychological construct (e.g., 

GPS coordinate data to predict personality). One cannot easily have researchers or diverse panels review assessment 

items to determine a priori (before including them in the assessment and measurement model) if there may be 

cultural, language, or contextual biases against specific subgroups of interest. For example, with traditional 



 

 

with organic data, and using different ML algorithms between subgroups itself can be a way to 

mitigate data bias to achieve consequential equivalence (e.g., same predicted mean levels for the 

same ground-truth level and similar predictive accuracies). 

We recognize that this argument holds merit. At the same time, including the aspect of 

algorithm training bias within the MLMB framework is helpful because researchers will need to 

seriously consider this issue and justify when they believe differences in ML algorithms are 

warranted to achieve consequential equivalence. For example, using qualitatively different 

features (i.e., verbal features for White individuals vs. facial features for Black individuals) 

between subgroups to predict personality may be regarded as more problematic and biased as 

compared to using qualitatively similar features (i.e., different language features between White 

and Black individuals, but these different features represent different variations of the same root 

word or meaning) to achieve consequential equivalence.  

 More importantly, algorithm training bias – and data bias– needs to be distinguished from 

consequential equivalence. In other words, the occurrence of MLMB is distinct from its 

consequences. In general, MLMB may not always translate into large effects in terms of 

consequential differences; one can find non-zero subgroup differences when examining different 

empirical manifestations of MLMB, but these differences may not necessarily be meaningful. 

For example, with very large sample sizes typically used in ML research, it is likely that one will 

find statistically significant differences. Still, these may not translate into large differences 

between subgroups on mean levels and/or predictive accuracy. Along these lines, it is also 

important to consider the practical effects for which the ML model is applied (e.g., are there 

 
assessments, experts can review item reading levels to ensure that items are not biased against adults with low 

literacy (Ravens-Sieberer et al., 2014).  
 



 

 

different selection or treatment rates between subgroups as a consequence of using ML-based 

predictions?). This can inform us on whether nonequivalence of ML algorithms should be treated 

as a significant source of bias that disadvantages a subgroup or not. Indeed, in traditional 

measurement bias, it is known that statistically significant differences in measurement models 

between subgroups do not necessarily translate into practical effects (e.g., the occurrence of 

measurement bias may translate into small practical effects if subgroup selection rates are similar 

for the same latent trait level) (Stark, Chernyshenko, & Drasgow, 2004). Moving forward, we 

hope that the field can recognize that MLMB (and data bias or algorithm training bias) is distinct 

from consequential or practical effects. Future work should seek to identify the statistical (e.g., 

the strength of effect size), social (e.g., the domain and context of life), and practical (i.e., type of 

outcome the ML predictions affects) criteria for evaluating when MLMB has significant adverse 

effects. 

Sample Representativeness vs. Matched Samples 

 It is often discussed within extant MLMB frameworks that training sample 

representativeness is important for reducing MLMB (Barocas & Selbst, 2016; Kleinberg et al., 

2018). There are several important points for clarification. First, when evaluating whether an 

already trained ML model is biased, we are less concerned about training sample 

representativeness (which should occur as a starting point) than distributional equivalence 

between subgroups in the evaluation data (e.g., same mean levels on an attribute). This is 

because we seek to determine whether the ML model advantages a subgroup of individuals 

compared to another, which is easier to examine under the condition of subgroup equivalence.  

 Second, when training an ML model, the notion of a representative sample for which one 

seeks to generalize can be challenging to define and practically obtain. One needs to determine 



 

 

the scope of representativeness (i.e., world, country, specific segment). In other words, what is 

the population that one seeks to justifiably represent? For example, in building an ML model to 

measure psychological attributes for personnel selection, it can be challenging to determine 

whether the population would be (a) the current demographic of workers within the organization; 

(b) the current demographic of the local community; (c) the current demographic of the nation; 

or (d) the demographic of applicants with adequate qualifications (which may not be 

immediately known). Moreover, there is a tension between what we term “desired 

representativeness” (ideal/aspirational representation of different subgroups) and “realized 

representativeness” (current representation of different subgroups). Representing the general 

population (in the current state) will tend to underrepresent minorities relative to majority group 

members, which may cause an ML model to disproportionately focus on the majority group’s 

input-output relationships. For example, when Amazon trained its automated resume screening 

tool, it used the realized representativeness of computer programmers in its workforce (mainly 

men), causing biased results (Dastin, 2018). On the other hand, obtaining a representative sample 

with desired representativeness as a goal can also be problematic due to subjectivity it introduces 

(e.g., how do we decide on the ideal percentage of Asian individuals in computer science?). 

Conversely, our suggestion of using equivalent distributions for training ML may be more 

straightforward because there is perfect parity for the subgroups of interest. Arguably, this may 

also be a form of desired representativeness. 

Third, it is unknown if sample representativeness is preferred for training ML models 

when seeking to address MLMB. This is especially true when there are existing inequalities or if 

subgroups are vastly different on the attributes of interest. For example, a concern is that 

differences between underrepresented minorities have lower scores than a majority group on 



 

 

standardized test scores may lead to increasing the chance that ML models inadvertently and 

indirectly use demographic information to make standardized test score predictions (i.e., 

introducing MLMB). In this case, representativeness could lead to biases against specific 

subgroups. It may be better to use samples that have subgroups with equivalent samples (i.e., 

equivalent trait distributions and numbers), regardless of sample representativeness (with respect 

to the population of interest), to train the ML model if the ultimate goal is to reduce MLMB. 

Notably, there may not necessarily be a tradeoff between representativeness and matched 

samples depending on the subpopulations of interest (i.e., there already exist similar distributions 

on the attribute of interest for subpopulations). 

Finally, our approach for operationally matching subgroup ground-truth distributions to 

evaluate MLMB stems largely from a lack of ML procedures that account for different subgroup 

ground-truth distributions in developing predictive models. In traditional measurement bias 

research, matched sample distributions between subgroups are typically not required to estimate 

the differences in subgroup lines shown in Figure 2. For example, using CFA or IRT, 

simultaneous estimation can be done that accounts for different subgroup latent-score 

distributions; the procedure often treats the referent subgroup latent distribution as normally 

distributed and freely estimates the mean and variance of the other subgroup. However, given the 

novelty of this domain, we currently do not have similar procedures developed for investigating 

MLMB. Further, we believe that simplifying the case for when we have matched subgroup 

ground-truth distributions can help readers better understand the meaning of MLMB, the sources 

of MLMB, and mitigation strategies. 

ML Models for Psychological Assessment vs. Other Uses  



 

 

 One concern that may arise is that we are advocating that ML models throughout 

psychological research should always be the same across subgroups (e.g., using and weighting 

features in the same manner). This is not the case. Our proposal is that in ML models explicitly 

used for psychological assessment, it is essential that the MLMB framework be considered and 

applied before being used in practice for decision-making or making claims about subgroup 

differences. In this context, where bias and fairness of scoring individuals and subgroups are 

critical, we need to evaluate the ML models for measurement bias and apply these standards to 

ensure that ML models function equivalently between subgroups of interest.  

However, there are also many other uses of ML models beyond psychological 

assessment. In such contexts, applying the MLMB framework may not be relevant. For example, 

training different ML models for each subgroup to describe (and understand) how men and 

women with equivalent personality levels may express different verbal and nonverbal behaviors. 

It is akin to using traditional measurement models (e.g., CFA and IRT) to examine how 

subgroups may differ in their responses to a measurement tool. For example, such an approach 

has been advocated and applied to better understand cultural differences in scale responding 

(Cheung & Rensvold, 2000; Tay, Woo, Klafehn, & Chiu, 2010).  

Practical Guidelines for Evaluating ML Models and Applications 

For researchers and practitioners who use ML models, it is helpful to have practical 

guidance on evaluating trained ML models for MLMB based on this framework. Here, we 

highlight at least four ways to do this. 

Foremost, because this framework examines MLMB in specific subgroups, it is important 

to determine whether the trained ML model has been evaluated on the subgroups of interest. For 

instance, while facial recognition had high levels of accuracy in general, datasets used for 



 

 

evaluating accuracy contained mostly lighter-skinned individuals. Aligned with this framework, 

Buolamwini & Gebru (2018) proposed a balanced sample of both gender and skin type to 

evaluate MLMB (termed ‘bias’ in their paper). They found that the trained ML models had high 

accuracies for lighter-skinned men but comparatively low accuracies for darker-skinned women. 

This example shows that when using a trained ML model, especially when using it to score and 

compare different subgroups, it is important to determine whether the ML model functions 

similarly across the different subgroups of interest. To evaluate for possible MLMB in trained 

ML models, we recommend using similar sample sizes and ground-truth characteristics for the 

subgroups. Researchers can evaluate this in the technical reports of the trained ML models or 

evaluate MLMB in specific subgroups of interest. 

Second, one should consider whether the ML model was trained on data that have similar 

sample characteristics across subgroups. A lack of equivalence in the subgroup samples during 

ML model training can cause MLMB. For instance, using predominantly men samples to train 

Amazon’s resume screener may have led to MLMB, where men were selected at a higher rate 

than women (Dastin, 2018). Training the ML model on a sample where men were more qualified 

than women can cause the ML model to inadvertently or indirectly use gender as a proxy for 

qualification. 

Third, one should consider whether the platform data inputs (e.g., social media, internet 

searches) from which the ML model is trained may be used by subgroups differently, which 

leads to a greater likelihood of MLMB. For instance, because Black Americans use African-

American Vernacular English on Twitter whereas White Americans do not, it has been found 

that ML models can “systematically classify content aligned with the African American English 



 

 

(AAE) dialect as harmful at a higher rate than content aligned with White English (WE)” (p. 116, 

Ball-Burack, Lee, Cobbe, & Singh, 2021). 

Fourth, as a consumer of ML-based products, it is important to ask and investigate 

whether the trained ML models differ across subgroups. From a psychometric perspective, this 

can evidence MLMB because different measures are being used to assess different subgroups of 

individuals. For example, subgroup norming of features in ML models (i.e., z-scoring ML 

features separately for each subgroup) is common in computer science applications. Past 

research using gender norming of ML features in the context of automated interviews did not 

find that it substantially reduced MLMB (Booth et al., 2021). More importantly, when ML 

models are used in the context of selection, one should recognize that subgroup norming (on 

race, sex, etc.) is prohibited according to the law (i.e., Civil Rights Act, 1991); subgroup norming 

of features in ML models likely falls within this prohibition. 

Closing Remarks 

In establishing this framework for MLMB, we are not proposing that all forms of bias in 

ML applications (e.g., whether certain psychological assessments used as ML ground truth are 

biased criteria or valid criteria in the first place; or the validity of using and interpreting ML 

models of psychological assessment) is now eminently solvable. Discussions on what criteria we 

are using in our ML applications and whether they are valid, biased, or unfair against specific 

subgroups (e.g., cognitive ability; personality) will need to occur, but they also fall beyond the 

scope of the current paper. More recent work has discussed validity issues when collecting, 

analyzing, and processing organic data (e.g., social media data, mobile sensing, etc.; Xu, Zhang, 

& Zhou, 2020) used in ML models but also more broadly in psychological research. Moreover, 

evaluating the validity of whether trained ML models accurately assess constructs and claims of 

what they assess (e.g., claiming ML models built on the ground truth of observer reports of 



 

 

personality assess personality as typically understood as self-reported personality) have also 

begun (Tay et al., 2020). We believe that these are issues the entire field of psychological 

assessment needs to grapple with and not merely ML-based psychological assessments. 

We are focused narrowly on measurement bias, drawing on the psychometrics literature 

and its many decades of experience and established standards. It is in this realm of application 

that we seek to clarify what a specific form of bias (i.e., measurement bias) means, ways it may 

manifest, delineate the possible sources of bias, and provide initial ideas on mitigating them. In 

other words, the simplifying assumption is that the ground-truth construct selected is warranted – 

and the question lies more in whether the assessment of the underlying construct has 

measurement bias (see Table 3). Even within this specific arena, while we have sought to 

simplify the presentation to highlight the key ideas (e.g., using two-group comparisons; using 

matched ground-truth distributions), the issue of MLMB is highly complex and challenging (see 

Table 3). As noted, and also depicted in Figure 4, there are multiple layers to how sources of 

measurement bias can emerge and cascade throughout the ML measurement process. Moreover, 

establishing a lack of MLMB between two subgroups of interest does not necessarily generalize 

to other types of subgroupings. Despite these challenges, addressing bias and hence, fairness, is 

critical; developing a framework to investigate and address MLMB is essential to advance this 

cause. We also believe that providing relevant terminology and a framework that clarifies the 

different sources and issues in MLMB can be helpful, even if it does not reduce the complexity 

of addressing MLMB. And indeed, this framework serves to highlight the different tensions and 

issues that exist in assessing and mitigating MLMB.  

The goal of this paper is to provide an integrative framework for investigating and 

mitigating MLMB. What do we mean by MLMB? How does it empirically manifest? Where in 



 

 

the process of creating ML models might MLMB be introduced? When researchers find MLMB, 

what can be done? The MLMB framework enables researchers to examine different sources of 

data and algorithm training biases and provides suggested mitigation strategies. Our goal is not 

to provide or identify specific statistical tests that are beyond the scope of the paper. We believe 

that this is only the beginning, and more work is required to further develop new methodological 

approaches to examine MLMB. Using this framework, one can develop new statistical and 

algorithmic indices and procedures. In addition, researchers will need to assess the practical 

effects of MLMB – beyond the statistical significance of MLMB – to understand its real-world 

impact. We hope that this framework will serve as foundational conceptual grounding for future 

work and discussions on MLMB. 
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Table 1. Machine Learning Terminologies 

 

Terminology Definition 

Machine learning (ML) Computers learning to achieve desired goals using data provided to them 

automatically.  

 

The characteristics of ML as applied in psychology typically comprise 

one or more of the following: (1) use of unstructured data (e.g., text, 

video, voice) that requires processing for use in ML; (2) many more 

parameters (p) to be estimated than sample size (n) (p >> n); (3) 

modeling nonlinearity and interactivity; and (4) goal of automatic 

prediction beyond training data (generalizability). 

Machine learning (ML) data Data provided to computers that are (automatically) processed and can 

be used for machine learning. We note that raw data (e.g., video files, 

text data) needs to be processed in order to compute the relevant features 

that can be used for machine learning.  

 

For example, raw data may be text data from social media posts. 

Preprocessing data (akin to data cleaning) will typically require 

identifying and converting relevant aspects to research (e.g., 

misspellings, acronyms, and variations for content words of interest) (see 

Kern et al., 2016; Hickman et al., 2020). Feature computation can then 

be conducted on the preprocessed data (e.g., counts of words and 

phrases; topics). These features may also be transformed or scaled (e.g., 

proportion of words) depending on the research interest.  

 

Data can broadly refer to raw data, processed data, and computed 

features, although computed features are directly used for machine 

learning rather than raw data. 

Types of machine learning (ML) The goal of the machine learning task. We list two common ML goals in 

psychology, although there are others. See Ayodele (2010) for more 

information. 

 

- Supervised learning: The computer is provided data in the form of 

inputs and desired outputs (i.e., ground truth). The goal is to develop a 

ML model that predicts the desired outputs (i.e., ground truth). One 

helpful analogy (and a common supervised learning algorithm) is 

regression: inputs are predictor variables, and the desired output is the 

outcome variable.  

 

- Unsupervised learning: The computer is provided inputs, and the goal 

is to develop a ML model to infer underlying latent variables or 

structures. One helpful analogy is factor analysis: inputs are the variables 

and we infer underlying latent factors. 

Ground truth The output in supervised ML that computers seek to predict. This can 

come in the form of demographic characteristics (e.g., age, gender), test 

scores, performance metrics, self-reported scores, other-reported scores, 

or (trained) observer scores. 

Machine learning (ML) algorithm Computer function used on ML data (e.g., nearest neighbor, linear 

regression, decision trees, support vector machines, naïve Bayes, neural 



 

 

networks) to develop an ML model. The ML algorithm is a function with 

parameters, such as a regression model with beta coefficients assigned to 

each input variable, that must be fitted to the data to optimally estimate 

the mapping from inputs to predicted outputs (also called “training” or 

“ML model training”). 

Machine learning (ML) model Machine learning is operationalized in the form of an automatic process 

of using ML data and a ML algorithm to produce the desired output. 

Therefore, the ML model comprises two components: ML data and ML 

algorithm. The ML model is an ML algorithm which been “trained” on 

the ML data, meaning that the parameters of the ML algorithm are 

configured such that the outputs resulting from applying the ML 

algorithm to the ML data optimally estimate the desired outputs. 

Predictive accuracy As applied to supervised learning, ML models produce predicted scores 

that are compared with ground-truth scores. The closer the predicted 

scores are to ground-truth scores, the higher the predictive accuracy. 

There are different types of predictive accuracy indices, and the type of 

index used depends on whether the ground-truth score is continuous (i.e., 

regression-type indices) or categorical (i.e., classification-type indices)  

Machine learning measurement 

bias (MLMB) 

MLMB is defined as differential functioning of the trained ML model 

between subgroups. MLMB can empirically manifest when a trained ML 

model produces different predicted score levels for individuals 

belonging to different subgroups (e.g., race, gender) despite them having 

the same ground-truth level for the underlying construct of interest (e.g., 

personality), and/or when the model yields differential predictive 

accuracies across the subgroups. 

Sources of machine learning bias Sources that can potentially contribute to MLMB. This includes different 

forms of data bias and algorithm training bias.  

Training Data Data with known inputs (predictors) and outputs (ground truth) used to 

develop (i.e., calibrate, select, and build) the ML model. 

Evaluation Data Data not used for training with known inputs (predictors) and outputs 

(ground truth) used to examine how accurate the trained ML model is. 

Future Data This is data with known inputs but unknown outputs where the ML 

model is applied to predict outputs. 

 

  



 

 

Table 2. Comparison between traditional measurement bias and MLMB 

Key Issues Measurement Bias Machine Learning Measurement Bias 

Types of scores that are 

relevant  

Predicted observed scores typically 

derived from confirmatory factor 

analysis (CFA) or item response theory 

(IRT) models of psychological 

assessments 

 

Latent scores typically derived from 

CFA or IRT models of psychological 

assessments 

ML model predicted scores that are 

predictions produced by the ML model 

 

 

 

 

Ground-truth scores typically in the 

form of observed scores from 

psychological assessments 

 

Defining bias Defined as a differential relationship 

between the latent score and the 

predicted observed score, or 

differential functioning of the 

measurement tool, across subgroups 

 

One empirical manifestation is that the 

measurement model produces different 

scores for individuals belonging to 

different subgroups despite the same 

latent score level 

 

 

 

Another empirical manifestation is that 

the same measurement model does not 

fit subgroups equally well 

 

Defined as differential functioning of 

the trained ML model between 

subgroups 

 

 

 

One empirical manifestation is when a 

trained ML model produces different 

predicted score levels for individuals 

belonging to different subgroups 

despite them having the same ground-

truth level for the underlying construct 

of interest 

 

Another empirical manifestation is that 

the ML model yields differential 

predictive accuracies across the 

subgroups 

 

Empirical manifestation of 

bias 

Most typically assessed via differences 

in model-data fit: (a) differences in 

CFA fit between subgroups; (b) item-

level subgroup differences in IRT fit 

 

Can also be assessed based on different 

model predicted scores for the same 

latent trait level 

Ground-truth score level: Different ML 

predicted score levels between 

subgroups when subgroups have the 

same ground-truth score level 

 

Ground-truth distribution level: 

Different ML predicted score 

distributions (e.g., means, variances) 

between subgroups for equivalent 

subgroup ground-truth distributions. 

Or, the discrepancy between ML 

predicted subgroup score distributions 

and ground-truth subgroup score 

distributions. 

 

Predictive accuracy: Different ML 

model prediction accuracies (i.e., non-

equivalent convergence of predicted 

scores and ground-truth scores) 

between subgroups 

 

Modeling ground-truth score and ML 

predicted scores: Applying (regression) 



 

 

models between ground-truth scores 

and ML predicted scores and finding 

that significantly different models are 

needed between subgroups 



 

 

Table 3. Summary of Potential Sources of Machine Learning Bias: Identification, Testing, and Mitigation Strategy 

Type of Bias Potential Sources of Machine Learning Bias  Possible Mitigation Strategies 

Source Illustrative underlying issues 

leading to different subgroup 

predictions for equivalent ground-

truth levels, manifest as differences 

in predicted mean levels 

Illustrative underlying issues 

leading to differential model 

functioning between subgroups, 

manifest as differences in 

predictive accuracies (e.g., 

differences in associations) 

 

Data Ground Truth: 

Output in 

supervised ML that 

computers seek to 

predict are not 

equivalent between 

subgroups 

• Measurement bias (between 

ground truth and latent score): 

Psychometric measurement 

bias in measures used to assess 

ground truth. E.g., “Men use 

scales differently than women 

that results in different 

subgroup scores.” 

 

• Sociocognitive bias: 

Sociocognitive biases in 

ratings and annotations. E.g., 

“Females are rated more 

severely in conscientiousness 

due to stereotypes.” 

 

 

• Sample non-equivalence in 

ML training (distributions or 

proportions): ML model 

trained on different ground-

truth levels between subgroups 

may inadvertently use 

subgroups as a proxy in 

predictions. E.g., “Training 

sample has males with higher 

conscientiousness than 

• Measurement bias (between 

ground truth and latent score): 

Psychometric measurement 

bias in measures used to assess 

ground truth. E.g., “Men use 

scales differently than women 

that results in different 

subgroup interval scores.” 

 

• Sociocognitive bias: 

Sociocognitive biases in ratings 

and annotations. E.g., “Females 

are have to show even more 

conscientiousness behaviors to 

be increase ratings of 

conscientiousness scores.” 

 

• Sample non-equivalence in ML 

training (distributions or 

proportions): ML model trained 

on different ground-truth 

variance between subgroups 

may inadvertently use 

subgroups as a proxy in 

predictions. E.g., “Training 

sample has males with higher 

variance in conscientiousness 

• Measurement bias: One can apply 

partial invariant measurement 

models or exclude scale items that 

show bias. And one can seek to use 

measures that are known to be 

measurement equivalent across 

subgroups of interest. 

 

• Sociocognitive bias: It can be 

reduced through the use of training 

(e.g., frame of reference), 

standardized procedures, and the 

aggregation of diverse raters to 

assess ground truth. 

 

 

 

• Sample non-equivalence in ML 

training: Match subgroups of 

interest on ground-truth distributions 

in ML training. Use the same 

numbers of individuals for 

subgroups of interest in ML training. 



 

 

females”; ML model trained 

on considerably different 

proportions of subgroups may 

weight one subgroup more 

than another 

 

than females”; ML model 

trained on considerably 

different proportions of 

subgroups may weight one 

subgroup more than another 

 

 

Ground-Truth Matching: Matched samples on ground-truth scores are assumed for detecting the following sources of machine learning 

measurement biases (e.g., range restriction in a subgroup can lead to lower associations compared to another subgroup that does not have 

range restriction) 

Platform-based 

Construct:  

ML model seeks to 

assess the same 

ground-truth 

construct between 

subgroups but the 

construct assessed 

in the ML model 

input data are not 

equivalent 

Mean level differences on 

platform-based construct scores. 

E.g., “Black individuals show 

lower levels of agreeableness on 

social media despite having the 

same levels of general 

agreeableness as White 

individuals.” 

 

 

Assumes: 

- Ground-truth score distribution 

equivalence 

Differences in the association 

between ground-truth construct 

scores and platform-based construct 

scores. E.g., “Black individuals 

have lower levels of correlation 

between general agreeableness and 

agreeableness on social media, as 

compared to White individuals.” 

 

 

Assumes: 

- Ground-truth score distribution 

equivalence 

Reduce the conceptual and measurement 

gap between ground-truth construct and 

platform-based construct (e.g., use 

online personality rather than general 

personality when building ML 

algorithms for online personality) 

Behavioral 

Expression: 

ML model seeks to 

assess the same 

platform-based 

construct between 

subgroups but the 

behavioral 

expressions 

assessed in the ML 

model input data 

are not equivalent  

Mean level differences on 

behavioral expressions. E.g., 

“Women display more expressions 

of agreeableness in an interview as 

compared to men, despite having 

the same level of agreeableness in 

interview settings.” 

 

 

Assumes: 

- Ground-truth score distribution 

equivalence 

Differences in the association 

between platform-based construct 

and behavioral expressions. E.g., 

“Women have a smaller association 

between agreeableness in interview 

settings and expressions of 

agreeableness, as compared to 

men.” 

 

Assumes: 

- Ground-truth score distribution 

equivalence 

Exclude behavioral expressions that 

reveal substantial differences between 

subgroups 



 

 

- Lack of bias in platform-based 

construct 

- Lack of bias in platform-based 

construct 

Feature Computing: 

ML model seeks to 

assess the same 

behavioral 

expressions 

between subgroups 

but the features 

computed in the 

ML model input 

data are not 

equivalent 

Mean level differences on features. 

E.g., “Lower-income individuals 

have less features computed 

despite the same level of 

behavioral expressions due to poor 

internet connectivity.” 

 

 

 

Assumes: 

- Ground-truth score distribution 

equivalence 

- Lack of bias in platform-based 

construct 

- Lack of bias in behavioral 

expression 

Differences in the association 

between behavioral expressions and 

features. E.g., “Lower-income 

individuals have a smaller 

association between behavioral 

expression and features computed 

due to poor internet connectivity.” 

 

 

Assumes: 

- Ground-truth score distribution 

equivalence 

- Lack of bias in platform-based 

construct 

- Lack of bias in behavioral 

expression 

Exclude features that reveal substantial 

differences between subgroups 

Algorithm 

Training  

Feature Use, 

Weighting, 

Transformation: 

ML model seeks to 

use the same 

features between 

subgroups, but the 

algorithm does not 

treat features 

equivalently 

between subgroups 

Mean level differences on ML 

scores when a specific feature (or 

feature set) is used (or 

differentially weighted) in the 

algorithm. E.g., “Using facial 

expression features for younger 

individuals and not older 

individuals leads to lower scores 

for younger individuals.” 

 

 

Assumes: 

- Ground-truth score distribution 

equivalence 

- Lack of bias in platform-based 

construct 

- Lack of bias in behavioral 

expression 

Differences in the association 

between ground-truth scores and 

ML scores when a specific feature 

(or feature set) is used (or 

differentially weighted) in the 

algorithm. E.g., “Using facial 

expression features for younger 

individuals and not older 

individuals leads to lower 

prediction for younger individuals.” 

 

Assumes: 

- Ground-truth score distribution 

equivalence 

- Lack of bias in platform-based 

construct 

- Lack of bias in behavioral 

expression 

Ensure a common algorithm that uses, 

weights, and transforms features in the 

same manner between subgroups 

 

 

Differential feature use and weighting 

can also be used to reveal a priori data 

bias in the features themselves. In this 

case, it may be appropriate to exclude 

features that create substantial 

differences in the mean level and/or 

predictive accuracies between subgroups 

(e.g., computed features for nonverbal 

behaviors are less accurate for Black 

individuals than White individuals due 

to non-representative prior ML models 

being used to compute such nonverbal 

features; in turn, such features may be 



 

 

- Lack of bias in feature computing - Lack of bias in feature computing less predictive for Black individuals than 

White individuals) 
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Figure 1. Simplified process of machine learning modeling  
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Figure 2. Measurement bias and machine learning measurement bias 

Note: Measurement bias (MB) and Machine Learning Measurement Bias (MLMB) Case 1 

represents a non-compensatory bias that creates different predicted subgroup distributions 

despite the same underlying subgroup distributions; MB and MLMB Case 2 represents a 

compensatory bias that creates equivalent predicted subgroup distributions although there is 

measurement bias.  
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Figure 3. The Brunswik lens model: Linking ML model to behavioral cues  
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Figure 4. Expanding the Brunswik lens model to identify the sources of machine learning measurement bias: An illustration using 

personality as the focal construct 
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Note. Areas highlighted in blue represent possible sources of machine learning measurement bias; “platform-based personality”: the 

personality construct measured by input data (e.g., online personality assessed by social media data) used in ML models to predict 

self-report personality 
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Appendix 

 

This figure depicts a classic machine learning procedure designed to produce a trained model 

capable of making predictions on future data samples. Here we describe the stages and workflow 

with examples. 

 
Data Preparation: In this first stage, the data samples are gathered from the database and 

prepared for modeling.  In this stage, the data is checked to ensure that the data samples are 

valid. Missing or invalid data may be dropped from further processing or filled in with more 

reasonable values.  Data that exists in a raw form (e.g., a video) may be converted to a set of 

features, a set of transformations of the raw data, which are more relevant to the modeling 

process (e.g., facial expression features derived from the video).  Sometimes this set of features 

will contain redundancies (e.g., pairs of features that have a high correlation), so a feature 

selection process will eliminate redundant features so the later stages will have less data to deal 

with.  Finally, the features will often be normalized (e.g., using z-scoring or min-max norming) 

so that the features are initially given a roughly equivalent potential to influence the outcomes 

once the model is built. 

Data Splitting: The resulting set of featurized and normalized data are split into two sets of data: 

the data that will be used to build the model and the data that will be used to evaluate the model.  

The former set is typically called the training data set, and the latter the test data set.  The split 

criteria are often determined without peeking at the data so as not to introduce any selection bias.  
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A common strategy is an 80/20 split, where 80% of the data is used for training and 20% is used 

for testing.  Sometimes, randomized stratified sampling may be used to ensure that roughly equal 

proportions of similar data samples appear in both the training and test data sets, which improves 

the evaluation of the model’s generalizability. 

Model Training: In this stage, the training data set is used to build a model which is expected to 

make accurate predictions on the test data set.  Researchers will decide which class of models 

they wish to use (e.g., linear least squares regression, polynomial regression, random forest, deep 

neural network).  This decision may come from the successes of related literature, from 

experience, or researchers may elect to test multiple model classes on their problem. For each 

model class, a refinement procedure called hyper-parameter tuning is used to find values of 

hyper-parameter values (e.g., the regularization coefficients in Elastic Net models) that fit the 

data training data set samples the best.  To help ensure the chosen hyper-parameters will help the 

model class generalize to unseen data, cross-validation may be employed.  During cross-

validation, the train data set is often randomly split into either 5 or 10 equal pieces or “folds” 

where, in turn, all but one fold is used to tune the hyper-parameters, then the chosen ones are 

used to evaluate the model on the remaining fold.  Researchers may obtain summary statistics of 

accuracy (e.g., mean, variance) over the folds and compare these for different hyper-parameter 

settings to decide which hyper-parameters to choose. Finally, once the best hyper-parameter 

values are decided for a given model class, that model is trained by fitting the model to all the 

training data samples using the hyper-parameters to produce the best-performing model. 

Model Evaluation: The trained model is evaluated using the test set data.  The model produces a 

separate prediction for each test set data sample, and the prediction is compared to the known 

true outcome.  The comparisons are aggregated over the test set samples providing a 

performance score (e.g., mean accuracy, F1 score).  Since the model was trained on data samples 

independent of the test data set, the performance score is expected to generalize to future data 

samples. 

Model Deployment: If the performance score is not high enough, researchers may repeat the 

entire process, changing prior decisions made during data preparation and model building to try 

to build a better model.  On subsequent iterations, the same predefined split criteria are used to 

divide the data to avoid introducing any bias.  If the model’s performance is deemed acceptable, 

then it may be deployed and used to make predictions on new data samples. 
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Traditional ML vs. Deep Neural ML  

The discussions in our paper focus on a traditional form of machine learning. In contrast, 

deep neural learning or deep learning (Goodfellow, Bengio, & Courville, 2016; Le Cun, Bengio, 

& Hinton, 2015) is a different class of models that have gained prominence over the past decade. 

These models are constructed by combining multiple ‘layers’ of artificial neural networks, 

consisting of an input layer, one or more ‘hidden’ (intermediate) layers, and an output layer; 

where hidden layers learn useful intermediate representations of the data by combining input 

features. For example, a deep learning algorithm will directly process raw images rather than 

features (e.g., textures, color) extracted from the images because it is sufficiently powerful to 

learn the features themselves. These deep neural networks have resulted in incredible 

performance improvements across various domains such as computer vision and natural 

language processing (Devlin, Chang, Lee, & Toutanova, 2018; Szegedy, Ioffe, Vanhoucke, & 

Alemi, 2017). They are also capable of representation learning in that they can learn features 

themselves by extracting patterns from raw data instead of requiring pre-specification of features 

like in the other modeling approaches. Deep learning models are incredibly complex with the 

number of free parameters in the tens to hundreds of thousands, so they require copious amounts 

of training data, and their interpretability is low. For these reasons and because most ML 

applications in psychology focus on traditional ML, we do not discuss deep learning specifically. 
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Glossary for Different Types of Machine Learning Models 

Term Definition Psychological Assessment 

Example 

Classification Where the machine learning model’s output 

is a discrete value. Binary classification tasks 

involve just two outcome options, but multi-

class classification can involve many 

outcomes. Multiple binary classifiers can be 

used as an alternative to multi-class 

classification, and doing so allows each 

observation to be classified as including 

multiple emotions. 

Min et al. (2021) classified 

whether tweets contained one 

or more of six discrete 

emotions. 

Regression Where the machine learning model’s output 

is a continuous value, such as when 

predicting Big Five trait scores. There are 

different regression techniques (e.g., linear 

regression, ridge regression, lasso regression, 

etc.) 

Park et al. (2015) inputted 

principal components from 

text data into ordinary least 

squares regression to generate 

continuous scores for the Big 

Five traits. 

Decision Tree A hierarchical “tree-like” model used to 

classify a data sample based on a sequence of 

(typically) univariate predictor tests.  The 

outcome of each test either determines which 

test is performed next or results in a decision 

output (e.g., a class). 

Sajjadiani et al. (2019) used 

decision trees (among many 

other algorithms) to classify 

whether applicants reported 

leaving their previous jobs 

due to involuntary turnover, 

avoiding bad jobs, or 

approaching better jobs. In 

their case, a single decision 

tree outperformed a random 

forest. 

Random 

Forest 

A model used to regress or classify a data 

sample based on the combined outcomes 

from multiple (i.e., a forest of) decision trees, 

where each decision tree is built using a 

random subset of the available predictors and 

observations, such that each consists of 

unique sequences of predictor tests. 

Gladstone et al. (2019) used 

random forest to develop 

models that scored the Big 

Five traits from credit card 

spending records. 

Support 

Vector 

Machines 

A model used to regress or classify a data 

sample by developing a linear function that is 

used as a decision boundary. During model 

training, the linear function is carefully 

chosen to separate binary labeled data as 

accurately as possible while also maximizing 

the minimum distance to the nearest sample 

point on either side of the boundary. This 

model can be extended to perform multi-

Putka et al. (2018) used 

support vector machines 

(among many other 

algorithms) to compare the 

power of psychological scale 

scores vs. scale items in 

predicting job performance. 
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class classification or regression or to certain 

types of nonlinear decision boundaries. 

Neural 

Networks 

A model used to regress or classify a data 

sample through a series of (typically 

nonlinear) transformations of predictor 

values (known as layers). Transformed 

predictors can be combined and/or 

transformed again and passed on to future 

transformations (layers) in the series. The last 

transformations in the series often result in a 

small number of values that are either 

combined (for regression) or passed through 

a simple decision function (for 

classification). 

Başaran & Ejimogu (2021) 

used Facebook activity, 

status, and demographics to 

predict Big Five personality 

traits via a neural network 

model. 

Deep Neural 

Learning 

Models (Deep 

Learning) 

A type of neural network where the number 

of (typically nonlinear) transformations in the 

series is large (at present, any quantity larger 

than one transformation is often considered 

“deep”). 

Transformer-based transfer 

learning language models are 

deep neural networks. Min et 

al. (2021) fine-tuned BERT 

(Devlin et al., 2008) for 

emotion classification to 

estimate the public’s response 

to work from home orders 

during the COVID-19 

pandemic. 
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