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Highlights 

 Investigated collaborative problem solving (CPS) behaviors among triads in a game-

based learning environment. 

 Coded participants’ video-recorded CPS behaviors using 19 specific indicators. 

 Identified frequently-occurring interactive patterns among triads during collaborative 

gameplay. 

 Examined how CPS indicators and patterns affected game outcomes (gold vs. silver vs. 

no coin). 

 Results indicate that a blend of social and cognitive behaviors were predictive of CPS 

performance. 
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The relationship between collaborative problem solving behaviors and solution 

outcomes in a game-based learning environment  

Abstract 

Collaborative problem solving (CPS) is an essential skill for the 21st century workforce but 

remains difficult to assess. Understanding how CPS skills affect CPS performance outcomes can 

inform CPS training, task design, feedback design, and automated assessment. We investigated 

CPS behaviors (individually and in co-occurring patterns) in 101 (N = 303) remote triads who 

collaboratively played an educational game called Physics Playground for 45-minutes. Team 

interactions consisted of open-ended speech occurring over videoconferencing with screen 

sharing. We coded participant’s utterances relative to a CPS framework consisting of three facets 

(i.e., competencies such as constructing shared knowledge) manifested in 19 specific indicators 

(e.g., responds to others’ questions/ideas). A matching technique was used to isolate the effect of 

CPS behaviors on CPS outcomes (quality of solution of a game level) controlling for pertinent 

covariates. Mixed-effects ordinal regression models indicated that proposing solution ideas and 

discussing results were the major predictors of CPS performance, and that team-member 

activities surrounding idea generation mattered. These findings highlighted the importance of 

both individual and collective contributions and social and cognitive skills in successful CPS 

outcomes. 

 

 

Keywords: Collaborative problem solving, game-based learning, triads, human-human 

interaction 
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1. Introduction 

From a trio of classmates working on a project, to a crew of firefighters containing a 

forest fire, to a medical team battling a novel global pandemic, collaborative problem solving 

(CPS) is part-and-parcel of our everyday experience. CPS generally refers to a situation where 

two or more people pool their knowledge and skills to solve complex problems without 

predefined solutions. The set of actions and interactions that occur during the problem-solving 

effort can be indicative of CPS skills, which include both collaboration and problem-solving 

skills (see Hesse et al., 2015; OECD, 2017).  

CPS skills have increasingly been viewed as essential in many contexts, such as in 

schools (e.g., OECD, 2017; Scoular & Care, 2020), informal learning settings (e.g., Huang et al., 

2018), online learning (e.g., Rosen et al., 2020), military settings (e.g., Swiecki et al., 2020), 

business services (Aarikka-Stenroos & Jaakkola, 2012), and marketing innovations (Heirati & 

Siahtiri, 2019) to name a few. Indeed, the ever-growing importance of CPS skills in today’s 

interconnected world is acknowledged by multiple frameworks of 21st century skills (e.g., 

Andrews-Todd & Forsyth, 2020; OECD, 2017). However, a fundamental question needed for 

understanding, assessing, and training CPS skills remains unanswered: What particular CPS 

behaviors give rise to successful problem-solving outcomes?  

We address this foundational question by identifying: (1) basic and essential individual 

CPS behaviors, and (2) key interactive patterns among triads that contribute to successful 

problem-solving outcomes. Our study makes three novel contributions to the literature. First, we 

explored collaboration among triads. This goes beyond current research which mainly examines 

students collaborating in dyads, resulting in precious little knowledge about how larger groups 
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interact with each other and form an effective team. Researchers have argued that dyads have too 

few degrees of freedom to reflect the complexity of group behaviors (Moreland, 2010; Reiter-

Palmon et al., 2017). For example, triads have seven degrees of freedom (i.e., three individuals, 

three possible dyads, and one triad) compared to three degrees of freedom with dyads. Second, 

we tackled the complexity of natural spoken communication among the triads instead of asking 

them to interact with a pre-programmed computer agent (e.g., Stoeffler et al., 2020) or type in a 

chat box (e.g., Scoular & Care, 2020). The chat box is convenient for documenting all dialogue 

in log files, but the interruption of communication required by typing potentially hinders the 

understanding of team dynamics in real-life scenarios. Conversely, natural discourse allows for a 

wide range of opportunities for communication patterns to occur. Thus, the current literature 

does not provide us with a deep understanding of natural communication relative to CPS 

outcomes. Third, we examined CPS while people collaborated while playing an engaging digital 

game, which mirrors a real-life CPS scenario (i.e., friends hanging out and playing games 

together). Currently, many existing CPS tasks are situated in simulation-based learning tasks 

(e.g., Andrews-Todd & Forsyth, 2020; Hao et al., 2019), which may be less engaging than digital 

games.  

Status Quo of Collaborative Problem Solving Assessments 

In line with its expanding importance as an essential skill for people to master in the 21st 

century, researchers have been developing various theoretical models and frameworks specifying 

CPS skills, associated behaviors, and assessments (e.g., Andrews-Todd & Forsyth, 2020; Hesse 

et al., 2015; OECD, 2017; Sun et al., 2020; von Davier et al., 2017). For instance, in 2015, the 

Programme for International Student Assessment (PISA) conducted an international assessment 

of CPS among 15-year-old students in over 70 countries and regions. In this large-scale CPS 
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assessment, students were tasked with interacting with a computer agent (not another human) by 

choosing appropriate responses from pre-defined response options. Students’ CPS skills were 

then evaluated based on the quality of their submitted choices. Critics of the PISA assessment 

have focused on the constrained nature of human-agent interactions, which does not represent 

naturalistic communication among humans as the responses from the agent are pre-programmed 

and the human responses are limited to the provided choices (Graesser et al., 2020; Herborn et 

al., 2020). However, for a large-scale standardized assessment of CPS, interacting with computer 

agents is a feasible, consistent, and pragmatic way to measure students’ CPS skills (Hao et al., 

2019).  

Beyond standardized assessments, in real-life scenarios, CPS requires complex open-

ended human-human interactions where people draw on each other’s knowledge, skills, and 

other abilities to solve problems (Care et al., 2017). Consequently, there has recently been an 

increase in research on how to accurately assess CPS skills in authentic human-human 

interactive environments. For example, recent assessments have attempted to capture naturalistic 

dyadic interactions within various CPS tasks (e.g., Ostrander et al., 2020; Scoular & Care, 2020). 

However, much less research has explored how to accurately assess naturalistic human-human 

CPS interactions in triads (e.g., Sun et al., 2020; Andrews-Todd & Forsyth, 2020) as we do in the 

present study. In addition, researchers have argued that dyads and triads represent qualitatively 

different types of collaboration. For example, triads can generate more complex group 

phenomena than dyads, such as formation of a coalition (Moreland, 2010). Also, communication 

and negotiation are more complicated in triads than with dyads (Reiter-Palmon, Sinha, Gevers, 

Odobez, & Volpe, 2017) because of the added degrees of freedom where the referent of a 
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communication needs to be made more explicit. Because many CPS real-world tasks entail 

groups larger than dyads, investigating triads is itself a worthy endeavor. 

Beyond group size, the communicative medium is also an important factor to consider. 

Current CPS research mainly takes two approaches to analyzing naturalistic human-human CPS 

interactions. One approach used in computer-supported CPS environments is to ask people to 

type in their comments/responses into a chat box, which are automatically logged by the 

computer (e.g., Andrews-Todd & Forsyth, 2020; Scoular & Care, 2020). The other approach is to 

audio/video record the CPS interaction which might unfold either face-to-face or remotely (e.g., 

Sun et al., 2020; Swiecki et al., 2020). Compared with chat box conversations, the recordings 

produce much richer and more abundant streams of naturalistic communication data. Typing also 

tends to be more deliberate than spontaneous speech (D'Mello, Dowell, & Graesser, 2011). In 

our study, we adopted the latter approach where we video recorded participants’ open-ended 

spoken interactions while they engaged in CPS tasks. We also opted for remote collaborations, 

which have increased tremendously in education and in the workplace (Dowell, Lin, Godfrey, & 

Brooks, 2020; Schulze & Krumm, 2017). The demand for remote collaborations is especially 

prominent, given current events, as with the COVID-19 pandemic. However, remote 

collaborations have additional challenges, including technological limitations (e.g., low 

bandwidth), loss of some non-verbal information, cultural differences, and even time differences 

(Schulze & Krumm, 2017; Vrzakova, Amon, Rees, Faber, & D’Mello, 2020). Thus, investigating 

remote human-human collaboration is an additional contribution to the CPS literature.  

CPS Analysis Frameworks 

Several frameworks reported in the literature have been used to analyze CPS behaviors in 

learning contexts. Table 1 summarizes the categorization of CPS skills by three main 
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frameworks. All three frameworks consistently view CPS as two separate skill sets: cognitive 

and social. The three frameworks also show commonalities in essential CPS behaviors, such as 

establishing shared understanding, negotiation, and carrying out solution plans. 

Table 1. 

Summary of Three Main CPS Frameworks 

 PISA CPS Framework 

(OECD, 2017) 

ATC21S CPS Framework 

(Hesse et al., 2015) 

CPS Ontology (Andrews-

Todd & Forsyth, 2020) 

Social Skills 

Establishing and maintaining 

shared understanding 

Participation Maintaining communication 

Taking action to solve 

problems 

Perspective taking Sharing information 

Establishing and maintaining 

team organization 

Social regulation Establishing shared 

understanding 

  Negotiating 

Cognitive 

Skills 

Exploring and understanding Task regulation 

 

Exploring and understanding 

Representing and formulating Knowledge building Representing and formulating 

Planning and executing  Planning 

Monitoring and reflecting  Executing 

  Monitoring 

 

One established CPS framework is the Assessment and Teaching of 21st century Skills 

(ATC21S), by Hesse, Care, Buder, Sassenberg, and Griffin (2015), which explicates the 

individual (rather than collective) contributions of the social and cognitive skills to the problem-

solving space (Scoular, Care, & Hesse, 2017). Similarly, the well-known PISA framework of 

CPS (OECD, 2017) dissects the CPS construct into the interplay of collaboration (social) and 

problem-solving skills (cognitive). The three collaborative skills and the four problem-solving 

skills comprise a matrix of 12 CPS skills (see OECD, 2017 for details). As with the other two 

frameworks, the CPS ontology (Andrews-Todd & Forsyth, 2020) also categorizes the CPS 
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construct into social and cognitive dimensions, with the social dimension focusing on 

collaboration and teamwork, and the cognitive on problem-solving processes. This ontology 

included relevant data that can be collected from chat messages and logged events (e.g., students 

modifying parameter input) during computer-supported CPS tasks.  

Processes and Outcomes in Collaborative Problem Solving 

Researchers have been assessing people’s CPS skills from two angles: CPS processes and 

subsequent outcomes. When people are engaged in CPS tasks, they generate CPS process data, 

which refers to sequential events (e.g., actions and utterances) related to dynamic interactions 

(von Davier et al., 2017). CPS outcomes are generally measured by the correctness of responses 

to a question or the overall success of problem solving (Hao et al., 2019; von Davier et al., 

2017). CPS outcomes can also be subjective, for example, peoples’ perceptions of the 

collaboration process and their teammates (e.g., Meier, Spada, & Rummel, 2007). 

The paths connecting CPS processes to problem-solving outcomes are many. A team can 

demonstrate appropriate CPS behaviors but still have an unsuccessful outcome, especially if the 

problem is too difficult, the team lacks sufficient knowledge to solve the problem, or pursues an 

incorrect strategy (e.g., Hmelo, Nagarajan, & Day, 2000; Hmelo-Silver, 2003). Alternatively, a 

team may be successful at solving the problem, yet demonstrate poor CPS behaviors, like when a 

dominant member of the team solves the problem without input from others, or there is 

considerable conflict within the team (Rosen et al., 2020). In short, because CPS processes 

involve both cognitive and social behaviors, strengths in one but not the other can lead to varying 

outcomes depending on how the outcome is defined.  

As there are multiple ways that CPS processes can contribute to successful outcomes, 

much depends on the ways that CPS behaviors and outcomes are operationalized. For instance, 
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Hao, Liu, von Davier, Kyllonen, and Kitchen (2016) operationalized CPS into four general 

skills: sharing ideas, negotiation, regulating problem solving, and maintaining communication. 

They analyzed dyadic typed dialogues by categorizing each turn of the conversation into one of 

the four skills, and found that successful teams demonstrated significantly greater negotiation 

skills compared with unsuccessful teams. The other three skills did not predict the CPS outcome.  

Some researchers have attempted to use linguistic features to interpret CPS 

communication. For example, Reilly and Schneider (2019) used linguistic features (e.g., length 

of sentences and part of speech) to predict collaboration and learning when dyads interacted 

face-to-face. The length of utterances positively correlated with collaboration quality. Using 

domain-specific words and clear references in communication correlated with learning. One 

drawback of the study relates to the accurate interpretation of the content of communications. 

Recently, taking semantic meanings into account, Dowell et al. (2020) applied a computational 

linguistic analysis to analyze dyadic text-based communication in a CPS simulation task on 

volcano eruption. They analyzed the text in terms of participation, social impact, overall 

responsivity, newness, internal cohesion, and communication density. They identified five 

emergent roles adopted by participants during collaboration (i.e., influential actors, drivers, 

followers, lurkers, and socially detached learners). They found that socially active roles (i.e., 

influential actors and drivers) helped the team to obtain better outcomes than those with socially 

disengaged roles (e.g., socially detached learners).  

Forsyth et al. (2020) examined fine-grained CPS behaviors consisting of 23 CPS 

subskills. They used cluster analyses on those coded CPS behaviors to identify four types of 

collaborators (i.e., active collaborators, super socials, low collaborators, and social loafers) based 

on interactions in a computer-mediated CPS environment with typed chat among triads. They 
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found significant correlations between collaborator type with various measures (e.g., number of 

levels attempted and self-reported CPS skills). In the analysis, the researchers did not address 

confounding variables such as verbosity, so it is unclear if the clusters contributed additional 

information beyond the volume of content. Similarly, Chang et al. (2017) analyzed CPS patterns, 

based on the PISA framework, in a simulation task with typed chat. With a small sample size of 

10 triads, they identified four groups that successfully solved simulation tasks, and six groups 

that did not solve the simulation tasks. A lag sequential analysis indicated that the unsuccessful 

groups repeatedly and unsystematically tested different values in the simulation task and failed to 

come up with executable solutions from their discussions. Meanwhile, successful teams 

demonstrated analytical and reasoning strategies where they iteratively shared understanding, 

executed possible solutions, and monitored results.  

In conclusion, current studies have mainly focus on typed chat and dyadic CPS, which 

motivated us to investigate natural dialogues generated by triadic interactions. Although these 

studies have provided some initial insights, they have not provided a clear picture and consistent 

findings regarding the link between CPS processes and task performance. Further research is 

needed to understand the complexity and dynamics of triadic CPS interaction with respect to 

problem solving performance, especially when triads are communicating freely and verbally in 

open-ended problem-solving environments. Therefore, our study contributes to the 

understanding of triadic CPS behaviors in relation to outcomes by analyzing CPS 

communications at a fine-grained size. 

Current Study  

The goal of our study was to shed light on the relationship between CPS behaviors and 

problem-solving success as triads interacted remotely (i.e., via videoconferencing) to 
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collaboratively solve problems within a computer-based educational game called Physics 

Playground (Shute, Almond, & Rahimi, 2019). In our CPS task, all members of a triad interacted 

with each other using spoken language rather than using a chat box to communicate. Such 

natural triadic interactions posed some challenges regarding understanding and interpreting the 

inter-connected actions. Accordingly, we adopted and updated a generalized CPS model 

developed to analyze peoples’ behaviors in CPS tasks (Sun et al., 2020) and trained human raters 

to code a subset of utterances generated by the triads as they engaged in CPS tasks. And despite 

being quite labor intensive, human ratings can help to ensure the accuracy of classifying 

utterances into relevant CPS behaviors (indicators in our case), which is important before 

proceeding to automated modeling of triadic interactions.  

Our analyses examined specific CPS indicators that were related to team outcomes (coin 

earned for solving a game level in our case) after accounting for baseline communication context 

(e.g., length of time, verbosity). Further, inspired by research investigating communicative 

patterns, such as epistemic network analysis (Csanadi, Eagan, Kollar, Shaffer, & Fischer, 2018) 

and group communication analysis (Dowell, Nixon, & Graesser, 2019), we conducted a 

preliminary analysis to identify frequently occurring discourse patterns (i.e., co-occurring 

indicators) that predicted CPS outcomes beyond the individual indicators. In sum, our work 

contributes to understanding how CPS behaviors – at both the indicator and pattern level – 

predict successful CPS outcomes in an open-ended, spoken, triadic, computer-mediated, remote 

CPS environment. 

2. Method 

The data were collected as part of a larger study on collaborative problem solving (Eloy et 

al., 2019), but only the details pertinent to the present study are reported here. The primary data 
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source reported here consisted of CPS codes of verbal utterances; these data have not been 

previously analyzed or published elsewhere. 

2.1.  Participants 

Participants were 303 undergraduates (56% female, average age = 22 years) from two 

large public universities (39% from University 1). Participants self-reported the following 

race/ethnicities: 47% Caucasian, 28% Hispanic/Latino, 18% Asian, 2% Black or African 

American, 1% American Indian or Alaska Native, and 4% “other.” Participants were assigned to 

101 triads based on scheduling constraints. Thirty participants from 18 teams (26%) indicated 

they knew at least one person from their team prior to participation. Participants were 

compensated with a $50 Amazon gift card (96%) or course credit (4%) at the end of the study.  

2.2.  CPS task 

We used a digital game, Physics Playground (Shute et al., 2019) intended to help young 

adults learn Newtonian physics (e.g., Newton’s laws of force and motion). The overarching goal 

of this game is to direct a green ball to hit a red balloon. To solve game levels, participants need 

to draw appropriate simple machines (e.g., lever and springboard) on the screen using a mouse 

(Figure 1). The simple machines come “alive” on the screen after being drawn as they obey the 

laws of physics (as does everything in the game). Players receive a gold coin when they solve the 

level efficiently (i.e., with minimal objects), and they receive a silver coin for a less efficient 

solution using more objects. No coin is rewarded for unsolved levels.   

We selected 17 game levels covering two physics concepts: nine levels related to "energy 

can transfer” (EcT), and eight levels related to “properties of torque” (PoT).  Example 

subconcepts include kinetic energy, gravitational potential energy, angular acceleration, and 

angular momentum. The 17 levels varied in terms of difficulty (as rated by two physics experts). 
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The levels were organized within three “playgrounds” (detailed below). Players could freely 

navigate through levels in their current playground and pick which levels to solve. They could 

also restart a particular level within their playground as many times as they liked as well as quit a 

level at will. They could also revisit tutorials illustrating the game mechanics at any time, but no 

additional hints were provided. 

Figure 1 

Spider web: A level involving the physics concept of energy can transfer a springboard drawn 

with a weight at the end (Left); The ball shooting for the balloon when the weight was released 

(Right)  

  

2.3.  Procedure 

There was an at-home and in-lab portion to the experiment. Participants were emailed a 

Qualtrics survey with an embedded short tutorial on how to use Physics Playground at least 24 

hours prior to participating in the lab session. Participants needed to complete a pretest on their 

knowledge of the targeted physics concepts—energy can transfer and properties of torque. The 

pretest had two parallel forms (form A and form B) of ten items created by physics experts. In 

the tutorial, participants were instructed on the object of the game, as well as how to draw simple 

machines. After completing the tutorial, participants were given 15 minutes to complete five 
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easy levels to familiarize themselves with the game. Participants also completed a battery of 

individual difference measures, not analyzed here.  

Participants were scheduled in groups of three based on availability. Upon arrival in the 

lab, participants were individually assigned to one of three computer-enabled workstations 

equipped with a webcam and headset microphone, either partitioned in different corners of the 

same room or located in different rooms, depending on the University where the data were 

collected. All collaborations occurred via Zoom videoconferencing software irrespective of the 

layout since the goal was to study remote collaborations. There were additional sensors at each 

workstation which are not germane to our current analyses. Zoom recordings of all 

collaborations were retained for analysis. 

Teams (consisting of three participants) collaboratively solved levels in Physics 

Playground across three 15-minute blocks, totaling 45-minutes of collaborative gameplay. 

During each block, one teammate was randomly assigned the role of controller and the other two 

were contributors. The controller was in charge of all mouse interactions with Physics 

Playground (Figure 2). The controller’s screen was shared via Zoom, such that the contributors 

could view gameplay and contribute to the solution of the level. The role of controller randomly 

rotated so each teammate served as controller for one block. There was a fourth block of a 

separate collaborative task not analyzed here. 

 

Figure 2 

A triad working collaboratively to solve a level using a lever and weights 
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The first block served as a warmup. Participants were instructed verbally and with on-

screen instructions to use the time to familiarize themselves with their teammates and play a few 

levels together. During this time, they were given five easy-to-medium levels in a playground 

involving a mix of EcT and PoT concepts. Teams then completed two 15-minute experimental 

blocks, where each block was assigned a different CPS goal (this was an experimental 

manipulation for another purpose). In one goal manipulation, teams were instructed to “solve as 

many levels as possible.” The purpose of this was to prioritize the quantity of levels solved. In 

the other manipulation, teams were instructed to “get as many gold coins as possible.” In that 

case, the purpose was to focus teams on solution quality. Teams were reminded that gold coins 

are earned by using fewer objects in their solutions indicating more elegant solutions. 

Instructions for the experimental block were provided verbally and on screen.  

We also manipulated the physics concept. Teams were either presented with seven EcT 

levels or six PoT levels in separate playgrounds (all were rated as medium to hard difficulty) 

within the two experimental blocks. The particular goal and physics concept were 

counterbalanced across teams in a 2 × 2 (goal × concept) within-subject design.  
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Across all three blocks, teams received on-screen warnings when they had ten and five 

minutes left in the block. They were also reminded of their assigned goal (levels or gold coins) 

along with the warning. 

2.4. Measures 

In-game performance. There were three possible outcomes for each level attempt in the 

game: (1) the team did not solve the level within the allotted time or they quit the level, and thus 

no coin was awarded; (2) they solved the level using a limited number of objects (i.e., 

efficient/creative solution) and received a gold coin; or (3) they solved the level with a less 

efficient solution and received a silver coin. Earning either a silver or gold coin was considered a 

successful level attempt. 

2.5.  Coding CPS Behaviors 

Our study focused on coding CPS behaviors from free verbal communication while 

collaboratively playing the game. We used a validated CPS framework and a level matching 

scheme to code a subset of the in-game data as elaborated below. 

Coding Framework.  To measure participants’ CPS behaviors, we adapted and revised a 

validated CPS framework suitable for coding open-ended trialogues as in the present study (Sun 

et al., 2020). The model was derived from existing CPS frameworks (see the CPS frameworks 

section above) and consists of three main CPS facets: constructing shared knowledge, 

negotiation/coordination, and maintaining team function. Constructing shared knowledge refers 

to (a) disseminating knowledge, ideas, and resources among team members, and (b) establishing 

common ground for understanding the task and solutions, both of which have been emphasized 

in the literature (Andrews-Todd & Forsyth, 2020; OECD, 2017; Roschelle & Teasley, 1995). 

Negotiation and coordination relate to the processes involved with reaching a consensus on a 



 

20 

 

solution plan to be carried out. This includes the dividing of labor, resolving conflicts, 

integrating different perspectives, and monitoring execution (Andrews-Todd & Forsyth, 2020; 

Hesse et al., 2015; Rummel & Spada, 2005). The third facet emphasizes efforts to maintain a 

functional team via assuming individual responsibilities, taking initiative, and co-regulation 

(Care, Scoular, & Griffin, 2016; Hesse et al., 2015; Rosen, 2017).  

In the current paper, we slightly refined the earlier model regarding particular indicators 

that are associated with each facet (see Table 2, for details). The model, then and now, viewed 

the social and cognitive aspects as closely intertwined, and aimed to analyze CPS skills of 

individuals playing digital games together. There are 19 indicators aligned to the various CPS 

facets (Table 2). Most (68%) of the indicators are positive, suggesting desirable behaviors (and 

higher CPS skills), whereas others are negative (denoted by “R” implying they are reverse 

coded). Based on previous data using this model and task (Sun et al., 2020), we focused solely 

on verbal indicators because nonverbal indicators (e.g., visibly not focused on the task) rarely 

occurred.  

We refined certain indicators to reflect the quality of problem solving. Specifically, we 

divided the previous indicator (suggests potential ideas) into (a) suggests appropriate ideas, and 

(b) suggests inappropriate ideas. Appropriate ideas refer to proposed suggestions that are 

relevant for the given the circumstances in a level although they are not guaranteed to succeed. 

For example, a student may suggest drawing a heavier weight if the current weight in Figure 1 

did not launch the ball close enough to the balloon. Alternatively, a student may suggest using a 

lever to launch the ball, which is also appropriate to solve the level. Thus, appropriate ideas 

reflect students’ current understanding of the problem and their ability to help others build 

knowledge, whereas inappropriate ideas reflect lack of knowledge in tackling the current 
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situation which can potentially mislead team members into pursuing a futile path. Importantly, 

the indicators now capture the appropriateness of potential ideas – not implemented attempts, 

but again, do not guarantee a successful solution. As such, they do not encode problem solving 

success. We include comparison models to investigate whether the mere quantity (not 

differentiating among appropriate/inappropriate ideas) is sufficient for predicting CPS outcomes. 

In addition to the two new indicators described above (i.e., suggests appropriate vs. 

inappropriate ideas), we added four more indicators to the new CPS framework:   

questions/corrects others’ mistakes, strategizes to achieve task goals, tries to quickly save almost 

successful attempts, and apologizes for one’s mistakes, since we observed their occurrence 

during preliminary analyses of the data. For detailed descriptions and example utterances per 

indicator, see Table 2. 

Coding procedure. To code the utterances generated during gameplay, we used IBM 

Watson—speech recognition software—to segment each participants’ audio stream into 

individual utterances. We then merged utterances spoken by the same speaker within 2 seconds 

to address segmentation errors, and identified duplicates in the transcript arising from audio 

interference. The utterances from the three speakers were then merged into a cohesive transcript 

based on timestamps. Although we used speech recognition software to generate the transcripts 

as it is less resource intensive, the coders had access to the full audio and screen-capture videos 

to verify transcribed utterances throughout the process. 

The coders rated each of the utterances in terms of whether the specific utterance 

contained evidence of any of the indicators and coded the frequency of occurrence for each 

indicator. The coders viewed the video recordings (with included audio as in Figure 2) of 

gameplay while coding to understand the context of the utterance as well as the group dynamics. 
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Coders did not know the level attempt results—i.e., solved or unsolved—until they viewed the 

end of the video.  
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Table 2  

Coding scheme-descriptions and example utterances for each indicator 

Indicators / Facets Description and Coding Notes 

Constructing shared knowledge 

1. Talks about the 

challenge situation 

● Talks about the challenge/game environment (e.g., “What does that do?”; “Where is the start?”)  

● Talks about the challenge/game mechanics (e.g., “How do I delete this?”; “How do I restart the level?”) 

● Talks about the challenge criteria (e.g., “We need to get gold coins”; “Use as few objects as possible”) 

● Talks about something that’s already on the screen when the player enters a level (e.g., “What’s that?”, “Is 

that a spider?”, “Can we delete that?”) 

● Talks about time (e.g., “10 minutes left”) 

● Talks about computer error, program glitches (e.g., “it’s lagging”, “it’s not letting me draw XX.”) 

2. Suggests 

appropriate ideas 

● Proposes appropriate ideas to solve the level (e.g., “Try to make a weight attached”) 

● Proposes appropriate ways to fix a failed solution (e.g., “Make it shorter”, “This didn’t work because …”) 

● Appropriate means that the idea is consistent with the underlying Physics in game context. 

3. Suggests 

inappropriate ideas 

● Proposes inappropriate ideas to solve the level (e.g., ideas do not make physics sense) 

● Proposes inappropriate ways to fix a failed solution (e.g., suggests lowering pendulum arm when height 

should be increased). 

4. Confirms 

understanding 

● Asks questions for clarification (e.g., “What?”, “Is this what you are asking?”,” What’s next?”) 

● Reiterates or paraphrases another person’s idea (e.g., “Do you want me to …”, “Ok, make it heavier”) 

● Should occur after the proposal of a solution. 

5. Interrupts others 

(R) 

● Anytime a person is in the middle of speaking and another person jumps in. 

● Does not count if two people start talking at the same time. 

Negotiation & Coordination  

6. Provides reasons to 

support a solution 

● Reasons should be substantial and offer clear logic (e.g., “Hopefully, it will spring upwards and hit the 

balloon”.) 

● Pay attention to signaling words “because”, “and then it will…” Do not code: “Cuz, ya know.”; “Because, 

yeah” 
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7. Questions/Corrects 

others’ mistakes 

● Tries to point out and/or correct the mistakes in others’ ideas/solutions (e.g., “I think this would get stuck on 

the green line”, “Wouldn’t it hit the wall?”). 

● Code if the player draws incorrectly, someone proposes a solution to correct their mistake. 

8. Responds to other’s 

questions/ideas 

● Responds to another’s ideas/questions (e.g., “That’s what I was thinking”, “No I don’t agree”) 

● Responds to a Yes/No question (e.g., “yes”, “no”, “not sure”, “I don’t know”) 

● Responds to “what/which do you think?” or similar questions 

● Code if the answer is simply, “up to you”, “I don’t mind”, etc. If the answer is an elaboration, code it with 

respect to other appropriate indicators. 

● If the answer is “you can try it”, “go ahead and try it”, code it as “compliments or encourages others”. 

9. Criticizes, makes 

fun of, or being 

rude to other (R) 
● Makes disparaging or rude remarks about other player’s or their ideas. 

10. Discusses the 

results 

● Provides substantial and specific comments about the results (e.g., “The ball fell off the screen”, “It stuck on 

the pink thing”). 

● Do not code general comments: “What happened”, “oh no”, “that worked”, “we are close”. 

● Identifies the cause of a failed solution and reflect on what has been done. (e.g., “The line was too short”, 

“Not heavy enough”). 

11. Brings up giving up 

the challenge (R) 

● Talks about quitting or moving to a different/easier level (e.g., “Can we try another level?”) 

● Do not count if a person simply talks about the level being difficult or hard. They must bring up quitting. 

12. Strategizes to 

accomplish task 

goals 

● Explicitly states that choosing a different/easier level to achieve task goals (golds or levels) (e.g., “We only 

solved one level. Should we move to an easier level?”, “Want to go to that level to get a gold?”) 

● Suggests redoing a level to achieve a gold (e.g., “But we only got silver. How can we get gold?”) 

● Suggests using fewer objects (e.g., “Restart. You have drawn so many things”) 

13. Tries to quickly 

save an almost 

successful attempt 

● When the ball almost touches the balloon, uses quick remedy solutions (e.g., “Click the ball, click the 

ball!”) 

Maintaining team function 

14. Asks others for 

suggestions  

● Asks others for possible ideas to facilitate collaboration. (Those are general questions for others to state their 

ideas/solutions, usually at the beginning of a level or when they are stuck) (e.g., “What do you think?”, 

“How do we do that?”, “I don’t know what to do”.) 

● Asks the group to choose between two previously discussed ideas.  
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15. Compliments or 

encourages others 

● Shows support for one another’s ideas/solutions (e.g., “Let’s try it and see”, “That’s a good idea”, 

“perfect!”, “Yay, great job!”, “Yay we did/made it”, “we are almost there”) 

● Encourages others after a solution is implemented (e.g., “Aww, we are so close!” “Ah, almost (there)!”) 

● Empathizes with others (e.g., “yeah, it’s hard to draw”) 

16. Initiates off-topic 

conversation (R) 
● Talks about anything unrelated to the task at hand or the challenge environment (e.g., “Is it cold in here?”, 

“I’m so tired”, “have you ever played XX game?”) 

17. Joins in off-topic 

conversation (R) 
● Engages with another person’s off-topic conversation.  

● Simply acknowledging the other person (“Yeah”, “uh-huh”) doesn’t count. 

18. Provides 

instructional 

support 

● Provides instructions to the controlling player on how to implement a solution (e.g., “Start drawing here”, 

“You’ll make a hook shape”) 

● Code for each individual instructional step. 

● Double code if a player provides instructions and proposes a new solution at the same time. 

● Do not code utterances like “just make a hook”. 

19. Apologizes for 

one’s mistakes 

● Apologizes after a suggested solution failed (e.g., “My bad. It didn’t work.”, “Oops, I missed it”) 

● Apologizes after accidentally interrupting others (e.g., “Sorry, go ahead”, “sorry for interrupting. What 

were you saying?”) 

● Apologizes for bad drawing (e.g., “Sorry, my drawing is bad”, “sorry, I’m too clumsy”) 

 



 

26 

 

Table 3 below provides a sample exchange among participants along with codes 

(assigned indicators), and Figure 3 shows a screenshot of the game level that generated the 

sample exchange. In this situation, the three students just started the level and were discussing 

how to solve it. As shown in Table 3, one student (PA) pointed out that timing was a critical 

element to solving the level, so that was coded as suggesting an appropriate idea although much 

more had to occur to yield a solution. Another student (PC) added onto PA’s idea and 

emphasized that they needed to drop a weight to hit the lever at the right time. All the players 

started to engage in a conversation to come up with a solution plan. Then they drew objects on 

the screen to execute their solution plan, as shown in the screenshot to the right in Figure 3. After 

about seven minutes, they could not solve this level so they quit the level and moved on to 

another one.  

Table 3 

A sample exchange among participants with associated indicators 

Participant Transcripts Associated indicators 

PA We gotta time something. Suggests appropriate ideas 

PC Yeah you gonna have to drop something at 

the right time. It’s like… 

Confirms understanding 

PB Yeah the exact same time. Confirms understanding; interrupts 

others 

PA Oh, yeah, right, I guess… Responds to others’ questions/ideas 

PB Or you could do something like the last 

time. Make the left one, uh, put like a 

weight on it so it evens it out. 

Suggests appropriate ideas 

Provides reasons to support a solution 

PA So like it evens it out.  Confirms understanding 
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Figure 3 

A screenshot of the game level the team was trying to solve in the Table 3 exchange 

   

Training and interrater reliability. Three human coders received two rounds of training 

from the first author. In each round of training, the three coders coded three different level 

attempts randomly selected from different teams. We adopted two indices of interrater reliability: 

Gwet’s AC11 and percentage agreement among the three coders. After the second round of 

training, Gwet’s AC1 values across indicators ranged from 0.91-1.00 and the percentage 

agreement was high (0.89-1.00) for all indicators.  

Next, we randomly selected nine level attempts (i.e., three level attempts for each round) 

that all three coders individually coded. The purpose was to ensure the quality of coding. We 

assessed interrater reliability after each round and the coders discussed the indicators with low (< 

0.90) reliability indices prior to the next round. Gwet’s AC1 values for the three rounds across 

indicators were 0.91-1.00, 0.84-1.00, and 0.93-1.00 with corresponding percentage agreements 

of 0.89-1.00, 0.80-1.00, and 0.90-1.00. Because the coders maintained good interrater reliability 

                                                 
1 Gwet’s AC1 provides consistent estimates of interrater reliability regardless of sample sizes and does not assume 

independence between raters. It is particularly useful in cases where agreement is high, which is a known problem 

for other metrics like Cohen’s kappa (Gwet, 2008). 
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(0.85 – 1) in the quality check, they proceeded with individual coding a total of 209 randomly-

selected level attempts (see below). The coders followed the same coding schedule (e.g., code X 

number of level attempts within Y number of days).  

Level matching. Because the nature of the collaborative interaction (e.g., what is spoken, 

game-play dynamics) is largely determined by unique game levels, we sought to compare CPS 

behaviors across teams who achieved different in-game performance outcomes (i.e., gold, silver, 

or no coin) within the same level. We used a quasi-experimental design procedure—matching—

to isolate the effect of CPS behaviors on CPS outcomes after accounting for pertinent covariates 

detailed below. To do so, we generated matched sets of level attempts, such that each level 

attempt in the set had a different in-game outcome (i.e., gold, silver, or no coin).  

Level attempts were segmented from the Physics Playground logs, which recorded when 

a team entered a level, earned a coin, exited without earning a coin, or reentered a level. An 

attempt began when the team entered a level and ended when they solved the level, began a 

different level, or time ran out in the block. Note that a team could enter the same level multiple 

times in one block. However, if another level was visited in between these visits, they were 

considered separate attempts. In total, we segmented 1,164 level attempts (27% gold, 29% silver, 

and 44% no coin) from the data. 

Prior to matching, we checked all the level attempt durations in seconds. Then we 

removed level attempts (n = 356, 31% of total) that were less than 60 seconds since these largely 

reflected cases where teams were investigating a level ostensibly to decide if they wanted to 

attempt it, resulting in 808 level attempts for matching. 

Solution rates significantly differed for the two blocks with exclusive Energy can 

Transfer (EcT) (18% successful levels; 7% with gold trophies out of all the attempts) and 
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Properties of Torque (PoT) (63% successful with 40% gold out of all the attempts) levels, two-

tailed paired-samples, t(88) = 12.95, p < .001 (this analysis only included teams with complete 

log data). Because of the lower success rate for EcT, we coded its CPS performance as a binary 

paired outcome (i.e., coin [gold or silver] or no coin) for matching to ensure a sufficient number 

of matches. Success was coded as a triplet (silver, gold, no coin) for PoT and for the warmup 

levels (average completion rates of 34%; 10% gold).  

Next, we used the bmatch function in the designmatch (Zubizarreta et al., 2018) R 

package to form matched triplets (i.e., gold, silver, or no coin) or pairs (i.e., coin or no coin) of 

level attempts. Matching was done separately for each of the three blocks and was based on the 

following five covariates. The four categorical covariates were school, level identifier, 

manipulation (i.e., gold coins vs. solve many levels), and block number (first or second) for the 

experimental blocks. One continuous covariate was the duration of the level attempt, and we 

constrained the level attempt duration (in seconds) to be at most .25 standard deviations of the 

mean duration of all the level attempts.  

In total, we formed 324 level attempt matches, including 33 Warmup and 29 PoT triplets 

(gold, silver, no coin for both), and 69 EcT pairs (coin or no coin) from our candidate set of 808 

level attempts. Human coding all the level attempts would be very time-consuming and labor-

intensive. Based on available coding resources, we randomly sampled a subset of 209 matches 

for analysis. These included 22 Warmup triplets (i.e., 66 level attempts), 34 EcT pairs (i.e., 68 

level attempts), and 25 PoT triplets (i.e., 75 level attempts). A total of 47, 49, and 54 unique 

teams were included in the matched pairs/triplets for warmup, EcT, and PoT, respectively 

(corresponding to 141, 147, and 162 participants). One EcT pair was not coded because the video 

recording was missing.    
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For the subset of 209 level attempts, we assessed the success of our matches across the 

pertinent covariates (Appendix A). Matches were considered successful if covariates were 

similar across our outcome groups (coins in this case), which was indeed the case for school, 

manipulation, and block, which were the same within a matched pair or triplet. The differences 

in duration (up to 77 seconds – Appendix A) were most pronounced for the warmup levels where 

level attempts resulting in silver coins required the least amount of time and unsuccessful 

attempts taking the most time. We included duration as a covariate in the subsequent models to 

control for these differences.  

We also compared average team physics pretest scores (range from 0 to 10), which 

served as a proxy for prior knowledge (Appendix A). Average team pretest scores were similar 

across coin type with a maximum difference of less than 1 point. We did not include pretest 

scores as a covariate in the matching process because it is a person-level variable (matching was 

done at the team level) and prior work found no relationship between pretest scores and task 

performance (Stewart, Amon, Duran, & D’Mello, 2020). 

2.6. Analysis  

Our goal was to investigate how CPS behaviors predicted in-game performance within 

the matched levels. In total, the three coders coded 16,446 utterances from the 209 levels, after 

excluding duplicated utterances (as rated by human coders). We removed the last 10% of 

utterances from each level attempt out of a concern that the language/indicators might have 

focused on the success or failure of the outcome rather than the problem-solving process. This 

removal resulted in 14,689 utterances available for our analyses. These data were analyzed at the 

indicator- and pattern-level as noted below. See Appendix B for a sample of the dataset. 
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Indicator-level analysis.  The first analysis was an utterance-level, multilevel ordinal 

regression with problem solving outcome (no coin [0] vs. silver coin [1] vs. gold coin [2]) as the 

dependent variable and level attempt match identifier (match ID) as the grouping factor (and 

random intercept). Note that although EcT levels were coded as a binary outcome (coin or no-

coin) for level matching (see above), we reverted to their original trichotomous codes for the 

models. We simultaneously included the utterance-level counts of all indicators as our predictor 

variables, thereby addressing the influence of each indicator relative to the others.  

We also controlled for the following six variables (covariates). The first covariate was the 

relative utterance index (i.e., the relative position of the utterance within the level). This was 

determined by dividing the index of the current utterance by the total number of utterances 

within the level attempt. The position of an utterance matters. That is, utterances at the beginning 

of a level attempt tend to relate to figuring out the problem situation and brainstorming solutions, 

whereas those in the middle of problem solving tend to relate to solution implementation and 

refinement. The second covariate was concept, with two levels for EcT (set as the reference 

group) and PoT. We added this covariate because success rates differed between the two 

concepts (i.e., 19% for EcT vs. 63% for PoT). For the third covariate, level duration, we 

computed the time spent per level attempt by subtracting the start time from the end time and z-

scoring it across level attempts. This was included because longer levels were generally 

associated with unsuccessful attempts and perfect matching could not be achieved (Appendix A). 

The fourth covariate, verbosity, was computed by first obtaining the length (i.e., the total number 

of words spoken) of each utterance, and then computing z-scores across all utterances. We added 

this covariate to ascertain the incremental predictive validity of the CPS codes over the simple 

volume of language production. The fifth covariate, relative start time, was recorded when 
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participants engaged with the level within the 15-minute block. This covariate was also z-scored 

across all utterances. This was included because it encodes expertise effects, fatigue effects, and 

time pressure. The last covariate was manipulation, with three levels (none, solve as many levels, 

and maximize gold coins [reference group]).  

Pattern Analysis. For this analysis, we identified frequently occurring clusters of 

indicators (called patterns) and used these as predictors. Specifically, we extracted patterns from 

the indicator sequences using a sliding window of five utterances (i.e., utterances 1-5 formed the 

first window and utterances 2-6 formed the second one). On average, the five utterances 

corresponded to 15.1 seconds (SD = 8.61) of discourse, which we deemed sufficient for our 

purposes. For each five-utterance window, we extracted the set of indicators that occurred 

therein and designated it as a pattern, ignoring duplicated indicators and occurrence order. For 

example, the five utterances coded with the indicators—[1] suggests appropriate ideas, [2] 

responds to others’ questions/ideas, [3] confirms understanding, [4] responds to others’ 

questions/ideas, and [5] responds to others’ questions/ideas would form the following pattern: 

suggests appropriate ideas + confirms understanding + responds to others’ questions/ideas. 

Whereas this method ignores temporal ordering of utterances, we chose this approach because 

we were interested in indicator co-occurrences and not specific sequences. The approach also 

yields more general patterns and reduces the number of candidate patterns.  

 Applying the sliding window to the 14,689 utterances across 209 levels resulted in 

13,853 five-utterances windows (14,689 – 4*209 to account for the ending boundaries). We 

identified 1,361 distinct patterns with a range of 0 – 7 indicators per pattern (M = 3; SD = 1). We 

focused on the three-indicator patterns (i.e., the mean) as they were sufficiently frequent and 

provided an opportunity to capture utterances from the three participants who were engaged in 
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the trialogue. We included a subset of these patterns (details below) as predictors in the mixed-

effects ordinal regression model along with the six covariates mentioned above.  

3. Results 

Table 4 shows proportional occurrence of indicators, computed by summing the counts 

for each indicator across all utterances and dividing by the total number of utterances (i.e., 

14,689). The table is sorted in decreasing order of frequency. The most frequently (10.7%) 

occurring indicator was responds to other’s ideas/questions, which includes short responses like 

“yes/no,” “I agree,” and “that makes sense.” The second (10%) most frequent indicator, confirms 

understanding, showed that team members checked their understanding by asking questions or 

paraphrasing. Another frequent indicator (8.5%) was provides instructional support, which 

occurred when the player who controlled the mouse was unsure of what to draw on the screen, 

and the other players provided step-by-step instructions. Interestingly, the occurrence of suggests 

appropriate ideas (6.3%) was only slightly higher than suggests inappropriate ideas (5.2%); 

collectively suggesting ideas was frequent (10.7%). Team members also tended to compliment or 

encourage each other (6%) and were generally polite (the indicator, criticizes or makes fun of 

others, occurred only three times).  

When mapped to the facet-level (See Table 2), the majority of utterances involved shared 

knowledge construction (29.1%), followed by negotiation/coordination (19.5%), and maintaining 

team function (17%), suggesting that the team was quite focused on problem solving. 

We also computed the proportional occurrence of all three-indicator patterns. We used 

binary labels to indicate the pattern that occurred within each window (i.e., if a pattern occurred 

within a window, it was labeled as 1; otherwise, 0). The frequency was calculated by dividing 

the sum of occurrence of each pattern by the total number of windows (i.e., 13,853).  
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Table 4 

Descriptive Statistics of Utterances (n = 14,689) Analyzed in the Mixed-Effect Models  

Indicators Mean SD Frequency 

Range 

[NEGO] Responds to others’ ideas/questions 0.107 0.309 0 - 1 

[CONST] Confirms understanding 0.100 0.304 0 - 4 

[MAINTAIN] Provides instructional support 0.085 0.297 0 - 3 

[CONST] Suggests appropriate ideas 0.063 0.261 0 - 3 

[MAINTAIN] Compliments or encourages others 0.060 0.238 0 - 1 

[CONST] Talks about challenge situation 0.057 0.232 0 - 2 

[CONST] Suggests inappropriate ideas (R) 0.052 0.235 0 - 3 

[NEGO] Provide reasons to support a solution 0.036 0.190 0 - 3 

[CONST] Interrupts others (R) 0.029 0.168 0 - 1 

[NEGO] Discusses the results 0.027 0.161 0 - 2 

[NEGO] Questions/Corrects others’ mistakes 0.022 0.146 0 - 2 

[MAINTAIN] Asks for suggestions 0.011 0.238 0 - 1 

[MAINTAIN] Apologizes for one’s mistakes 0.007 0.083 0 - 1 

[MAINTAIN] Initiative off-topic conversation (R) 0.004 0.059 0 - 1 

[MAINTAIN] Joins off-topic conversation (R) 0.004 0.059 0 - 1 

[NEGO] Strategizes to achieve task goals 0.003 0.058 0 - 1 

[NEGO] Brings up giving up the challenge (R) 0.003 0.056 0 - 1 

[NEGO] Tries to quickly save almost successful attempts 0.001 0.036 0 - 1 

[NEGO] Criticizes, makes fun of others (R) 0.000 0.014 0 - 1 

    

Facets    

Constructing shared knowledge (CONST) 0.291 0.507 0 - 4 

Negotiation/coordination (NEGO) 0.195 0.401 0 - 3 

Maintaining team function (MAINTAIN) 0.170 0.394 0 - 3 

 

We further analyzed the top three (out of 347) frequently-occurring three-indicator 

patterns as these occurred in approximately 1% of the windows: [P1] confirms understanding + 

responds to others’ questions/ideas + provides instructional support (2.82%); [P2] suggests 
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appropriate ideas + confirms understanding + responds to others’ questions/ideas (0.95%); and 

[P3] suggests inappropriate ideas + confirms understanding + responds to others’ 

questions/ideas (0.86%). [P1] suggests the team members were mutually checking each other’s 

understanding, responding to others’ statements and/or questions, and offering help when 

needed. [P2] and [P3] shows that when someone proposes an idea (either appropriate or 

inappropriate), others listen attentively and respond, such as acknowledging, asking questions, 

and paraphrasing. 

3.1. CPS indicators to predict in-game performance 

We removed the “Criticizes, makes fun of others” indicator from model since it rarely 

occurred (M = 0.0002). All variables in our model had VIFs lower than 2, so we concluded that 

there were no multicollinearity issues.  

 Table 5 shows the model results, 95% confidence intervals, and p values, computed 

based on the z-distribution. Significant odds ratios (ORs) greater than 1 indicate a positive 

predictor; whereas significant ORs less than 1 indicate a negative indicator. The OR itself is an 

effect size metric. For example, the OR for “suggests appropriate ideas” was 1.19, indicating that 

a one unit increase in this indicator makes it 1.19 times more likely to result in a positive 

outcome. The table also includes the following random effects: within match ID variance (σ2), 

between match ID variance (τ00), and the intra-class correlation coefficient (ICC, measuring the 

proportion of variance in the outcome explained by the nesting factor match ID). Finally, the 

marginal R2 value indicates the proportion of variance explained by the fixed effects in the 

statistical model, while the conditional R2 shows the proportion of variance explained by the 

fixed and mixed effects.  
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We found that 6 of the 18 indicators significantly predicted the CPS outcome. As 

expected, suggests appropriate ideas, compliments or encourages others, responds to others’ 

ideas/questions, and discusses the results positively predicted CPS outcomes. Additionally, 

suggests inappropriate ideas and brings up giving up the challenge negatively predicted the 

outcome. Two indicators, confirms understanding and asks for suggestions were marginally 

significant predictors. 

Four of our indicators provide some indication of the team’s progress in arriving at a 

solution (i.e., suggests appropriate/inappropriate ideas, brings up giving up the challenge, tries 

to quickly save almost successful attempts). And even though these indicators do not directly 

code the CPS outcome and coders were blind to the outcome (until coding for a level was 

complete), we ran an additional model to address possible confounding effects that the ratings 

were biased by these indicators. Specifically, we removed the brings up giving up the challenge 

and tries to quickly save almost successful attempts indicator. We also combined suggests 

appropriate ideas and suggests inappropriate ideas into a new suggests potential ideas indicator 

to test whether the quality of ideas matters or if quantity is sufficient. The results are shown in 

Model 2 (Table 5). 

 Indeed, we found that the combined indicator suggests potential ideas did not predict the 

outcome. This shows that the effects of suggesting appropriate and inappropriate ideas canceled 

out when they were combined, as suggests appropriate ideas positively influenced the outcome 

whereas suggests inappropriate ideas negatively affected the outcome. However, suggesting any 

kind of ideas still mattered to some degree, as indicated by the odds ratio larger than 1. Four 

indicators (bold font in the table) were significant predictors in both models. They were: 

responds to others ideas/questions, compliments or encourages others and discusses results. 
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Confirms understanding was marginally significant in Model 1 and significant in Model 2. These 

might be essential behaviors for successful CPS outcomes.  

 

Table 5 

Ordinal Mixed Effects Model: Using Specific Indicators to Predict No Coin vs. Silver vs. Gold 

[Level Attempts] 

 

         Model 1 Model 2 

 
Odds 

Ratio 

 

p 

Odds  

Ratio 

 

  p 

Predictors     

Talks about challenge situation 0.97 0.526 0.98 0.696 

Suggests appropriate ideas 1.19  0.001 - - 

Suggests inappropriate ideas 0.86 0.002 - - 

Suggests potential ideas    - - 1.05 0.148 

Confirms understanding 1.07  0.059 1.08 0.031 

Interrupts others 1.08  0.192 1.08 0.200 

Provides reasons to support a solution 1.03  0.562 1.05 0.367 

Questions/corrects others’ mistakes 1.06  0.396 1.08 0.279 

Responds to others’ ideas/questions 1.08  0.033 1.08 0.022 

Discusses results 1.15  0.025 1.16 0.018 

Strategizes to achieve task goals 0.94  0.713 0.95 0.783 

Brings up giving up the challenge 0.43  0.001 - - 

Tries to quickly save almost successful attempts 1.18  0.523 - - 

Asks for suggestions 0.82  0.056 0.83 0.071 

Compliments or encourages others 1.13 0.004 1.14 0.002 

Initiates off-topic conversation 0.97  0.880 0.98 0.923 

Joins off-topic conversation 1.07 0.699 1.08 0.664 

Provides instructional support 1.01  0.860 1.02 0.680 

Apologizes for one’s mistakes 0.92 0.517 0.93 0.563 

 

Covariates 

    

Relative Utterance Index 1.00  0.926 0.99 0.887 

Concept [PoT] 2.93  0.001 2.91 0.001 

Duration [Z Score] 0.48  0.001 0.48 0.001 

Verbosity [Z Score] 0.99  0.665 0.99 0.345 

Relative Start Time [Z Score] 0.46  0.001 0.46 0.001 

Manipulation [Warmup] 1.87 0.003 1.87 0.003 

Manipulation [Levels] 0.86 0.454 0.86 0.460 

 

Random effects 
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σ2  1.00 1.00 

0.57 

0.36 

 

0.36 / 0.59 

τ00 matchID 0.57 

ICC  0.36 

   

Marginal R2 / Conditional R2 0.36 / 0.59 

   

 With respect to the covariates, as expected, PoT levels were much easier to solve than 

EcT levels, and the more time spent on a level, the less likely the team was at successfully 

solving the level. Relative start time was also inversely related to the outcome, suggesting that 

participants tended to solve levels at the earlier stages of gameplay within the block, perhaps 

when they were more refreshed. Verbosity and relative utterance index did not significantly 

predict the CPS outcome indicating that the content of the communication mattered more than 

the length of utterances. In terms of manipulation, the reference group was the sessions with the 

goal of getting as many gold coins as possible (i.e., high-quality solutions), which did not differ 

from the other experimental condition (earn as many silver coins by solving as many levels as 

possible), presumably because this variable was used as a covariate in the matching. 

Unsurprisingly, both yielded lower outcomes than the easier warmup levels with no 

manipulations. 

 The ICC value indicated that 40% of the variance in the in-game performance was 

explained by the matched sets of level attempts. Further, the fixed effects (i.e., the predictors and 

covariates) explained 36% of the variance in the in-game performance (marginal R2), suggesting 

that there are other variables that influence the in-game performance in addition to the variables 

included in our model. The random and the fixed effects collectively explained about 59% of the 

variance in participants’ success in gameplay (conditional R2).  

3.2.  Pattern Analysis: CPS indicators to predict binary in-game performance 
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In the pattern analysis, we built an ordinal regression model using the three frequently 

occurring three-indicator patterns to predict level success. In addition, we included six significant 

individual indicators from Model 1 to examine whether the patterns provide additional 

information and one additional indicator (provides instructional support) that was part of the 

patterns itself. Additionally, we included the same five covariates as in the indicator-level model 

(calculated using the five-utterance window).  

Model 3 (Table 6) shows that among the three most frequent patterns, one significantly 

predicted the outcome (none vs. silver vs. gold): [P2] (i.e., suggests appropriate ideas + confirms 

understanding + responds to others’ questions/ideas) predicted the outcome whereas three 

individual indicators were not significant. The discourse pattern [P3] (i.e., suggests 

inappropriate ideas + confirms understanding + responds to others’ questions/ideas) was not a 

significant predictor with respect to the type of coin earned, although suggests inappropriate 

ideas alone had predictive power. It appears that the negative impact of suggesting inappropriate 

ideas could be mitigated when other team members attempted to paraphrase or ask clarification 

questions and formed a conversation cycle to check and establish mutual understanding. 

Interestingly, non-significant individual indicators (suggests appropriate ideas, confirms 

understanding, and responds to others’ ideas/questions) formed a constructive communication 

pattern [P2] that significantly predicted the CPS outcome. Interestingly, the most frequent pattern 

([P1], confirms understanding + responds to others’ ideas/questions + provides instructional 

support) was not a significant predictor in this model.  

Similar to the indicator-level analysis, we re-ran the pattern analysis by removing brings 

up giving up the challenge and combining the two indicators – suggests appropriate ideas and 

suggests inappropriate ideas into a new pattern suggests potential ideas. These adjustments 



 

40 

 

increased the number of frequent patterns (roughly 1% or greater occurrence) to five: [P1; 

2.82%] confirms understanding + responds to others’ ideas/questions + provides instructional 

support, [P2; 1.88%] suggests potential ideas + confirms understanding+ responds to others’ 

ideas/questions, [P3; 1.08%] suggests potential ideas + confirms understanding + provides 

instructional support, [P4; 0.99%] suggests potential ideas + provides reasons to support an 

idea + responds to others’ questions/ideas, and [P5; 0.84%] suggests potential ideas + responds 

to others’ questions/ideas + compliments or encourages others.  

These five patterns were included in the new model along with seven relevant individual 

indicators (Model 4, Table 6). As before, discusses results positively predicted the outcome as it 

suggests metacognitive reflection. We were initially puzzled to find that suggesting potential 

ideas was negatively related to CPS outcomes. However, it might be the case that potential 

inappropriate ideas had more of an effect than appropriate ideas (see Model 3). The results were 

more illuminating when potential ideas were examined within the context of the two significant 

patterns [P2] and [P3], which were significant positive and negative predictors, respectively. 

Both patterns showed the importance of building on a potential idea by confirming 

understanding, but responding when clarifications were needed [P2] was productive whereas 

simply providing instructional support [P3] was not. Further, the other patterns accompanying 

this indicator [P4] and [P5] were not significant predictors of CPS outcomes. In summary, these 

findings suggest that team member interactions add another layer contributing to outcome 

quality. That is, when ideas are suggested, team members should build on them with constructive 

and responsive communications to achieve high quality outcomes. 
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Table 6 

Ordinal Mixed Effects Model: Using Patterns to Predict No Coin vs. Silver vs. Gold [Level Attempts] 

         Model 3  Model 4 

 
Odds  

Ratio 

 

p 

 Odds  

Ratio 

 

  p 

Predictors   Predictors   

[P1] confirms understanding + responds to others’ 

ideas/questions + provides instructional support 

0.92 0.207 [P1] confirms understanding + responds to others’ 

ideas/questions + provides instructional support 

0.92 0.201 

[P2] suggests appropriate ideas + confirms 

understanding + responds to others’ questions/ideas 

1.62 0.001 [P2] suggests potential ideas + confirms 

understanding+ responds to others’ ideas/questions 

1.19 0.024 

[P3] suggests inappropriate ideas + confirms 

understanding + responds to others’ questions/ideas 

0.82 0.096 [P3] suggests potential ideas + confirms 

understanding + provides instructional support 

0.73 0.004 

   [P4] suggests potential ideas + provides reasons to 

support an idea + responds to others’ questions/ideas 

0.89 0.283 

   [P5] suggests potential ideas + responds to others’ 

questions/ideas + compliments or encourages others 

1.19 0.125 

Confirms understanding 0.88 0.255    

Responds to others’ ideas/questions 1.16 0.145 Confirms understanding 0.89 0.266 

Provides instructional support 1.07 0.456 Responds to others’ ideas/questions 1.16 0.142 

Suggests appropriate ideas 1.16 0.107 Provides reasons to support a solution 0.79 0.496 

Suggests inappropriate ideas 0.54 0.001 Provides instructional support 1.06 0.469 

Compliments or encourages others 1.10 0.162 Compliments or encourages others 1.10 0.153 

Discusses results 1.25 0.020 Suggests potential ideas 0.81 0.001 

Brings giving up the challenge 0.38 0.016 Discusses results   1.25 0.021 

      

 

Covariates 

   

Covariates 

  

Relative Utterance Index 1.00 0.903 Relative Utterance Index 0.99 0.875 

Concept [PoT] 3.00 0.001 Concept [PoT] 2.99 0.001 

Duration [Z Score] 0.48 0.001 Duration [Z Score] 0.48 0.001 

Verbosity [Z Score] 1.00 0.893 Verbosity [Z Score] 1.00 0.686 

Relative Start Time [Z Score] 0.47 0.001 Relative Start Time [Z Score] 0.47 0.001 

Manipulation [Warmup] 1.88 0.004 Manipulation [Warmup] 1.88 0.004 

Manipulation [Levels] 0.86 0.470 Manipulation [Levels] 0.86 0.465 
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Random effects 

   

  Random effects 

  

σ2  1.00 σ2  1.00 

0.60 

0.37 

 

0.35 / 0.60 

τ00 matchID 0.60 τ00 matchID 

ICC  0.37 ICC  

   

Marginal R2 / Conditional R2 0.35 / 0.60 Marginal R2 / Conditional R2 

 

Note: P is short for “Pattern”, so P1 means Pattern 1.
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4. Discussion 

We investigated how CPS skills influence objective CPS outcomes in a game-based 

collaborative learning environment. Our main findings along with directions for future work are 

summarized below. 

Main Findings 

We identified the relationships between CPS measures (at the specific indicator level and 

pattern level) and in-game performance when triads engaged in CPS using a physics game.  The 

indicator-level model revealed that conversations that involved talking about appropriate ideas 

contributed to desirable outcomes whereas discussing inappropriate ideas tended to divert the 

team to a nonproductive direction. Simply suggesting ideas, however, was not a significant 

predictor, which is unsurprising since successful CPS entails both collaboration and problem-

solving skills. The problem-solving part of CPS requires team members to have basic 

background knowledge so that appropriate solution plans can be devised. It is possible that a 

team persists on applying an inappropriate idea which can lead to unsuccessful results, 

particularly when no one has sufficient knowledge to rectify the situation. But knowledge is 

itself insufficient in that a knowledgeable team member may not be able to apply their 

knowledge if they are shy or if the other members are too dominant. Indeed, CPS entails 

dynamic and constructive interactions among team members in addition to individual 

contributions 

In addition to suggesting ideas, other indicators were identified as essential for successful 

CPS task performance. Complimenting and encouraging fellow team members helps to create a 

positive collaborative environment, which in turn stimulates good quality collaboration. 

Additionally, discussing results from implemented solutions benefits performance. That is, 
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monitoring and reflecting on the results from a recent solution attempt might encourage team 

members to refine their solutions (if warranted) (Andrews-Todd & Forsyth, 2020; Care et al., 

2016). Additionally, confirming understanding and responding to others’ ideas/questions also 

predicted high-quality level solutions. This suggests that checking in with team members is 

crucial to establishing common ground and generating executable solutions. Simply 

acknowledging others’ ideas and being responsive could facilitate negotiation processes that are 

needed for a successful outcome. This is consistent with the literature on the importance of 

reciprocal exchanges of communication in collaboration contexts (e.g., Barron, 2000; Hesse et 

al., 2015). 

The pattern analysis revealed additional interactive patterns that contributed to team 

outcomes. First, team members should frequently check each other’s understanding and respond 

to others’ statements or questions, to ensure mutual understanding and establish common ground. 

From a conversation perspective, the pattern analysis indicates multiple rounds of turn taking is 

needed to establish a shared understanding. If someone suggests an idea, then others should 

follow up and discuss the feasibility of the idea, instead of simply doing what was instructed. 

Thus, multiple conversational turn taking helps develop meaning among team members. It is also 

a sign of active participation, not passive acceptance of a suggested idea.  

 Mapping our indicator-level results to the CPS facets (Table 7) indicates that aspects of 

all three CPS facets were predictive of the outcome. CPS requires each individual to share 

knowledge, skills, and resources, monitor team progress, and maintain a functional team 

environment (Andrews-Todd & Forsyth, 2020; OECD, 2017). This is done by sharing one’s 

expertise, coordinating with others, and keeping the team spirit positive (via complements). It 

further reinforces that cognitive and social skills are interconnected in CPS as demonstrated by 
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the fact that each identified patterns involve the combination of social (e.g., responding to others 

and asking clarification questions) and cognitive (e.g., contributing ideas and talking about tasks) 

elements. In short, our findings demonstrate that CPS is a socio-cognitive construct (Dowell et 

al., 2020), and separating the problem solving and collaboration aspects may not be desirable for 

CPS assessment. 

Table 7 

Mapping of CPS indicators/patterns to facets for main models (Models 1 and 3) 

Facet Indicator/Pattern 

Constructing shared knowledge Suggests appropriate ideas (positive) 

Suggests inappropriate ideas (negative) 

Confirms understanding (marginally positive) 
  

Negotiation / coordination Responds to others’ ideas/questions (positive) 

Discusses results (positive) 

Brings up giving up the challenge (negative) 
  

Maintaining team function Compliments or encourages others (positive) 

Asks for suggestions (marginally negative) 
  

Constructing shared knowledge + 

Negotiation / coordination 
[P2] suggests appropriate ideas + confirms understanding + 

responds to others’ questions/ideas 

 

Limitations & Future Work 

Our results should be interpreted in light of some limitations. Our study was conducted in 

a laboratory setting which may not mimic the real-world CPS activity environment. The CPS 

task used in our study related to learning physics through gameplay. As a result, some aspects of 

the coding scheme may not fully capture CPS behaviors that may occur in ill-structured CPS 

problems. Related to that, different features of different games may influence how people behave 

during CPS tasks. Thus, analyzing and comparing different game structures in CPS environments 

can be informative for future studies. Another limitation relates to the simplicity of our pattern 

analysis method in this initial investigation. We applied five-utterance sliding windows in our 
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analysis to see how co-occurring of indicators would influence CPS performance outcomes. 

Even though the coders were not informed of the performance outcome in advance, some level 

of knowledge was needed for judging whether an idea was appropriate vs. inappropriate to solve 

a particular game level. Lastly, the present study was exploratory in terms of understanding the 

relationship between CPS behaviors and performance outcomes in triadic, spoken, and game-

based learning environments. Although the CPS framework we used has been validated across 

multiple tasks (Sun et al., 2020) and we used an objective measure of performance, it is 

important to replicate our findings across multiple contexts. Whereas we do not expect that the 

same set of indicators or patterns will be predictive of task performance in all contexts, as similar 

studies emerge, the field should be in a position to identify a set of generalizable CPS behaviors 

that underly performance outcomes. 

 Our results also indicate several potential areas of future work. We suggest investigating 

the non-significant indicators in the models we tested. For example, provides instructional 

support frequently occurred during students’ communications, but it did not directly relate to the 

outcome quality. Too much instructional support from other team members may lead to passive 

participation of the person controlling the interface, or to unsolved levels if the instructional 

support involves in inappropriate idea. Another indicator—interrupts others—might be seen as a 

double-edge sword. That is, someone could interrupt due to being aggressive and thus impede 

the CPS processes (Chiu, 2008). But someone could also interrupt to seek clarification, rectify a 

misunderstanding, or share their excitement (Roschelle & Tesley, 1995). It is also possible that 

CPS indicators differentially contribute to other CPS outcomes (e.g., subjective perceptions of 

the interaction), which was not examined in the current study.  
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Another possible reason that not all indicators related to our performance outcome is that 

our experimental design did not provide sufficient time for some of the indicator effects to 

unfold. The literature does not provide empirical evidence regarding how long it takes to form an 

effective and efficient team in CPS environments. Our design of three 15-minute blocks may 

have been inadequate for triads to fully demonstrate their CPS skills. To this point, we found that 

teams were less likely to succeed in levels as they were approaching the end of a block. 

Moreover, the triads in our design switched roles in each block (i.e., controller vs. contributors), 

which could affect team dynamics. Future studies could also investigate the longitudinal 

development of CPS skills among team members across days, weeks, or even months. 

Furthermore, due to the complexity of the CPS construct, skill development might not be linear, 

so future studies could focus on the dynamics of CPS skills development.  

In general, additional research is needed to get a comprehensive understanding of the 

relationship between specific indicators and subsequent CPS outcomes (Hao et al., 2019). Such 

an understanding can benefit tailored CPS training (Andrews-Todd & Forsyth, 2020). For 

instance, based on the results from the current study with the goal to improve CPS task 

performance, training that emphasizes the significant indicators and patterns listed in Table 5 and 

Table 6 would be impactful. If the goal was to enhance content knowledge or subjective 

perceptions, then other indicators may be focal.  

One other issue to consider is the time-consuming nature of human coding of CPS 

behaviors, which motivated us to examine a subset of the video recordings. With advances in 

artificial intelligence, specifically automatic speech recognition and natural language processing 

(Blanchard, et al., 2015; Devlin, Chang, Lee, & Toutanova, 2019; Le Cun, Bengio, & Hinton, 

2015), the data generated from human coding could be further utilized towards automated coding 
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of CPS indicators. This would permit testing of the prediction accuracy of various AI techniques 

using human coding data (e.g., Stewart et al., 2019; Hao et al., 2019; von Davier et al., 2017).   

In the same vein, automated assessment of CPS in human-human interactions can enable timely 

feedback. For example, when real-time assessment detects that group members are ignoring each 

other, then an appropriate intervention/message could be deployed to facilitate communication 

among team members. Future research should investigate the effectiveness of timely feedback on 

participants’ CPS skill development. In addition, researchers could consider the best way to 

report CPS skills to stakeholders (e.g., teachers, employers, and team members). Simply 

presenting current CPS facet scores is likely inadequate. Instead of showing scores, perhaps a 

progress bar could be displayed, along with descriptions related to particular strengths and 

weaknesses – as well as ways to improve certain CPS skills. Moreover, researchers should 

examine whether to provide feedback to the team or to individual team members.  

Conclusions 

Our study examined how CPS behaviors and interactions affected performance while 

triads engaged in CPS tasks in a game-based learning environment. We found associations 

among fine-grained indicators as well as patterns of co-occurring indicators and CPS success. 

The findings emphasized that CPS requires individual contributions along with constructive 

interactions. Also, the cognitive and social aspects are integral to CPS. Existing CPS models 

(e.g., PISA and ATC21S) clearly distinguish the two aspects, which tend to deemphasize the 

interconnectedness between social and cognitive skills. The findings can inform intervention 

designs to improve students’ CPS skills in future research. 
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Appendix A 

 

Tables for Level-matching Statistics 

Level-matching: Distribution of the 209 level attempts across schools, experimental blocks, and 

goal manipulation. 

 Warmup PoT EcT 

 Gold Silver 
No 

Coin 
Gold Silver 

No 

Coin 
Coin 

No 

Coin 

School1 11 11 11 9 9 9 20 20 

School2 11 11 11 16 16 16 15 15 

Block1 - - - 8 8 8 13 13 

Block2 - - - 17 17 17 22 22 

Levels - - - 11 11 11 13 13 

Golds - - - 14 14 14 22 22 

 

 

 Means (and Standard Deviations) of pretest score and duration of the 209 level attempts across 

coin types  

  
Gold Silver Coin No coin 

Average Team 

Pretest Score 

Warmup 6.2 (1.2) 6.3 (1.3) - 7.0 (1.2) 

PoT 6.5 (1.3) 6.9 (1.4) - 6.5 (1.4) 

EcT - - 6.7 (1.2) 6.9 (1.2) 

Level Duration 

 

Warmup 235.6 (152.4) 186.8 (119.0) - 263.4 (189.7) 

PoT 218.1 (129.2) 270.2 (210.8) - 215.7 (172.3) 

EcT - - 292.4 (175.8) 357.0 (257.8) 
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Appendix B 

 

A Simplified Excerpt of the Dataset 

 

This table shows a simplified excerpt of the major content included in the dataset, specifically, 

transcript information and associated indicators. For each transcribed utterance, the expert coders 

would label which indicator(s) occurred in the utterance. Each utterance can be coded to multiple 

indicators and an indicator can occur multiple times for one utterance. 

 
Partici

-pant 

 

Start 

Time 

End 

time 
Transcript I1 I2 

 

I3 … 

 

I19 duplicate 

PA 70.12 71.03 Utterance 1 0 2 1 … 0 0 

PC 71.33 73.4 Utterance 2 1 0 1 … 0 0 

PB 80.23 83.57 Utterance 3 0 1 0 … 1 0 

PC 82.58 83.33 Utterance 4 0 0 3 … 0 0 

PB 84.60 90.12 Utterance 5 2 1 0  0 0 
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Appendix C 

All Measures in the Main Study 

 

Home Measures Demographics Gender, age, major, GPA, etc 

 Big-five personality (Brief) Gosling, Rentfrow, and Swann (2003) 

 Leadership self-efficacy Hoyt and Blascovich (2010) 

 Individual satisfaction with 

teamwork 

De la Torre-Ruiz, Ferron-Vilchez, and 

Ortiz-de-Mandojana (2014) 

 Physics self-efficacy Lindstrøm & Sharma (2011) 

 Physics pretest test (form X/Y) Developed by physics experts 

 Intrinsic motivation inventory 

(IMI) for Physics Playground; 

IMI for Minecraft 

Deci and Ryan (1982) 

 Minecraft tutorial check Researcher-developed items 

Lab Measures 

 

Valence / Arousal  

(for each 15-minute block) 

Researcher-developed items 

 Team collaborative problem 

solving quality (for each 15-

minute block) 

Researcher-developed items 

 Inclusiveness and Team Norms 

(for each 15-minute session) 

Gardner and Pierce (2016); Whitton 

and Fletcher (2014) 

 Physics posttest (form X/Y) Developed by physics experts 
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