
Scaling Analysis

1 Overview

Most parallel applications can be run using a range of different core counts, but the relative performance of the
application will likely diminish as the number of cores is increased. For example, a calculation may see a nearly exact
twofold speedup when the number of cores is doubled. If the number of cores is quadrupled, however, it may only
speedup by a factor of 3.7 (as opposed to 4).

This deviation from the expected speedup is normal for many parallel applications, but it means that you must
decide carefully on the core-count to run your jobs at. The appropriate core count might differ between large and
small applications, and it is thus important to measure performance at a range of core counts for all representative
calculation sizes you intend to run. For example, you may intend to evolve multiple fluids models run on grids of
different sizes. Alternatively, you may be working on a genomics project that entails comparing differently-sized sets
of genomes depending on the study you are carrying out.

Typically, but not always, larger calculations will run efficiently on larger core counts than will a smaller calculation.
Because of these considerations, we ask that you use your general-allocation access to acquire representative Summit-
performance numbers for each calculation size you intend to perform. For each job size, run at a range of core counts,
record the time required to perform a calculation at that core count, and report that information here.

You may choose to provide this data in tabular form, graphical form, or both. We will refer to this data when
evaluating your allocation request. If you need help deciding on how to make these measurements, do not hesitate
to contact rc-help@colorado.edu and ask for advice.

Please frame your allocation request in terms of either the weak-scaling or strong-scaling performance of your appli-
cation.

2 Strong Scaling

Strong scaling refers to an application’s performance when the total problem size is kept fixed, and the number of
cores is varied. The questions asked in a strong-scalings study are essentially:

If I double the core count, does the calculation time fall by half?

If I quadruple the core count, does the calculation time fall by a quarter?

etc.

When performing these measurements, it is useful to be aware of the notion of of ideal performance and effi-
ciency. The ideal calculation time is just the time you expect at a given core count based on the measured time at
your smallest core count. If you measured a time of 10 seconds when using 2 cores, 2.5 second represents the ideal
calculation time when running with 8 cores. The formula for ideal time is given by:

Ideal Time on N cores = (Measured Time at Lowest Core Count) x (Lowest Core Count) / N.

The ideal calculation time can be used to evaluate a calculation’s efficiency, namely the ratio of the measured time
to the expected time:

Efficiency = Ideal Time / Measured Time

1



Strong-Scaling Data for Fluid Simulations

Small-Run (1283) Timings
Cores Measured Time (seconds) Ideal Time (seconds) Efficiency

6 60.5 60.50 1.00
12 31.84 30.25 0.95
24 16.44 15.13 0.92
48 8.90 7.56 0.85
96 4.98 3.78 0.76

192 3.15 1.89 0.60
384 2.36 0.95 0.40

Large-Run (5123) Timings
24 181.20 181.20 1.00
48 95.37 90.60 0.95
96 49.24 45.30 0.92

192 25.45 22.65 0.89
384 13.64 11.33 0.83
768 8.71 5.67 0.65

1536 5.6625 2.83 0.50

Table 1: Sample strong-scaling data (fixed problem size, variable core counts) for two simulation sizes. This data is
illustrated graphically by the red circles in Figure 1

Efficiency is what you should use to judge the number of cores appropriate for a particular calculation size. Note
that anything approaching 100% efficiency is rarely achieved in practice. Instead, you must choose the trade-off point
between the efficient use of computational resources and the time you must wait for your calculation to complete.

NOTE: As a general rule of thumb, we suggest running with core counts that achieve a minimum of 80% effi-
ciency. If you plan to run at a lower efficiency level, please explain why. This might happen, for instance, if your
application requires large amounts of memory.

For an example of how you might present your timing data, see Table 1 and Figure 1. Those figures present
performance data from a study involving small and large calculations.

2



100 101 102 103

Number of Cores

10 1

100

101

102

103

Ru
n 

Ti
m

e 
(H

ou
rs

)

small run
large run

100 101 102 103

Number of Cores

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ef
fic

ie
nc

y

small run
large run

Figure 1: Sample performance data for small (blue) and large (red) runs (see Table 1). (a) Measured run time
(circles) vs. number of cores. Ideal scaling for each case is indicated by the dashed lines. (b) Parallel efficiency as
measured for our small and large runs. A blue, dashed reference line has been plotted to denote 80%.

3



100 101 102 103

Number of Cores

60

80

100

120

140

160

180

200
Ru

n 
Ti

m
e 

(S
ec

on
ds

)
64 genomes / core
128 genomes / core

100 101 102 103

Number of Cores

0.80

0.85

0.90

0.95

1.00

Ef
fic

ie
nc

y

64 genomes / core
128 genomes / core

Figure 2: Performance data for our example weak scaling study (see Tables 2). (a) Measured run time (circles) vs.
number of cores. Ideal scaling for each case is indicated by the dashed lines. (b) Parallel efficiency as measured for
our small and large runs. A blue, dashed reference line has been plotted to denote 80%.

3 Weak Scaling

When performing a weak-scaling study, we are asking a complementary question to that asking in a strong-scaling
study. Instead of keeping the problem size fixed, we increase the problem size relative to the number of cores. For
example, we might initially run a genomics study comparing 128 genomes using 24 cores. Later, we might want to
compare 256 genomes using 48 cores. Will the time remain constant, since the work per core has remained the same,
or will the time increase due, for example, to increased communications overhead associated with the larger problem
size or number of cores? A weak scaling study is one method of documenting this behavior for your application,
allowing you to make an educated guess at the amount of computing time you need. We present sample data and
plots for a weak-scaling study in Table 2 and Figure 2. Note that the notion of ideal time is different in this scenario;
it is a constant number at all core counts.

4



Weak-Scaling Data for Genomics Study

64 Genomes per Core
Cores Measured Time (seconds) Ideal Time (seconds) Efficiency

6.0 60.5 60.5 1.0
12.0 61.7346938776 60.5 0.98
24.0 62.3711340206 60.5 0.97
48.0 64.3617021277 60.5 0.94
96.0 66.4835164835 60.5 0.91

192.0 68.75 60.5 0.88
384.0 70.3488372093 60.5 0.86

128 Genomes per Core
6.0 123.0 123.0 1.0

12.0 124.242424242 123.0 0.99
24.0 125.510204082 123.0 0.98
48.0 130.85106383 123.0 0.94
96.0 139.772727273 123.0 0.88

192.0 151.851851852 123.0 0.81
384.0 157.692307692 123.0 0.78

Table 2: Sample weak-scaling data (variable core count, fixed per-core problem size) for a genomics analysis. This
data is illustrated graphically by the red circles in Figure 2

5


