Dating Geologic Processes: EMPA Accessory Phase Characterization, Dating, and P-T-t-D- Analysis

Earthscope Institute: Geochronology and the Earth Sciences - Oct, 2014

Grand Canyon (mile 78-81)

Grand Canyon (mile 78-81)

Grand Canyon (mile 81-87)

Clear Creek Block (mile 81-87)

Pseudosection

Monazite geochronology

Monazite: (LREE) PO₄

Common accessory phase in igneous, metamorphic and sedimentary rocks...

Major REE's: Ce, La, Nd Minor elements: Y, Si, Ca, Sm, Eu, Gd, Pr

Th : 100's of ppm \rightarrow 10's of wt%

- U: 10's of ppm \rightarrow Several wt%
- Pb : Very little "common" Pb (ppb → several ppm)

CB 4 Monazite 1

CB 4 Monazite 5

1700 +/- 15 my

Crazy Basin Pluton, AZ

Reaction-dating

Shaw et al. (2001)

Wing and Ferry (2003)

Foster et al. (2004)

Kohn et al. (2005)

Caddick et al. (2007)

McFarlane, et al. (2005)

Pyle and Spear, 2003

07W-032B

07W-032B

Monazite: (LREE) PO₄

Microprobe optimized for Trace-element Analysis

Multipoint Background

Grt-rich felsic granulites

East Lake Athabasca -

Anhydrous felsic granulite

Legs Lake shear zone -

Hydrated felsic granulites

Legs Lake shear zone - Hydrated felsic granulites

Anhydrous felsic granulites -

P-T pseudosection

Pseudosection – hydrous felsic granulite

P-T pseudosection for hydrated felsic granulite

Felsic granulites -

P-MH2O pseudosection

S32D-2 Garnet

Felsic granulites -

Monazite dating results

Felsic granulites -

Monazite dating results

Felsic granulite evolution

East Lake Athabasca region - **Grease River shear zone**

Felsic granulites

Legs Lake shear zone

Grease River shear zone

Grease River shear zone -

Syn-kinematic monazite

Chipman domain/Legs Lake s.z. -

P-T-t-D paths

1850-1800 Ma

LIN: PLUNGES AT 15° ALONG S°40E

DEXTRAL, TOP SIDE DOWN TO EAST, PLUNGE 15°, S40°E

Sample JM-MLW-07-01 Full Section_rectangular thin section

Са-Мар

Y

Grt => Bt + PI + Qtz + Y-monazite + HREE monazite Kspar => Recrystallized Kspar + U-monazite + apatite

Monazite => Apatite + Ca-poor monazite

Decompression, Cooling, Dynamic recrystallization

Xenotime-dating

Dissolution-Presipitation

Starting monazite

The monazite chosen for the experiment was taken from a heavy-mineral sand deposit at Cumuruxatiba, Bahia State, Brazil D.

Moderately rounded, semi-euhedral, relatively transparent, inclusion-free, 100 – 500 mm, amber-colored grains.

The monazite grains were hand-picked out of the heavy mineral sand, crushed to 50 - 150 mm size fragments and then washed in ethanol in an ultrasonic bath.

ThO₂: 7-8 wt %,

UO₂: 0.5-0.75 wt%

Assemblage:

monazite, muscovite, albite, amorphous SiO₂

Reagents: CaF₂ Na₂Si₂O₅

Experimental conditions 4.5 kbar, 450°C for a Duration: 16 days.

See: Budzyn (2009)

SRC-13-85_1

