U-Pb Geochronology II High spatial resolution studies

John Cottle

Andrew Kylander-Clark & Bradley Hacker Dept. Earth Science University of California, Santa Barbara

Geochronologists are people, too...

Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS) systems

ion sources: inductively coupled plasma (ICP)

good: v. high efficiency; bad: large energy dispersion

Application of LA-ICPMS geochronology Key attributes:

- High spatial resolution
- Rapid data acquisition
- Petrochronology (e.g., Ti, REE, Hf, Nd)

Unprecedented Spatial Information

zircon SIMS

zircon ICP

monazite ICP

Rapid Acquisition

75 min of LA-ICPMS data, including 15 I° standards, 15 II° standards, 70 unknowns

Petrochronology linking P, T, t, & D

Petrochronology linking date to P-T-X evolution

Instrumentation

Petrochronology: Underlying Principles

- Fuse Petrology + Chronology
- chronometer of interest contains particular elements (e.g., zircon contains Lu, but not La)
- element—or group of elements—provides signature of another phase (e.g., Eu anomaly from feldspar)
- changes in trace elements driven by (dis)appearance of phases & *dT* & *dP*
- want fast grain-boundary diffusion & slow volume diffusion

Zircon Petrochronology: REE Signature of Garnet

Zircon Petrochronology: REE Signature of Garnet

↑P, T Garnet

Zircon Petrochronology: REE Signature of Feldspar

P/TPlagioclase

Zircon Petrochronology: REE Signature of Feldspar

P/T
Plagioclase

Petrochronology examples

 Utilizing trace elements to understand complex metamorphic & magmatic histories
 → Pamir/Himalaya & Norway

Campaign style petrochronology
 → grain-, outcrop-, & orogen-scale

Pamir, Domes & Xenoliths

Pamir, Domes & Xenoliths

Domes from Mid–Deep Crust

Pamir Domes: monazite

Stearns et al., (2013)

Pamir xenoliths

 pieces of continental crust that reached UHT at mantle depths

- Implications for behavior of continental crust during collisional orogensis

Hacker et al., (2005)

Tivs. U-Pb date

Pamir UHT, near-UHP xenoliths

Tivs. U-Pb date

Pamir UHT, near-UHP xenoliths

Crust Went Up and Down

Giant Norwegian UHP Terrane

Eclogite ∇P: 1.8–3.6 GPa (65–135 km)

1–2% eclogite & peridotite exposed over 30,000 km²

Cuthbert et al. [2000]; Terry et al. [2000]; Wain et al. [2000]; Schärer & Labrousse [2002]; Carswell et al. [2003, 2006]; Labrousse et al. [2004]; Walsh & Hacker [2004]; Ravna & Terry [2004]; Root et al. [2005]; Young et al. [2007]; Butler et al. [2012]

Eclogite ∇*T*: 650−825 °*C*

Giant Norwegian UHP Terrane

- What is the timing and duration of UHP metamorphism?
- Were burial and exhumation rapid, or slow?
- Are UHP rocks within discrete blocks or are they a uniform package?

Outcrop Relations

pegmatite zircon monazite titanite

eclogite • zircon • garnet • rutile

gneiss

- zircon
- monazite
- titanite
- rutile
- garnet

Gneiss Into & Out of Eclogite Facies

Monazite High Pressure gneiss, Norway

Gneiss Into & Out of Eclogite Facies

HP gneiss, Norway

Gneiss Exhuming from UHP

Did melting occur at UHP?

≥15 Myr Subduction, 15–25 Myr Exhumation

Campaign-style petrochronology #1 grain-scale

LASS Titanite analysis

LASS Titanite Date Map

600 Ma

380 Ma

LASS Titanite Elemental Maps

Mg Al P V Fe Sr Zr No Sn La Ce Pr Nd Sm Eu Gd To Dy Ho Er Tm Yb Lu Hf Ta

0-400 ppm

Trace element vs. apparent age

udd oo∠–o

0–200 ppm

Monazite U/Th-Pb + Trace-Element Maps

~1 hr/grain; 270 analyses

Himalayan migmatite

Generate KDE directly from grain maps

accurate representation of relative age proportions in multiple grains

kernel density estimate (KDE)

Even 3D Maps: Himalayan monazite

rapidly obtain depth profiles

~1hr / map (date + REE)

estimate volume 'age' proportions

Campaign-style petrochronology #2 outcrop-scale

Leo Pargil Dome

Campaign-Style 'Outcrop' Dating

Leo Pargil Dome, NW India

~1200 spot analyses from 25 leucogranites detailed, protracted melting history

Lederer et al., (2013)

reveals timing & duration of melting

resolves complex age patterns, within & among samples

Campaign-style petrochronology #3 orogen-scale

Campaign-Style Zircon Dating

Dikes; UHP Domains 405–393 Ma

Titanite U-Pb Dates: 408–377 ± 8 Ma

Rutile Date + Temperature Map

LASS Conclusions

- rapid, high throughput
- in situ spatial precision: 7–30 $\mu m \ x \ 5 \ \mu m$
- 1–2% (2 σ) uncertainty U/Th-Pb dates
- can date 'difficult' minerals
- simultaneous dates, elements and isotope tracers, enables P-T-t-X-D

What I didn't cover...

- apply LASS method to detrital accessory phases
- U-Th/Pb + trace elements + isotope tracers (Hf, Sr, Nd, Li etc.) to evaluate igneous systems
- Use LASS to screen accessory phases prior to high precision ID-TIMS analysis

Laser Ablation Split Stream Lab (LASS) at UCSB

Agilent 7700x/s (TE or U-Th/Pb)

Photon Machines 193nm ArF Excimer Laser

Nu attoM (TE or U-Th/Pb) Nu Plasma (U-Th/Pb, Lu-Hf, Sm-Nd, Rb-Sr)

Linking Date to process

Ti

Zr

Zr

Zircon Monazite Xenotime Allanite Apatite Titanite Rutile

Lu-Hf-Yb O Sm-Nd O Sm-Nd Sm-Nd Sm-Nd Rb-Sr Sm-Nd Rb-Sr Lu-Hf-Yb

Li

Phase relations Temperature ± pressure Petrogenesis and isotopic tracers

Eclogite-Facies Gneiss

460–435 Ma +garnet +plagioclase 433–427 Ma +garnet –plagioclase

Fjørtoft Norway

Rutile Dates Eruption of Xenoliths

1 hr LASS = Heroic TIMS Work

and Grain-Scale Date Map

Single-Pulse LASS Example

- analyze single laser pulse
- integrate total signal
- split aerosol to obtain U-Th/Pb date + REE
- ~20 mins / map

