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Abstract

In this paper we investigate electron transport probabilities by simultaneously measuring conductance
and shot noise in an atomic point contact. The results show a characteristic noise spectrum for shot
noise at many resistances, with observed suppression of shot noise at integer multiples of the quantum of
conductance in accordance with theoretical expectations. We are able to use our shot noise suppression
measurements as a standard resistor, from which other unknown resistances can be calibrated.



Introduction and Motivation

Shot Noise as a New Resistance Standard

The noise in the electrical current through an atom-
ically thin gap in a wire is related to the probabil-
ity that discrete electrons will be able to jump (or
rather tunnel through) that gap [17]. This mani-
festation of the discreteness of charge is known as
shot noise, and has many interesting qualities. One
demonstrated behavior of shot noise is that it de-
creases theoretically to zero when the probability of
electron transport is 100 percent [17].

This is reasonable–if every electron is tunneling through
the gap, then there should be no fluctuations in the
current and hence no shot noise. What is particu-
larly interesting is that in an atomic point contact
(essentially a wire with a gap) the transmission prob-
ability becomes 100 percent at integer values of 2e2/h,
which equals 1/12.9 kΩ. Thus, shot noise is sup-
pressed at resistances determined entirely by funda-
mental physical constants. Measurements of shot
noise at a variety of resistances, therefore, should
show minima at certain well-defined resistances. If
the resistance scale was previously undetermined,
then the shot noise minima would be enough to cali-
brate it. This is how the physical phenomena of shot
noise can be used as a resistance standard.

The quantum Hall effect is used worldwide to main-
tain and compare the unit of resistance, and for good
reason: ”the reproducibility reached today is almost
two orders of magnitude better than the uncertainty
of the determination of the ohm” using the best known
values of Planck’s constant h and the unit of charge
e [1], about one part per billion. Such remarkable
precision cannot be matched by a shot noise resis-
tance standard yet. However, the intense magnetic
fields required to measure quanta of resistance via
the hall effect are difficult to produce on the small
scale of a device. Because of this, using an atomic
point contact to measure shot noise suppression has
many practical applications for calibrating resistance.

Possible Applications

Instruments that can combine high precision with
low maintenance are rare and in high demand. In-
deed, a great deal of the cost of micro electro-mechanical
devices (MEMS) comes from frequent calibration.
Accelerometer MEMS, for example, are used to de-
ploy airbags in cars, inform the inertial guidance
systems of missiles, and direct satellites. Such de-
vicies usually consist of little more than a cantilever
beam with some type of deflection sensing circuitry.
As an accelerometer experiences a jerk, the can-
tilever beam will deflect a piezo-electric crystal, pro-
viding a measurable voltage to the device’s circuit.
However, over the course of the device’s life as it
bends again and again, resistances will change as the
cantilever and piezo change. Instead of calibrating
it over and over (a process that is costly for airbags
and early impossible to do for missiles or satellites),
a shot noise resistor within the device’s digital cir-
cuitry could calibrate all the resistances at once.

Noise Due to Electron Tunneling

Electrical current across a conducting wire will fluc-
tuate over time. These fluctuations occur about an
average value–at one time it will be at one current,
another time at some other value, but over time the
average value of the current, 〈i(t)i(t − τ)〉τ (where
tau is some interval between the present measure-
ment time and another) can be found.

The similarity of the current at t and at t− τ can be
measured via the cross-correlation, a function of the
time between measurements used to find features in
an unknown signal by comparing it to a known one.
For our experiment, we use one measured value of
current in order to determine the value at some later
time: we cross-correlate the current signal with it-
self, which is known as an auto-correlation function
[2] of the current, RI(τ).

The Fourier transform of an autocorrelation func-
tion gives the spectral density, which can be written
in this context in terms of the current as



〈I2〉�ω =

∫
�ω

SI(ω), (1)

over a range of frequencies �ω. Electrical current
fluctuations resulting in a measurable noise power
SI(ω) can be caused by a number of physical phe-
nomena [5]. In this paper, the motion of electrons
leads to two dominant types of noise : thermal noise
and shot noise.

Thermal Noise

A conducting material at a nonzero temperature will
spontaneously have an electrical current due to pho-
non interactions with free electrons. At equilibrium
with no applied voltage but a finite temperature, phonons
in the metal wire will agitate charge carrying elec-
trons. Movement of electric charge defines a cur-
rent, so this spontaneous electron movement leads
to a measurable noise in the current across the wire
without any applied voltage.

This kind of thermal noise is known as Johnson-
Nyquist noise after the Bell Laboratory researchers
who first discovered and explained it in 1928 [3][4].
They determined that in terms of the noise spectral
density, thermal noise is

S(ν)JN = 4kbTG. (2)

Note that thermal noise is linearly dependent with
temperature; the higher the temperature, the more
thermal noise in a conductor. In order to measure
shot noise we must perform experiments at a low
enough temperature to minimize this noise.

Shot Noise

The fundamental source of shot noise is the discrete-
ness of charge. Charge being carried by individual
electrons is usually not apparent in conductors–the
mass of other electrons in the electron sea strongly

screen out the current fluctuations from any indi-
vidual electron. However, when charges are tunnel-
ing through a potential barrier or an atomically-thin
wire (where the conductor’s length is less than the
mean free path of an electron), the discreteness of
charge manifests itself as shot noise.

Electrons tunnel across a potential barrier with no
time or frequency dependence. So for a conducting
wire with a small gap in it, current measurements
should have detectable fluctuations–noise–due to in-
dividual electrons randomly crossing the gap. This
can be seen in the classical result for the noise power
of shot noise,

S(ν) = 2eĪ (3)

where Ī is the average current. Although up to this
point we have discussed noise in terms of fluctua-
tions in the current, ohm’s law provides an insightful
version of the classical shot noise equation, namely,

S(ν)SN = 2eGV (4)

In this case, G is conductance and V the applied
voltage. So although shot noise occurs randomly,
it (and thereby the likelihood of electron tunneling
events) can be increased by applying a voltage across
the barrier. This is discussed further in the next sec-
tion, where it is shown mathematically that electron
tunneling is the main source of noise in an atomic
point contact.

Electron Tunneling

The voltage dependence of noise in an atomic point
contact is what makes shot noise so useful. Shot
noise has previously been used as a thermometer
that doesn’t require calibration [16], to determine
the gain and noise temperature of an amplifier [10],
and to study the fundamental physics involved in
electron transport. As this paper tries to shine light
on fundamental transport physics allowing for the
possibility of a new resistance standard, it follows



that electron tunneling must be discussed. Indeed,
we will show that this view of noise power is much
more enlightening than the classical equations for
thermal noise and shot noise.

Figure 1: A diagram of two groups of electrons separated
by a barrier in equilibrium. IR, the current from electrons
tunneling from the left to the right, and IL, the current for
electrons going left, are equal. Graphic from [16].

An atomic point contact can be thought of as a tun-
nel junction with electrons passing from one con-
ductor to another across either an empty barrier or
an atomically-thin wire. This arrangement can be
represented by two groups of electrons spread across
a continuous set of energies separated by an empty
space as in Figure (1). Thermal energy, kBT , smears
out the top of both energy distributions. The rate at
which electrons can move from one group to another
is simply the current, with the average current equal
to the difference between the two rates. As shown in
Figure (2), when a voltage is applied the energy lev-
els adjust to the potential difference, making elec-
trons more likely to move in one direction than the
other.

Because the two groups of electrons distributed evenly
across energies are easily represented by Fermi func-
tions, two interesting and important results can be
obtained by applying the concepts of solid state physics
to this problem. The total current can be written
simply as I = IR − IL, but if we model the elec-
tron seas as Fermi functions, the current can also be
written as I =

Figure 2: A diagram of two groups of electrons separated by
a potential barrier with an applied bias eV . This applied bias
changes the difference in energy levels between the two groups,
making electron transport easier and IR larger than IL. Each
group is represented by a Fermi function at a finite temperature
T that causes the spread in values at high energies. Graphic
from [16].

2πe

�
|〈l|M(EF )|r〉|2D(EF )2

∫
[fr(E) − fl(E)]dE

(5)

When evaluated, this integral yields I = V/R, show-
ing that a tunnel junction such as an atomic point
contact is simply a ohmic resistor.

Furthermore, the noise spectral density of the cur-
rent can be written as SI(V ) =

2

R

∫
{fr(E)[1−fl(E)]+fl(E)[1−fr(E)]}dE (6)

which when evaluated [16] gives a second important
result: the noise from electrons tunneling is

S(ν) = 2eV G coth

(
eV

2kBT

)
(7)

This is the general expression for noise–both ther-
mal and shot noise–due to electrons tunneling through



a potential barrier. It takes into account the experi-
mental energy limits hinted at in earlier descriptions
of noise above, as well as in Figures (1) and (2).
In the high-temperature limit where the thermal en-
ergy, kBT , is much larger than the electrical energy
applied, eV , the noise due to electrons tunneling be-
comes

S(ν) = 4kbTG. (8)

the classical equation for Johnson noise. If, how-
ever, kBT << eV , then equation (7) is dominated
by shot noise,

S(ν) = 2eGV, (9)

Rolf Landauer was the first to clearly point out that
in some systems, ”shot noise and thermal equilib-
rium noise are special limits of a more general noise
formula,” [17], as we have shown.

Neither thermal noise nor shot noise depend on the
frequency of the measurement–they are both white
noises. However, a fundamental difference between
the two, as can be seen from equations (9) and (8)
is that shot noise depends on the potential across the
barrier while thermal noise does not. This means
that, as shown in Figure (3), a plot of noise versus
voltage will show a flat level of thermal noise with
shot noise linearly increasing with voltage.

Note again that because thermal noise increases lin-
early with temperature, at higher temperatures the
level of thermal noise will overwhelm the shot noise.
In order to reduce the amount of thermal noise and
successfully measure shot noise we perform our ex-
periments at the low temperature of 4.2 K.

In addition to working at low temperatures, how-
ever, we must also make the length of the conductor
as short as possible, if not break it outright. This
was done by using a mechanical break junction to
stretch a gold wire and then form an atomic point
contact, as described below.

4kBT/e
V

P(V)

T=0
T>0

Figure 3: A theoretical plot of noise power P (V ) from elec-
tron tunneling in an atomic point contact as a function of volt-
age V . At the zero temperature limit, theoretical shot noise
is plotted as a blue dotted line. The green dotted line indi-
cates the level of thermal noise. Interestingly, the temperature
can be determined from the length of the dotted green line.
Graphic inspired by [16].

Methods and Materials

Mechanical Break Junction

Deep within a helium dewar, at the very end of a
long stainless steel evacuated probe, is a vibration-
isolated apparatus that holds a mechanical break junc-
tion, the heart of our experimental setup. This tech-
nique has been used widely to create an atomic point
contact [10][11], but the purpose of a mechanical
break junction (or MBJ) must be made clear and our
design is innovative in ways worth noting.

Atomic point contacts can be made by bringing an
atomically sharp tip of an atomic force microscope
[12] or an STM tip [13] near a substrate covered in
nano-wires or GaAs-AlGaAs heterostructures; any-
thing sharp, conducting, and dense enough so that
the sharp tip is likely to be atomically-close to one
of them, like a javelin over a field of grass. A me-
chanical break junction, however, creates an APC
by by pulling apart a piece of conductor to stretch it
until it breaks. The MBJ leaves the conducting wire
either in two parts with atomically-sharp points, or
with an atomically thin wire between them [14].
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Figure 4: A diagram of our mechanical break junction setup.
During an experiment, the forked driving rod is screwed down,
bending the flexible beryllium-copper substrate, which then
stretches the clamped-down and notched gold wire until it
breaks. Once broken, the piezoelectric crystal is used to finely
tune the bend of the substrate and thereby the separation of the
gap in the gold wire, which is connected to a circuit board to
make measurements. The entire apparatus operates in vacuum
at 4.2 K

In our experiments we use a gold conducting wire
notched with a razor blade. The internal stresses,
reduced connection, and brittleness caused by the
liquid helium temperature (4.2 K) makes breaking
the wire easier. However, in order to make electron
transport measurements, we also need to be able to
change the separation of the wires–our quantum tun-
neling barrier–from open to close and many places
inbetween. Controlled bending is accomplished by
attaching the gold wire to a appropriately flexible
piece of 0.25 mm-thick beryllium-copper, which is
electrically isolated from the conducting wire by a
layer of insulating kapton tape about 0.08 mm thick.
The gold wire is held in place on the beryllium-
copper by two clamps, which is pressed against three
countersupports by the driving rod and piezoelectric
crystal stack.

The separation between the two parts of the broken
wire comes is roughly controlled by the extention
of the driving rod. At the top of the driving rod,
a hand screw extends out of our cryostat probe. It
then passes into the probe via an ultra torr fitting,
down the 1.5 m long interior, and meets the driving

rod at the top of Figure (4). The forked connec-
tion allows us to bring the atomically-sharp points
of the stretched and broken wire together and then
disengage, switching to the finer control of the piezo
stack actuator, which is rated to move 11.6±2.0μm
when 100 V is applied at room temperature. At
4.2 K we expect perhaps 10 percent of that range
of motion, yet even that is enough for our measure-
ments.

Piezoelectric crystals transform electrical energy into
precisely controlled mechanical displacements[15].
While making measurements of shot noise suppres-
sion we need to take data across a wide range of
resistances. Since the separation of the atomic point
contact determines the transmission probability of
electrons and therefore the resistance of the wire
(see equation (5)), we can use a piezo actuator to
finely adjust the resistance of the APC.

From there, however, we need to be able to mea-
sure the resistance as well as the fluctuations in the
APC current. Thus, at the bottom of Figure (??), the
notched gold wire is attached to a circuit board with
the measurement circuit described below.

Measurement Circuit

After using a mechanical break junction held at 4 K
to stretch a gold wire and create atomic point con-
tacts, we then made simultaneous measurements of
current and noise power as a function of voltage.
The current measurements allowed us to find the re-
sistance of the APC, which was then used to inves-
tigate the suppression of shot noise.

This is trickier than it sounds, however. Because
shot noise occurs due to individual electrons mov-
ing across a potential barrier, it occurs very quickly.
Moreover, the fluctuations in the current that we are
measuring are small. In our experiments we used
a microwave amplifier to account for the problems
with measuring shot noise and allow for a faster
readout.

The circuit inside the helium cryostat along with the
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Figure 5: The circuit diagram for the circuit used to make
simultaneous conductance and noise measurements. A DC
power supply at room temperature applies a voltage to the
atomic point contact and accompanying circuit in the helium
dewar. This circuit matches the impedance of the shot noise
measurement circuit, which amplifies and then measures the
noise power of the APC.

APC is used to effectively couple the noise power
from the high impedance APC to the microwave
amplifier at the top of the circuit (see Figure(5)).
This is done by carefully matching impedances via
selection of the inductor and resistor to account for
the capacitance inherent in the system. Because the
selection of appropriate resistors and inductor val-
ues for impedance matching is a fundamental exer-
cise and is explored more thoroughly elsewhere [10]
[21], we will now focus on a direct measurement of
a mismatch, the reflectance coefficient Γ.

Reflectance Calibration

The reflectance coefficient, Γ, indicates the ampli-
tude of the reflected voltage and current standing
wave on a conducting wire, where the other part of
the superposition is the incident signal. To obtain
no reflected power, the load impedance must match
the characteristic impedance of the tramsission line,
which in this experiment are BNC cables. If the load
is mismatched, however, the power being measured

will be inaccurate [21]. Therefore, in addition to
our measurements of conductance and shot noise,
we use a slightly different circuit to measure Γ for
each APC (Figure (6)). These results for a typical
sample are shown in Figure (7).

S/A

directional
coupler

DC
RF

RF/DC

L

APCC

RF
signal

4.1 K

300 K

amplifier

+

Figure 6: This circuit diagram used for measuring the re-
flectance coefficient Γ has a slight difference between the con-
ductance noise measurement circuit: a directional coupler al-
lows us to send a signal down at the APC circuit and then
measure the reflected signal. The signal is at the resonant fre-
quency of the APC, as measured with a network analyzer.

Just as P = IR, the total noise power can be ex-
pressed as

SP =
SI

G
= SIR (10)

If there is a power mismatch in our measurement cir-
cuit, then the available power Pav is reduced to only
the fraction that is coupled into the sample. Since
the available power is equal to the total noise power,
we can write

Pav(1 − Γ2) =
SI

G
(11)
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Figure 7: A plot of the reflectance coefficient Γ as a function
of resistance. Interestingly, this APC is best coupled near 30
kΩ, as the minimum indicates.

which is equivalent to the result that the noise power,
instead of being equal to 2eV G as before, is really

SI = 2eV G(1 − Γ2) (12)

Thus, is is clear that to return the expected value
of noise power, we must have to normalize SI by
(1 − Γ2).

The measurements for Γ are taken for a wide range
of resistances, allowing us to normalize each mea-
surement of shot noise. One aspect of our shot noise
measurements is particularly well-suited for mea-
suring shot noise suppression, and must be briefly
discussed.

Shot Noise Measurements

Shot noise increases linearly with voltage. How-
ever, even at zero volts the noise can be offset signif-
icantly from zero depending on the microwave am-
plifier being used. This behavior is the reason why,
in these experiments, we measured the supression of
the slope of shot noise, not exactly shot noise itself.

Shot noise, when plotted as a function of voltage,
looks like a ”V”. Three such ”V”s are shown in
Figure (8), where each was measured at different

Figure 8: The noise power from an atomic point contact plot-
ted as a function of voltage for three different resistance val-
ues. As the resistance approaches 12.9 kΩ, the first quantum
of resistance where the tunneling probability T = 1, the slope
the noise is reduced.

separations of the APC and therefore three differ-
ent resistance values. As the resistance increases,
the slope of noise ”V” arms becomes smaller and
smaller until, at 12.9 kΩ, the noise curve looks al-
most flat in comparison with the other two. This is
due to shot noise suppression, which will be better
explained in the next section.

Results

Suppression of Shot Noise

Measurements of shot noise in two-dimentional elec-
tron gases in quantum hall experiments [18] show
that the conductance G increases in quantized steps
of G0 = 2e2/h [18] known as the quantum of con-
ductance. In some of these experiments, shot noise
was observed to be suppressed around integer mul-
tiples of G0 [6]. Indeed, previous experiments have
shown similar suppression of shot noise in atomic
point contacts, most notably from the research by
van Ruiteenbeek et al. [20].

The suppression of shot noise at multiples of the



quantum of conductance can be explained with the-
ory about the nature of electron tunneling through
atomic point contacts. Rolf Landauer and Markus
Büttiker give the conductance of a mesoscopic1 con-
ductor as [7]

G =
2e2

h

N∑
n=1

Ti (13)

where Tn are the probabilities of transmission for
conducting channels. Note that for one channel the
conductance is simply G = 2e2/hT , and when that
channel is perfectly correlated i.e. the probability of
an electron tunneling through that channel is 1, then
the conductance is G0.

Landauer-Büttiker theory changes the equation for
the shot noise spectral density, previously S(ν)SN =
2eGV in terms of conductance, to

S(ν) = 2e
2e2

h
V

N∑
i=1

Ti(1 − Ti). (14)

The extra term (1−Ti) in the sum is due to the Pauli
exclusion principle, which states generally that no
two fermions can occupy the same quantum state.
As electrons are fermions, the Pauli exclusion prin-
ciple prevents two electrons to tunnel through the
same conducting channel at once. It is this (1 − T )
term–and more broadly the behavior of fermions in
conducting channels–that causes the suppression of
shot noise shown above in Figure (8) as well as more
fully in Figure (9) below.

Our measurements of noise power spectral density
across a larger range of conductances are plotted in
Figure (10). At larger conductances, although the
shot noise still comes to a point at the quanta of con-
ductance (implying that it is still being suppressed),
the overall level of shot noise is increasing. This is
due to more and more conducting channels opening

1Mesoscopic is an intermediate scale between the macro-
scopic world and the point where the behavior of each individ-
ual atom becomes significant, roughly ten nanometers.
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Figure9:A selectionofshotnoise measurements(plottedin

green) across a range of conductances. Shot noise suppres-

sionis clearly observedat integermultiples of the quantum of

conductance. Equation(14)is plottedinblack.

up at higher conductances, which is unaccounted for

inthesimplemodelofequation(14).

In some cases, the APC will have a single physical

connection between the two wires. Yet, even when

the contact is completely broken, electron wave func-

tions can overlap with features on the broken wire

of the atomic point contact, allowing electrons to

hop across the gap. As discussed above, when the

tranmissionprobabilityT = 1, the conductance be-

comes G
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Figure 10: Shot noise measurements (in green) with minima
corresponding to the theoretical prediction from equation (14)
in black. Instead of being completely suppressed, however,
the noise increases with increasing conductance. This is due
to more and more conducting channels opening up at higher
conductances, which is unaccounted for in the simple model of
equation (14).

channels opening at once would allow for the over-
all rise in shot noise seen in Figure (10). Equation
(14), when the Ti are as shown in Figure (11), are
plotted below in Figure (12).

Determining Unknown Resistance Values

In the previous section we showed that shot noise
is suppressed at integer multiples of G0. Indeed, it
seems that our measured data not only confirmed
the Landauer-Büttiker theory but showed evidence
of multiple conducting channels open at once. Now
that the suppression of shot noise in our system has
been established, we can finally perform what this
paper set out to do in the beginning: use shot noise
suppression as a resistance standard.

To provide an adequate test of this standard, we took
four resistors between 1.2 kΩ and 120 kΩ, concealed
their markings, and labeled each with a randomly-
generated number. Keeping their true resistances
unknown, we then determined their resistance val-
ues by analyzing the shot noise suppression of an
connected atomic point contact. This analysis was
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Figure 11: Three diagrams of the probability of electrons
tunneling, T , as a function of conductance, with each line rep-
resenting a conducting channel in an APC. In the top diagram,
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Figure 12: Shot noise as a function of conductance with
three plots of equation (14) in black, blue, and red for the up-
per, middle, and lower diagrams in Figure (11), respectively.
As more and more channels open, the theory better fits the
measured data.

V_
+ R?

R VR

Figure 13: In this diagram of a voltage divider, R? repre-
sents our bias resistor, R is the atomic point contact, V the
applied voltage and VR the voltage across the APC.

voltage divider. In this setup, a voltage is applied
to two resistors in series, R and R?, where R is the
resistance of an APC and R? that of a resistor with
unknown value. The voltage across R can be mea-
sured, with the relation between it and the applied
voltage and two resistors being

VR

V
=

R

R? + R
(16)

where VR is the measured voltage across the APC.
Using our experimental setup with an unknown bias
resistor, we can take measurements of shot noise
as a function of conductance. Although this mea-

surement of conductance is necessarily arbitrary2,
we can then find two minima of the shot noise and
know, due to theory described above, the resistance
of those two minima. This allows us to divide out
the applied voltage and write, for two APC-derived
resistances R1 and R2,

R? =
R1R2(V2 − V1)

R2V1 − R1V2
(17)

For the first and second minima of shot noise, R1

should be equal to h/2e2 and R2 equal to h/4e2.
This then makes R? equal to

R? =
h

2e2

(V1 − V2)

(2V2 − V1)
(18)

Switching to an unknown resistor, measuring shot
noise across a wide range of arbitrary conductances,
fitting curves to find the minimums at the first and
second quanta of resistance, finding the correspond-
ing voltage across the APC, and plugging them into
equation (17), we are able to make bridge measure-
ments to determine the resistance of an unknown
bias resistor. An example of this curve fitting is
shown in Figure (14)

Figure 14: Noise data near the second quantum of conduc-
tance for resistor 225 is plotted as a function of conductance
in arbitrary units. A model is fit to the data in order to find the
minimum.

2Our bias resistor allows us to determine the resistance of a
sample, and therefore if the bias resistor is replaced with a re-
sistor of unknown value, the measured conductance would be
uncalibrated. From one conductance to another it would still
be relatively correct (presuming that the voltage measurement
is linear), just in arbitrary units of conductance.



Method 2: Recalibration

Because our bias resistor allows us to determine the
resistance of a sample, when the bias resistor is re-
placed with a resistor of unknown value, the mea-
sured APC conductance–such as the x-axis of Fig-
ure (10)–would be uncalibrated. Recall however how
simple the calibration is, and moreover, that the cali-
bration of the APC’s conductance with a known bias
resistor can be just as easily made of the bias resistor
if the APC’s conductance is known.

Fitting a curve to noise data near a minimum of shot
noise (as in Figure (14)) determines the exact arbi-
trary conductance where Landauer-Büttiker theory
predicts the APC’s conductance to be G0. Multi-
plying the arbitrary conductance by the reciprocal
of G0 gives the bias resistor’s value. This is be-
cause equation (15) for an unknown resistor makes
Rbias = 1 so that

Rarb =
VAPC

Vbias

(19)

Sources of Error and Results

In the bridge measurement, we used two minima of
shot noise and assigned them the resistances R1 or
R2, claiming that because of equation (14) the min-
ima would have to correspond to R1 = h/2e2 and
R2 = h/4e2. But what if R1 or R2 are not inte-
ger mulitples of G0? That is, what if noise power is
at a minimum and the APC has a conductance other
than G0? In that case, R1 and R2 would no longer be
standard resistances. The noise minima are unlikely
to shift if, as is usually assumed for mesoscopic con-
ductors such as an APC, there is only one contribut-
ing channel [17], and this is almost certainly the
case for the first quantum of conductace. However,
we have already shown evidence for multiple chan-
nels being open simultaneously at the second noise
minimum. Not only could these extra channels lead
to shot noise not being entirely suppressed, but ex-
tra open channels could also make the noise mini-
mum differ from where it would be when the sum

in equation (14) is equal to one. The uncertainty in
the location of the second minimum is one possible
source of error in the bridge measurement, which
depends on that second measurement to determine
an unknown resistor. Moreover, due to the geome-
try of most APC samples used, measurements near
the second quantum of conductance were difficult
to obtain–often the conductance would bounce back
and forth from one conductance to another, giving
inaccurate noise data.

The recalibration method of determining a resistor’s
resistance also has inherent sources of error, but most
probably in the measurement of voltage–the recali-
bration method only uses the first noise minimum
and is thus free of any uncertainty in the conduc-
tance of the second. One source of error in mea-
suring V comes from the voltage source itself. The
voltage applied by it is offset a small fraction, per-
haps 0.3 microvolts. Of course, since we are apply-
ing a voltage of 0.3 milivolts, this error would be
near one part in a thousand. Larger sources of error,
perhaps as high as one part in ten, exist due to the
fact that we are taking a measurement across lines
that could act as a thermocouple and add voltage
due to the extremely large thermal gradient. Ther-
mocouples are usually made of two different metals
that, when across a thermal gradient, have a poten-
tial difference between them. In our experiment, the
stainless steel cryostat is the ground, while our RF
and DC measurements are carried through a copper
BNC wire, both of which go from (4 K) to (300 K).
This could be solved by measuring the voltage across
the APC with two wires of the same material.

Despite these sources of error, we found the fol-
lowing results. Using the bridge measurement tech-
nique, we obtained the values 6.25 ± 0.24 kΩ, 18.98
± 0.23 kΩ, 13.59 ±0.20 kΩ, and 55.67 ± 0.48 kΩ
for the four unknown resistors labeled 225, 640, 423,
and 582 respectively. With the recalibration method
the derived resistances for 225, 640, 423, and 582
were 7.11 ± 0.37 kΩ, 21.98 ± 0.75 kΩ, 12.78 ±
0.51 kΩ, and 55.84 ± 2.84 kΩ. After these resis-
tances were found from the noise, we measured the
unknown resistors with a Agilent 34401A 6 1/2
digit multimeter. They were 7.06902 kΩ for 225,



21.6989 kΩ for 640, 12.8957 kΩ for 423, and 55.495
kΩ for 582. The three data sets, with error bars, are
plotted in Figure (15).

Figure 15: This figure shows all four test resistors and their
measured values as a black ring. The bridge measurements
(plotted as blue squares) are off by as much as 13 percent,
while the red resistance measurements found via the recali-
bration method (in red) are off by at most 1.3 percent.

Conclusion

Although there are important sources of error that
could be removed, the general conclusion that can
be drawn from the results of this work is that using
the shot noise of an atomic point contact as a resis-
tance standard is very promising.
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