Design of a Prototype Low-Grade Heat Engine

Joseph Lanska
University of Wisconsin-La Crosse

2009 NSF REU

Advised by Dr. Eric Cornell

University of Colorado-Boulder

August 7, 2009

Lanska 2

Design of a Prototype Low-Grade Heat Engine

Joseph Lanska (University of Wisconsin-La Crosse)

Background

What is “Low-Grade Heat”? Low-grade heat (LGH) can be defined as thermal energy too low to
boil water, or, in our case, simply waste hot water from power plants (usually on the order of
200 °C). We know from the Kelvin statement of the Second Law of Thermodynamics that no
heat engine is 100% efficient; even the Carnot cycle (the most efficient cycle possible has a low-
temperature heat sink (T.) for venting waste heat.

From an economic standpoint, there is a huge potential demand for an engine that could utilize
the latent thermal energy of LGH. It is waste heat anyway (and thus essentially a free
resource), and indeed some power plants have to pay to cool or dispose of it, for example with
cooling towers or flue gas.

One prevalent competing technology is combined heat and power (CHP), a.k.a. “cogeneration.”
CHP distributes the waste heat for district heating, i.e. hot water for nearby buildings. Other
processes include thermal desalination, the Stirling cycle, and the Organic Rankine cycle. All of
these technologies have their drawbacks: While CHP is in principle the simplest of these
technologies, it is often undesirable to locate power plants in residential areas. Furthermore,
the Stirling and Organic Rankine cycles require relatively high input temperatures (200 °C or
higher), and the Organic Rankine cycle requires an organic working fluid that must be carefully
sealed to prevent pollution.

The Cornell Power Plant includes several novel features, including a moving heat exchanger
device (many, if not all, heat exchangers are stationary), louvers or flaps to control airflow
(analogous to diodes in an electrical circuit), and poured concrete construction. A 10 MW
power plant would require about 10,000 m? of concrete and allots a budget of $20,000,000 for
construction.

The Cornell Cycle

The Cornell Cycle has 3 steps or strokes: (1) Intake/Exhaust stroke, (2) Heat Exchange stroke,
and (3) Power stroke. See Figures (1) — (3) for diagrams.

In the Intake/Exhaust stroke (Fig. 1), a motor moves the heat exchanger upwards, inducing a
draft that opens the top and bottom louvers and closes the heat exchange louvers. Warm air
(Th) in the top of the cylinder is vented to the turbine (see the power stroke), while air at
ambient temperature (T¢) is drawn into the cylinder. Once the heat exchanger reaches the top
of the cylinder, the motor is turned off, and the louvers close.

Lanska 3

In the Heat Exchange stroke (Fig. 2), the top and bottom louvers are closed and locked, perhaps
with electromagnets. The motor moves the heat exchanger downward, and the draft opens
the heat exchange louvers. Water at Ty (presumably LGH from an adjacent power plant) enters
the middle of the heat exchanger while the air at Tc moves up through the heat exchanger fins
(louvers). In the ideal conceptualization, the air is heated from T¢ to Ty, while the water is
cooled from Ty to Tc and released. Since the air is heated at constant volume, the pressure
increases from Pym tO Phigh.

In the Power stroke (Fig. 3), the air at Ty and Phigh is vented to the turbine to transform it into
useful electrical energy. Some of the energy of the air does work spinning the turbine blades,
while the rest does work pushing aside the ambient air outside the turbine. While the air will
likely still be warm exiting the turbine, it can be vented to the T¢ reservoir (ambient air) without
fear of pollution.

Figure 1. Intake/Exhaust Stroke

Lanska 4

Figure 2. Heat Exchange Stroke

Figure 3. Power Stroke

Lanska 5

Experimental Design and Lab Setup

We are assembling a prototype engine, or as Dr. Cornell calls it, a “test bed,” in order to model
the temperature and pressure conditions of the cycle and test various louver and heat
exchanger fin designs. To characterize the engine and its louvers and heat exchanger fins, we
require temperature and pressure sensors. We used two MKS Baratron® 226A differential
capacitance manometers to measure pressure gradients and numerous Digi-Key NTC 5-k€2
thermistors for temperature measurements.

Since thermistors are glass-encased semiconductors, their resistance varies predictably with
temperature and is modeled by the Steinhart-Hart equation.

% =a+bIn(R) + c(In(R))’ [1]
We assumed that the third term was negligible and could be ignored.

1. a+ bin(R) [2]

T

We placed each thermistor in the following circuit (Fig. 4) in water at freezing, ambient, and
boiling temperatures. This provided two points to determine the constants a and b in [2], as
well as a third point to validate the expression.

2]
¢

-

Figure 4. Thermistor calibration circuit

Once the thermistors were calibrated, we could solve for resistance (and thus voltage) in [2] to
determine the temperature for a given voltage. The code for calibration and temperature
calculation was written in MatLab (see appendix), and the temperature calculation was later
ported to LabView.

Lanska

Thermistor Temperature Calibration (semilog)
450

¢ m—r e
S5kQ
o data

0 check

400 |

w
&
2
T

perature (K)

Ten
"
3
L "
2

I

200 i i P T i i i I I S | i i i I
107

Resistance (Q)

Figure 5. Example thermistor calibration curve

There are 2 pressure and 4 temperature measurements of interest:

Pressure differences between

* The engine and the ambient air pressure

* The top and bottom compartments of the engine (separated by the center plate
heat exchanger)

Temperature of

* Airin (before heat exchanger)
* Air out (after heat exchanger)
* Heat exchanger fin in

* Heat exchanger fin out

Thus this required 6 simultaneous channels of data. We used a Keithley PCI-3101 data
acquisition board to interface our instruments with LabView.

| wrote LabView programs to accomplish the following functions: collect the voltages from the
temperature and pressure sensors and convert them into degrees Kelvin via [2] and psi,

respectively; average the data; graph the data; export the data to tab-delimited text file; and
view the temperature and pressure in real-time.

Lanska 7

Results

We determined the time constant for the thermistors is ~0.5 s by subjecting them to a step
voltage and observing the resultant exponential decay to equilibrium temperature. This allows
us to characterize the temperature of the airflow on a relatively short timescale.

We first tried to pressurize the can with compressed air and quickly discovered that the original
flaps with check valve design (constructed to model the intake and exhaust louvers) don’t seal.
This is an important finding, since these louvers are crucial to the engine cycle. An alternate (or
modified) design could include hinges that are less thick and electromagnetic locks.

We replaced the louvers with sealed sheet metal plates and pressurized the prototype engine
to as much as ~1.5 psi. Since the cycle is expected to operate on the order of several psi, this
pressure approaches that regime.

Finally, we installed the center plate (which will eventually hold the heat exchanger apparatus)
and induced a pressure gradient of ~.01 psi from its motion in the cylinder (Fig. 6).

Pressure Gradients from Center Plate
Motion

0.03
0.025

0.02
0.015

0.01
0.005

0 —w—r
-0.005 5 1 15 20 25 30 35
-0.01
-0.015

Pressure (psi)

Time (s)

Figure 6. Differential pressure between top and bottom compartments of the engine from
center plate motion. The positive data correspond to the plate moving upwards (the jagged
edges are when | changed hands on the guide pole); the negative data correspond to the plate
moving downwards (the data are more even since | simply let the center plate fall).

Lanska 8

Validating the Pressure Measurements

We would like to validate the pressure data from the pressure gauges using a theoretical
argument. This requires a geometry in the center plate such that the airflow is well known.
The Darcy-Weisbach equation
L pV?
AP=f=PT 3]
U D 2
(which can be derived from the Bernoulli equation) models fluid flow through a pipe. Here AP
is the pressure drop across the pipe, fis the dimensionless Darcy friction factor, L is the pipe
length, D is the pipe diameter, p is the fluid density, and V is the fluid velocity.

For the region of interest, we have turbulent flow, so the friction factor fis not linear (as would
be the case for laminar flow) but is related to the roughness of the pipe and the viscosity of the
fluid; it is modeled in a Moody diagram.

The Reynolds number R

_ pVD
u

R (4]

gives a qualitative measure of the turbulence of a flow. Here u is the dynamic viscosity of the
fluid, and since we are concerned with air (an ideal gas for our purposes), it is given by
Sutherland’s formula,

3/2
I,+C(T
= il 5
u AuoT_l_C(z)) ' [5]

where Ly, Tp, and C are constants. The MatLab program | wrote to perform these calculations is
attached in the appendix.

Future Work

The next step is to conduct the pipe pressure experiment to corroborate the veracity of the
pressure data. We then will install the thermistors in the prototype engine for temperature
measurements. Finally, we will test various heat exchanger fin configurations, and optimize the
fins to extract the maximum heat from the air with a minimum loss of momentum/kinetic
energy.

C:\Documents and Settings\Joe\Desktop\matlab programs\ThermistorCalibration.m

Friday, August 07, 2009 12:49 PM

$Thermistor Calibration
$Joe Lanska
%2009 06 29

clc;
clear all;
close all;

R load = *10"
V_tot =

~e

~e

index = input('Enter the thermistor number (0 for old 5k):

[T, V] = getThermistor (index);

$calculate resistance from V
R = zeros(3);
for k=1:
R(k) = get R from V(V(k), V_tot, R_load);
end

$find parameters for Steinhart-Hart Equation
[a, b] = getParams(R(1l), R(3), T(l), T(3));

disp(['The value of a is ', num2str(a), '.'1);
disp([

C:\Documents and Settings\Joe\Desktop\matlab programs\ThermistorCalibration.m Friday, August 07, 2009 12:49 PM

$semilog

figure;

semilogx(R2,T2, 'r');

hold on;

semilogx(R(1l), T(l), 'ko');

semilogx(R(2), T(2), 'ks');

semilogx(R(3), T(3), 'ko');

title('Thermistor Temperature Calibration (semilog)', 'FontSize',)
xlabel ('Resistance (\Omega)', 'FontSize',)
ylabel (' Temperature (K)', 'FontSize',);
legend('5 k\Omega', 'data', 'check');

grid on;

C:\Documents and Settings\Joe\Desktop\matlab programs\getThermistor.m

Friday, August 07, 2009 12:47 PM

$Joseph Lanska
%2009 06 29

function [T, V] = getThermistor(i)
$getThermistor(i) Returns the calibration temperatures and
% voltages for one of the 11 5k thermistors.

$Temperatures are freezing, ambient, and boiling.
$The old 5k thermistor is thermistor #O0.

$MatLab array indices start at 1

i=i+1;

T = [0.1 22.3 94.5;
0.1 21.8 95.3;
0.1 21.6 95.2;
0.1 21.5 95.2;
0.1 21.5 95.2;
0.3 21.4 95.1;
0.1 20.9 95.1;
0.1 20.9 95.2;
0.1 20.9 95.2;
0.1 20.9 95.2;
0.1 20.8 95.27;

V =1[.2831 .1090 .0112;
.2805 .1095 .0105;
.2808 .1131 .0109;
.2818 .1140 .0111;
.2809 .1135 .0108;
.2808 .1152 .0110;
.2805 .1151 .0108;
.2810 .1164 .0108;
.2806 .1161 .0107;
.2810 .1134 .0103;
.2806 .1156 .0108];

T=T(i,:);
V=V(i,1);

T =T + 273;

end

C:\Documents and Settings\Joe\Desktop\matlab programs\get_R_from_V.m Friday, August 07, 2009 12:42 PM

%Joseph Lanska
%2009 06 26

function [R] = get R_from_V (V, V_tot, R_load)
%Rfromv(V, V_tot, R _load) Computes the resistance R from a voltage
% divider circuit.

% V is the voltage across the thermistor
% V_tot is the voltage from the power supply
% R_load is the current-limiting resistor

R=(«/ (V_tot - V)) * R _load;
end

C:\Documents and Settings\Joe\Desktop\matlab programs\getParams.m

Friday, August 07, 2009 12:47 PM

$Joseph Lanska
%2009 06 26

a b getParams R1 R2 T1 T2
$getParams(R1, R2, T1l, T2) Solves the simplified (first order)
% Steinhart-Hart Equation for the 2
% constants a and b.

The Steinhart-Hart egn is 1/T = a + b 1n(R) + ¢ (1n(R))"3.

o0 o°

The third term is ignored.

X log R1 Tl
log R2 T2

Y rref X

ay

C:\Documents and Settings\Joe\Desktop\matlab programs\TempCalc.m

Friday, August 07, 2009 12:48 PM

%Thermistor Temperature
%Joe Lanska
%2009 06 29

clc;
clear all;
close all;

R _load = *10” %load resistance (ohms)
V_tot = %total voltage (V)

~e

~e

index = input(“Enter the thermistor number (0O for old 5k):

[T, V1 = getThermistor (index);

%calculate resistance from V
R = zeros(3);
for k=1:
R(k) = get_ R _from V (V(k), V_tot, R_load);
end

%fFind parameters for Steinhart-Hart Equation
[a, b] = getParams(R(1), R(3), T(1), T(3));

%

)

4

%calculate Temperature
V_meas input(“Enter the measured voltage: ");
R_meas get R from_V (V_meas, V_tot, R _load);
T calc = / (a+ b *xlog(R_meas));

disp(["The temperature is *

, num2str(T_calc-)y, " deg C."1);

C:\Documents and Settings\Joe\Desktop\matlab programs\ThermistorVariation.m Friday, August 07, 2009 12:50 PM

$Thermistor Variation
$Joe Lanska
%2009 06 26

$compare new 5k thermistors

clc;
clear all;
close all;

¢gfrom '2009 06 22 new 5k thermistors.xlsx'
a = []* A(_);
b= []* A(_);

avgA = mean(a);

avgB mean (b);

¢define a standard R

Tl= + ;

R = exp((1/T1 - avgA) / avgB); %inverse of lst-order Steinhart-Hart eqn

T = ./ (a+ b * log(R));
T avg = / (avgA + avgB *log(R));

delta T =T - T _avg;

$plot variations

figure;

plot(delta T, 'bo-');

title('Variation in Temperature measured by Thermistors', 'FontSize',)
xlabel (' Thermistor #', 'FontSize',);

ylabel('\DeltaT (K)', 'FontSize',);
grid on;

C:\Documents and Settings\Joe\Desktop\matlab programs\PressureDrop2.m

Friday, August 07, 2009 12:48 PM

%Pressure Drop of Air Through Pipes

%Joseph Lanska
%2009 08 04

Y%assume incompressible flow

%conversion: 1 inch = 0.0254 meters

clc;
clear all;
close all;

%for air

C=120;

TO = 291.15;

muo = 18.27 * 10~(=-6);

%estimates
T =23+ 273;
rho = 1.2;

e = 1.5 % 10%(=6);
L=2.5% _0254;
D=4 % 75 % _0254;
DO = 23.5 * .0254;

V =V0 * (DO*2 / D*2);
display([“"The velocity of ai

%K
%K
%Pa*s = N*s/m"2

Y%temperature of air (K)
%density of air (kg/m"3)

%pipe roughness (m)

%pipe length(m); 10 inches

%internal pipe diameter(m); 4 pipes

%plate diameter; 23.5 inches

%velocity of plate (m/s), (5s to drop 1m)
%velocity of air through pipe (n/s), 2 feet

r through the pipe is °, num2str(V), " m/s."])

%Sutherland®s Formula (assumes air is ideal gas)

mu = mu0 * ((TO + C)/(T + C)

%Reynold®s Number
R=rho *V * D / mu;

display(["R is ", num2str(R)

if (R < 2000)
display(“Laminar Tlow");
f=064/R;

else
display (" Turbulent Tlow”

display([“"The relative roughness of the pipe (e/D) is ", num2str(e/D),

%Colebrook equation

%f = solve("1/(sqrt(f)) = -2 * loglOo(e/D * 1/3.7 + 2.51/(R* sqrt(f)))-,

) * (T/TO)~(3/2);

1)

%Ffriction factor (only valid for laminar flow)

)i

f= _02; %From Moody diagram

end

display([*Ff is ", num2str(f)]);

%Pressure Drop

%Darcy-Weisbach equation (from the Bernoulli Equation)
dP = £ = (L/D) * (rho/2) * V*2; %Pa
dP = dP *14.696 / (101.325 % 1073); %convert to psi

display(["The pressure drop

in the pipe iIs °, num2str(dP), psi-"1);

1)

fT);

-

C:\Documents and Settings\Joe\Desktop\matlab programs\PressureDrop2.m Friday, August 07, 2009 12:48 PM

goutput from 12T pressure gauge (mV)
volts = dp / ;
display (['The resulting voltage output from the 12T pressure gauge is ', num2str(volts), ' V.']1);

D = H HE

D =D * * ;

dp = * f * rho * L * VO*2 * D0"4 ./ D."5;

dpP = dP * / (* “3); gconvert to psi
% figure();

$ D =D/ (4 *.0254);

% semilogy (D, dP, 'bo-");

% grid on;

% xlabel('Pipe Diameter (inches)');

% ylabel('Pressure Drop (psi)');

volts = dp /

~e

figure();

semilogy (D, volts, 'bo-');

grid on;

xlabel('Pipe Diameter (inches)');
ylabel('Voltage 12T (V)');

Joseph Lanska
August 6, 2009

1. Intake
Model air as an ideal diatomic gas.

D = Pamb
T =Te
pV = NkgT = nRT

_ pV :pambv
kT kTc

2. Heat Exchange

Qwater - ans

V' = constant

T1=T0—>T2=TH

Plzpamb_)PQ:Phigh

Since a diatomic molecule has 5 degrees of freedom, then by the Equipartition

Theorem,
kgT 5

and the specific heat per molecule is

e — (29 5
V=\or), 27"

Q = mcAT

= N (ng) (T, — Ty)

- (i) ()

5 Ty —Tc
- 2pambv (TC’)

constant volume process = V; = V4, so by the ideal gas law,

P2 =D T

3)

3. Power Stroke
(reversible) adiabatic process, so

PVY = constant (6)
TVY~! = constant (7)
PY7IT™Y = constant (8)

Py = Phigh — P> = Pamp
Vi—=Vo, Vo>V
Tl = TH g Tg = TC

for diatomic gas, y = I

/ Edl)
1V2 V2

|1~ Pam) 1= [(P Py (10)
V1 \%

1

From (6) we have that

Va Y
P=pP <V1) (11)
Eqns (10) and (11) yield
Vo V Y Vo
1
W= / P () av — [Pydv (12)
\21 Vv Vi
Vo
- pﬂ/y/ VYAV — Py (Va — Vi) (13)
Vi
Py o _
= LYW Rmew) (14)

Using (7), we can rewrite V5 in (14) as

1
PV (T ay oy T\ ™Y
W= T (T1V1 -V ~P 7 Vi—-W (15)

Using (8), we can rewrite P; in (16) as
()] () () () 1) o
®)) ED(F)7)] o

w

PV;

PV — <T2> o + 11 (19)

@ -3
o [(@) (2) o
(()
)

RV

TI) (- 1] 1)

(7 \ (D7 1\ (T
wal(5)(2) - (55) ”} 2

At this point, we make the simplifying assumption that
(T1 — Tz) << TQ, (23)

or equivalently,
T1 = (1 + E) T2 (24)

for some small €. Note that ¢ is by no means infinitesimal: since the expected
range of operation for the heat cycle is from approximately 15°C to 90°C, ¢ is
around 0.26.

The Binomial Theorem,

(z + y)” = Z (n—nil!c)!k‘!xnikyk’ (25)
k=0

can be expanded to yield

(1+5)":1+n5+M52+... (26)

n 2

Thus, using a second order binomial expansion, (22) can be simplified to
W ~ W', where

wo= v () (1t (B +ﬁ<”%l_1> L)
B\ D r—1\T, 2 T

o Y1 2
1 ol T1 'y—l(w—l) T1
PV (—) 1+ L (L) (L
2V1<1—v)(7—1(T2) 2 T,

+ PV1 (1) 2

~y

8)

W = RV [— % + 1} @ (29)

1—-~v 1-

i () o2 (20 (B9

Everything but the second order term cancels, leaving

=g (75) 0 (5) G5) - (5) 9] (2 ())
vt () () b (B

w =g (1) (71_1)2[70—7)] (iﬁ—l) (32)

1 5 Ty 2
W =-PVi—— = -1 33
P () (33)
For v > 1, the relation in (33) reduces to Dr. Cornell’s result, namely,
5 T 2 T ?
W=—BPVi|——-1)] =—PRVi|[—=-1 4
s (51 = L (O -

Since v = % = 1.4 for air, this assumption is clearly not valid. However, we

2
note that the form of both expressions is the same, W’ = cPyV; % —1) ; the
expressions differ only in the constant c. It is interesting to note that Dr.
Cornell avoided the second order terms in the expansion entirely by dividing
by Q to first find the efficiency, n = %.. This, combined with the large value of
¢ in the expansion, likely accounts for the difference.

