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Introduction

Finding a way to experimentally image molecular orbitals has been one of the main goals of strong
field science for a few years. This field is well suited for such a task because the time scale on which
measurements could be made, in the (sub-)femtosecond regime, is on the scale of molecular dynamics.
Thus, the ability to image an orbital on this timescale would allow for amazing possibilities of watching
phenomena such as dissociation of molecules or chemical reactions as they happen. The applications of
this kind of method would be vast, and sure to be of interest to chemical engineers and pharmaceutical
companies. However, this is very far from reality at this time. This paper will simply present the first
steps of working out a technique to image a static molecular orbital of a homonuclear diatomic orbital,
specifically N..

Background

The basic behavior of atoms and molecules in intense laser fields is well described
4 v by the semi-classical 3-step model, as proposed by Corkum®. In this model, it is
assumed that only one electron is interacting strongly with the field. Also, we
assume that the field is varying relatively slowly with respect to molecular
dynamics, so that at a particular point in time we can approximate the
superposition of the Coulomb potential and the potential due to the
electric field as a tunneling problem, as shown in the figure. This
quantum mechanical tunneling is the first step of the three-step
process. In the second step, the electron that tunneled out is
propagating in the electric field and its dynamics can be treated
classically. If the electron was “born” (tunneled) at the peak of the
electric field, it will return to the parent nucleus with zero energy. If it
is born a short time before the peak, it will never return to the parent nucleus, and the molecule will be
ionized. This is called above-threshold ionization. If it is born a short time after the peak, then it will
return to the parent nucleus with some kinetic energy. In this latter case, once it comes back to the
parent nucleus, it can scatter from it, or recombine with it in a process called high harmonic generation.
It can also kick out another electron, causing double ionization.

Why the recombination process is called high harmonic generation is best understood through
the quantum-mechanical equivalent of the semi-classical 3-step model. Instead of tunneling, the first
step can be thought of as an electron in a bound state absorbing multiple photons from the intense laser
field and getting excited to the continuum. Then, if it recombines with the parent molecule, it will emit
the energy equivalent to that of those multiple photons as one photon, with an energy equal to N w
(in Hartree atomic units, where %=1 ), producing a pulse of some higher harmonic frequency light
than the initial laser light it was exposed to.

There has already been a proposal to use the high harmonic generation spectrum to image the
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molecular orbital of N,?. The proposal is to use the fact that the emitted spectrum is proportional to the
Fourier transform of the dipole moment produced by the interaction of the two parts of the electronic
wavefunction: the original molecular orbital and the tunneled part as it recombines with the parent
nucleus. From this dipole moment, and certain assumptions about the tunneled part to the
wavefunction, the original molecular orbital is inferred. This is a promising method that has been under
a lot of study for the past five years since it was first proposed.

Here, we intend to explore whether there is an alternative approach to this problem, whether
there is a possibility to image the molecular orbital of N, by analyzing the electron yield as a function
of energy of the electrons that are emitted through above-threshold ionization.

Methods

The ionization rate is calculated through the transition probability, which can be calculated
using the time-dependent wave function of the system. In our approximation, the electron yield at a
certain energy is approximated to be directly proportional to the ionization rate at that energy. Thus, in
order to be able to analyze the electron yield, a theoretical way to calculate the ionization rate is
necessary.

S-matrix Theory

The traditional way to determine the time-dependent wave function is through perturbation
theory. However, in this case, the term in the Schrdodinger equation due to the Coulomb forces within
the molecule is on the same order as the term due to the electric field of the laser light, making
perturbation theory inapplicable. This may seem like it would then necessitate a numerical solution of
the Schroedinger equation. However, there is an alternative approximation method that is applicable to
this case, called S-matrix theory. This method approximates the total time-dependent wave function
assuming the knowledge of the initial state and final state (and sometimes even some intermediate
state) wave function.

S-matrix theory creates a series expansion of the total wave function. Successive terms of this
series are not shown to be decreasing, and the series may not even be convergent. However, the
advantage of this method is that each of the terms represents a different physical mechanism which is
immediately apparent from the mathematical expression of the term. In the words used above, there
would in this case a different term corresponding to ionization, scattering, recombination, double
ionization, etc. Therefore, if you know what physical mechanism you are considering, you could model
it with the corresponding term of the S-matrix expansion.

In this case, since we are looking only at the above-threshold ionization, we can take only this
(first) term of the S-matrix expansion. Using this term of the wave function, one can derive an
expression for probability per unit time (or rate). For atoms, this probability as a function of the final
momentum Ky, where N is the number of photons getting absorbed, is given by (for linearly polarized
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U,=1/4w" , where | is the intensity and w is the angular frequency of the laser light,

aszkN\ﬁ/wz ,b=U /2w , the initial state wave function ¢, (7) is the orbital that we are trying

to image, and the final state wave function <l>,;N(7) is the spacial part of the Volkov wave function,

which is simply a plane wave. This latter point is certainly an approximation, since the ionized electron
IS subject to the Coulomb forces from the nucleii as well, not simply the electric field, and the Volkov



wave function solves the Schroédinger equation for an electron in an oscillating electric field. However,
if the electron is traveling fast enough, and so will escape the range of the Coulomb potential relatively
quickly, this approximation is a decent one.

Since the final state is just a plane wave, the superposition (¢ (7)i¢.(7)) is simply the
Fourier transform of the initial state wave function. This holds for the molecular case as well. The
extension of the KFR formula to the molecular case, specifically the diatomic, homonuclear molecules
simply introduces another factor which corresponds to an interference term which is dependent on the
vector momentum of the electron and the internuclear radius. So now the problem becomes to see how
much information about the Fourier transform we can get by observing the electronic yield, and thus
the ionization probability. It is important to note that the use of this S-matrix term is an approximation
in itself, and a strong influence comes from the modulating functions, specifically the generalized
Bessel function Jy, in front of this Fourier transform. It is therefore not only very computationally
difficult to just solve for the Fourier transform in the above equation, but also would likely not yield
very accurate results. Therefore, care must be taken to try to get conditions from this ionization rate that
solely depend on the Fourier transform, and not any of the modulating functions.

Since there is little experimental data available of specifically the momentum dependent
electronic yield in above threshold ionization of N,, it was necessary to somehow simulate this result.
To do this, we used quantum chemistry programs, such as GAUSSIAN and GAMESS to get wave
functions of the nitrogen molecule. Then, a Fortran code was used to calculate the ionization rate based
on these wave functions. Then, the results of this code were used to try to reconstruct the initial wave
function, and the reconstructed one could then be compared to the original wave function from the
quantum chemistry programs, and thus the effectiveness of the method could be tested.

Linear Combination of Atomic Orbitals (LCAQO)

In order to get any information about the molecular orbital without directly solving for the
Fourier transform in the equation above, it is necessary to assume some form of this wave function. A
common way to approximate molecular orbitals (and the technique used by the quantum chemistry
programs above), is to treat it as a superposition of atomic orbitals, centered at the different nuclei of
the molecule: ® =% a.q@_ (7—K,) ,whereR;isthe position of the i nucleus. * This
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treatment is an approximation within itself. Furthermore, the form of the atomic wave function used is
another approximation.

In the case of N,, one can determine that the bond between the two atoms is a g, (bonding
symmetry) orbital from a simple experiment that measures the total (non-energy dependent) electron
yield as a function of internuclear orientation. In our treatment, we assume this is known. Therefore,
only s and pz components should contribute to the molecular orbital. Also, N, is in the second row of
the periodic table, so it is physically reasonable to guess that the electrons which will be contributing to
the highest occupied molecular orbital (HOMO) will be coming from the second shell in the atomic
structure. Therefore, the components that are most likely to contribute to the molecular wave function
are the 2s and 2pz components. So, in this simplest possible treatment, it was assumed that the atomic
wave function consists of a linear combination of the 2s and 2pz hydrogenic wave functions:

D pomic = (1) e ¥ +a, rcos(0)e™ , where the coefficients a, and a,, as well as the
exponent a are undetermined. Since N, is a homonuclear molecule, the a; coefficients from the sum
above are equal, and so can be absorbed into the a, and a,,, coefficients. Thus, in order to image the
wave function one need to determine those three parameters, and therefore needs three conditions. In
principle one also needs the internuclear distance, but this can easily be determined by performing a



Coulomb explosion experiment, so we assume that this is also known.

This approach is admittedly extremely simplistic. However, as a first guess the simplest
approach must be taken. Also, if this approach proves insufficient, one may learn something about the
nature of the nitrogen wave function. Perhaps, if other contributions must be taken into account, there
are physically other electrons contributing to the HOMO, which would give us insight into the structure
of the molecule.

Conditions on the Fourier Transforms of the Wave functions
In order to obtain the three conditions listed above, it is first necessary to find the Fourier
transform of the atomic wavefunction we are considering. The Fourier transforms were calculated to be:
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The angle 8, is defined as the angle between the momentum vector k of the outgoing electron and the
internuclear axis of the molecule.

The first condition comes from the fact that if one looks at the electron yield in a direction
perpendicular to the internuclear radius, the contribution to the number of electrons from the 2pz
component is zero, because cos(90)=0. Therefore, in that direction the observed electron yield is due
solely to the 2s contribution. It is also easy to see from the Fourier transform of the 2s part of the wave
function that there is a zero at k = a. Thus, looking in a direction perpendicular to the internuclear
radius, a zero in the momentum-dependent ionization rate will be observed, from which the value of a
follows immediately.

This zero was observed in the computational simulation, as seen in the figure.

However, it is likely that in experiment this zero would be
harder to observe. Firstly, there is a limit to how small of a
yield can be detected experimentally, so the momentum
1 distribution plot might be cut off at some value, decreasing
:  theresolution of the zero. Also, it is a great challenge
1 experimentally to align molecules in a specific direction, such
that the internuclear orientation is well known. So, there will
1 be some error in the alignment of the molecule, and therefore
some contribution from the 2pz orbital, which may make the
s & zero harder to observe. As a first step, however, we do not
ki) consider these issues and leave them as future work.

The second condition comes from the observation of a
“shoulder” in the experimental data of the electron yield versus energy (figure below on the right)®.
This observation is in fact what suggested the original idea of the possibility of this imaging method.
We also observe this as a minimum in our computational simulation even when the contribution of the
generalized Bessel function is not accounted for, demonstrating that this is indeed a feature of the
Fourier transform of the total wave function (figure below on the left). This shoulder could be caused
by a minimum in the Fourier transform of the total molecular wave function, and thus would obey the
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From this condition we can infer the relationship between the two coefficients a, and a,,,. The last, 3"
condition is simply the normalization of the wave function, which gives another relationship between

these two coefficients: a, =\a®/m—a’a’ . Solving these two conditions with the help of

Mathematica, one can obtain the values of the two coefficients, assuming a has already been
determined.

Simplifying the 2™ condition

Unfortunately, the original procedure for
finding the coefficients using the 2™ and
3" conditions described above had so far
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failed — there was no real solution to the 1e-06
system of two equations at the value of == ?jt;ﬁart

alpha that was determined. Therefore, to
try to analyze what went wrong, a slightly
simpler second condition was adopted.
Instead of considering the shoulder as a
minimum of the total wave function, it
was considered as the point at which the
2s and 2pz contributions are equal. This

treatment is not entirely unreasonable, as 0 ' 03 ' 1

the 2s part dominates for small k and the r(.u.)

2pz part begins to dominate at larger k, so

there must be an intersection point at which the two are equal, and we observe this intersection point to
be not too far from the supposed minimum (see figure). Using this simplified condition, we were able
to get the coefficients, though not the relative sign between them.
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Results

Using the original 1* condition and the simplified 2™ condition, we obtained a reconstructed total wave
function. Below are the reconstructed and original wave function, both normalized to one.



Clearly, this is not as good a result as we were hoping for . To analyze what where the problem lies, we
decompose both the original and reconstructed wave functions into their 2s and 2pz components.
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-Comparing these graphs,

especially the s components, it
becomes apparent that the spread
of our reconstructed wave
function is much greater than that
of the original one. The spread of
the wave function is determined
by the exponent «, therefore the
problem is that this reconstructed
exponent is far too small.

To analyze why that is the
case, we took a more careful look
at the original wave function. The



quantum chemistry program uses a superposition of a number of gaussians. This particular
wavefunction consisted of 5 sums of gaussians to construct the 2s component, and 4 sums of gaussians
to construct the 2pz component. Since « is determined by a condition that is solely dependent on the
2s component, we decomposed that part of the original wave function into the 5 components, as seen
here. When the simulation is run with just the “zero creating terms” (dark green and blue on the figure),
one still sees the zero that was used to determine o. Therefore, the interference between these two
components is what produces the zero. However, the contribution of those components compared to the
contribution of the “dominating terms” (black and light green in the figure) near the nuclei is small. So,
by using the zero to determine the value of «, we are imaging not the whole but only the delocalized
part of the wave function, creating a much less localized result than the original. This could also explain
why the original unsimplified 2™ condition did not produce results. Perhaps with a more adequate value
of « the original condition could work.

Future Work

It is clear, however that the original assumption of just one 2s component in the atomic wave
function cannot adequately reproduce the features of the above wave function. One solution to consider
is including another, perhaps a 1s component in the total wave function. Doing this, or taking any more
complicated kind of atomic wave function, would produce more parameters and thus require more
conditions. One possibility may come from the second minimum we see in the total wave function
when we replot it on a logarithmic scale
(above). In order to be able to observe
the effect of this minimum in the Fourier
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challenge in experiment.

It would also be important in the
future to consider how this treatment is
affected by imperfect alignment of the
internuclear axis. Perhaps an uncertainty
in alignment could be input into the
Fortran simulation, and then the error at
which the zero for the first condition
could still be observed will be
determined, helping to see how difficult
it would be to perform the experiment.
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