
Page | 1

Absorption Imaging of an Ultracold Gas

Diana Gaviria

University of Central Florida

University of Colorado at Boulder, Boulder, Colorado 80309
Contact: dianagaviria16@gmail.com

Introduction

This project is part of the Physics REU summer 2009 program at the University of Colorado. The main

objective of the project is to design, test, and implement a new imaging system that will be used for the

study of an ultracold gas of molecules. Although the experimental set up already includes an imaging

system, a new Pixelfly camera will be implemented in the experiment. Its purpose will be to obtain

complementary information along a different axis. The new system will be positioned to capture the top

portion of the cloud of atoms. Capturing images of the cloud simultaneously from two angles will

provide new information about atom behavior during expansion. The new camera will also be used to

study the behavior of multiple clouds trapped in the new optical lattice that is being built. It performs

almost as well as the current camera, but it is significantly smaller. Size is a major factor considering the

lack of space in the current experimental set up.

Imaging System

The new imaging system consists of the Pixelfly qe high performance digital 12 bit CCD camera (Figure 1)

and a PCI board. The camera has a quantum efficiency of 62% and a 1392 x 1024 pixel resolution, where

each pixel size is 6.45 x 6.45 µm2. The camera’s dimensions are 39 mm in width, 39 mm in height and 53

mm in length. Its compact design contributes to its 0.26 kg weight. The camera cost approximately

$8000.

Figure 1. Pixelfly qe (Pictures from www.cookecorp.com)
1

Camera/Computer Communication

The first step in accomplishing the project’s goals was to establish communication between the camera

and the computer. As shown in Figure 2, the initial set up consisted of the camera, a ND4 filter, a PCX

focus lens (f= 7.56 cm), a target image, and a white light source. Initially, Visual Basic was tested, but

the camera drivers were impossible to access using the LoadLibrary function; one reason could be that

http://www.cookecorp.com/

Page | 2

the .ddl files are written in C++, which implements different rules to define pointers. After many trials, it

was decided that MATLAB was a more practical computer language to use because it is compatible with

the camera drivers. It is also designed for convenient matrix manipulation, which will be more useful for

fitting calculations.

Figure 2. Experimental set up.

The code was written using the latest MATLAB version available (7.8.0). The camera drivers were

downloaded from the PCO.imaging corporation website. The main code was divided into six major

sections for simplicity (refer to Appendix A for the code). The first part allowed the user to set camera

parameters like exposure time, trigger mode, binning, gain, etc. The second part included the camera,

memory, and general control functions necessary for collecting an image. The third section called a

function that displays the images collected by the previous section. The next three sections called a

sequence of functions that perform mathematical operations to obtain optical depth, the region of

interest, and Gaussian fits in two dimensions.

To make the code more efficient, the memory control functions were moved around as much as

possible to reduce the program running time for taking one image. Using the tic,toc built-in MATLAB

function, it was found that the time it takes the program to take one picture is between 327 and 420 ms.

Camera Calibration

Shot Noise

After learning how to control the camera, the next step was to calibrate the camera to find the gain by

using the shot noise. The shot noise is a type of electronic noise that occurs when particles like photons

or electrons generate detectable random fluctuations in a measurement .2The experimental set up was

similar to the one shown in Figure 2, except that neither a target image nor a focus lens was used. The

light source was pointed directly at the camera through the ND filter. Two main groups of data were

collected, one with the hardware gain value set to low, and the other set to high. The data were

recorded for a range of exposure times raging from 100 to 10000 µs. To reduce background noise, two

images were taken and subtracted for every exposure time recorded. Also, it was noticed that after

Page | 3

being completely covered, the camera still detected some light (dark noise). This dark noise was

measured and subtracted in quadrature from every noise value to obtain a more accurate shot noise.

The light intensity and shot noise were calculated taking the mean and the standard deviation, with

proper error propagation, of the matrix of the resulting image, respectively, as shown in equations (1)

and (2).

 , (1)

 . (2)

Once these values were plotted, it was confirmed that, in fact, the noise data behaved like shot
noise and fit perfectly to a square-root function for both hardware gains. Figures 3 and 4 show
this behavior. Because the shot noise scales as the square root of the intensity, the data was fit
to equation (3.2), where c represents a constant and L represents the light counts. Using c from
the fitting function and equation (4), the camera gain value, or the A/D conversion factor was
found to be 4.0 e-/count for the hardware low gain and 2.04 e-/count for the high gain.

 , Equation (3.1)

 , Equation (3.2)

 . Equation (4)

0 500 1000 1500 2000 2500 3000 3500 4000

0

5

10

15

20

25

30

N
o

is
e

Light - Dark [counts]

Data: Data5_N.D.low.2

Model: sqrt

Equation: c*sqrt(x)

Weighting:

y No weighting

Chi^2/DoF = 0.21701

R^2 = 0.99743

c 0.50084 ±0.00319

Shot Noise for Low Gain

Page | 4

Figure 3. Shot noise for low hardware gain.

0 500 1000 1500 2000 2500 3000 3500 4000

0

5

10

15

20

25

30

35

40

45

Data: Data6_N.D.high.2

Model: sqrt

Equation: c*sqrt(x)

Weighting:

y No weighting

Chi^2/DoF = 0.10434

R^2 = 0.99937

c 0.70496 ±0.00226

N
o

is
e

Light - Dark [counts]

 Shot Noise for High Gain

Figure 4. Shot noise for high hardware gain.

Internal Camera Delay

The next step was to find the internal camera delay. This is the time it takes the camera to actually take
the picture after it has been triggered. Figure 5 shows a diagram of the set up used to measure this time
delay.

 Pixelfly Camera Lens Laser

 AOM

 PC

Figure 5. Set up diagram.

Page | 5

The square functions in the set-up diagram represent the three function generators that were utilized;

one to trigger the camera, one to trigger the light, and the third one to trigger both of them. The CCD

exposure time of the camera was kept at 100 µs while the light pulse was moved at different times to

observe the effect on the light intensity read out. Figure 6 demostrates how the pulses were

coordinated; each color in the light-pulse square wave represents different times at which

measurements were recorded.

 CCD Exposure time 100 µs

 Camera trigger

 Light-pulse 10 µs

 t=0 µs

Figure 6. Timing of the camera trigger and laser.

As shown in Figure 7 the light intensity versus time data was plotted. From this graph, it can be

concluded that the internal camera delay time is approximately 10 µs.

-40 -20 0 20 40 60 80 100 120 140

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L
ig

h
t
In

te
n

s
it
y
-

D
a

rk
 N

o
is

e

[c

o
u

n
ts

]

Time [microseconds]

10us

Figure 7. Light intensity versus light pulse time positions with respect to camera trigger time.

Page | 6

500 1000 1500 2000 2500 3000

200

400

600

800

1000

1200

0

200

400

600

800

1000

1200

1400

1600

Test Experiment

After the timing and gain calibration the next step was to test the new imaging system in the actual

experiment. Figure 8 shows a very basic diagram of the experimental set up.

 Lens

 Laser Pulse (λ =780 nm)

 Atoms (Rb
87

)

 Figure 8. Experimental set up (with camera).

The test experiment consisted of taking Images of 87Rb clouds for a variety of time-of-flight (TOF),

ranging from 7 to 18 ms during the expansion period. For every TOF, three images were taken: shadow,

light, and dark. A new cloud was prepared for every expansion time recorded. Figure 9 shows a sample

image from the raw data.

 Shadow (S) Light (L) Dark (D)

Cloud of atoms

 Figure 9. Shadow, light and dark images at 7 ms expansion time.

Data Analysis

The last three sections of the main code comprise mathematical operations to analyze and obtain

information from the images. Applying Beer’s law, the first of these sections computes the optical depth

using equation (5.2). Figure 10 shows the resulting OD image of 87Rb atoms at 7 ms TOF.

Page | 7

Optical Depth

200 400 600 800 1000

200

400

600

800

1000

1200

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

 Equation (5.1)3

 Equation (5.2)

where I0 is the intensity of the radiation at the source, and I is the observed intensity after a given path.

Figure 10. OD image of Rb
87

 at 7 ms expansion time.

The next section of the code is designed to select a region of interest (ROI) using binned data. The OD

image previously calculated was binned to increase the signal-to-noise ratio. Figure 11 shows a sample

ROI image.

ROI

20 40 60 80 100 120 140

20

40

60

80

100

120

140

0

0.5

1

1.5

2

2.5

3

Page | 8

Figure 11. Region of interest from the OD image of
87

Rb at 7 ms expansion time (binning =4).

The last section of the code consists of a Gaussian surface-fitting routine. The traces at x = xcenter and y

= ycenter are fit to the Gaussian surface function shown below:

 . Equation (6)

 For each Gaussian fit, there are eight parameters used to describe it: the amplitude (OD peak), x-width,

y-width, x-center, y-center, background noise (b), slope in the x direction (mx), and slope in the y

direction (my). Initial estimates of these parameters are generated by a function inside the code; they

are approximated as follows:

Amplitude or OD peak: is estimated by finding the maximum light intensity [count] minus the average

background noise in the matrix of the OD image.

x-center and y-center: are approximated by locating the position coordinates of the OD peak.

Background noise average (b): is estimated by taking the light intensity [count] average of the four small

corners of the ROI image.

mx and my: the slopes are expected to be low, so both are approximated to 0.0001.

x-width (σx) and y-width (σy): are estimated using while loops by approximating the distance between

the amplitude and the value at which the light intensity is approximately 18% of the amplitude.

When a fit is found, the routine returns these eight parameters. It is critical to have good initial guesses

to produce a good fit. Figure 12 shows the Gaussian fits (pink) in both traces of the 87Rb cloud at 12 ms

TOF.

0 50 100 150
-0.5

0

0.5

1

1.5

2
trace at x=xc

y

In
te

n
s
it
y

0 50 100 150
-0.5

0

0.5

1

1.5

2
trace at y=yc

x

In
te

n
s
it
y

Figure 12. Gaussian fit of
87

Rb

at 12 ms expansion time (binned data).

Page | 9

Ultracold Gas Information

Information about the 87Rb cloud is evaluated by using the Gaussian surface fit, which includes light

absorption, the number of atoms, temperature, cloud velocity, and cloud size.

Light Intensity

The light absorption at the center of the cloud can be evaluated by looking at the OD peak. From the

plot of the OD peak versus time (Figure 13), it is observed that the OD peak decreases with time. This

behavior is expected because as time increases, the cloud density decreases, and the number of atoms

remains constant.

6 8 10 12 14 16

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

O
D

 p
e

a
k

Time(ms)

 ODpeak

Figure 13. OD peak versus expansion time.

In addition, by applying Beer’s law and solving equation (5.2) for the intensity ratio, it can be seen that

the intensity observed after the beam has passed through the atoms increases with time (Figure 14 and

15). Comparing both TOF extremes, it is estimated that at 6 ms, only 2% of the intensity of the beam is

observed; at 16 ms, the intensity observed is 37%. This behavior is expected because as the TOF

increases, the cloud becomes less dense; consequently more light can pass through the cloud.

Page | 10

6 8 10 12 14 16

0

5

10

15

20

25

30

35

40

Io
/I

Intensity Ratio

Figure 14. Intensity ratio versus TOF.

6 8 10 12 14 16

0

5

10

15

20

25

30

35

40

In
te

n
s
it
y
 R

a
ti
o

 (
%

)

TOF (ms)

Figure 15. Intensity ratio (%) versus TOF.

Temperature

 The temperature can be measured from the momentum distribution, which is the kinetic energy of the

cloud, and the spatial distribution, which is the potential energy of the cloud. Equations (7) and (8)

represent the kinetic and potential energy, respectively.

 , Equation (7)

Page | 11

, Equation (8)

where T is temperature, m is the mass of an 87Rb atom, ω is the frequency of the trap, and kB is

Boltzmann’s constant.

For a Gaussian distribution σ is . So,

 = , for TOF =0, and

, for TOF= ∞.

Then, at any TOF Equation

(9)

Therefore velocity can be obtained from the plot of σ versus time. Figure 16 shows the change in width

with time data fit to equation (9) in both dimensions.

0 2 4 6 8 10 12 14 16 18

0

20

40

60

80

100

120

140

160

Data: Data2_xwidth

Model: sqrt

Equation: sqrt(a^2+(x*b)^2)

Weighting:

y No weighting

Chi^2/DoF = 1.18771

R^2 = 0.99869

a 21.67199 ±2.45507

b 8.39343 ±0.05914

Data: Data2_ywidth

Model: sqrt

Equation: sqrt(a^2+(x*b)^2)

Weighting:

y No weighting

Chi^2/DoF = 3.11825

R^2 = 0.99227

a 89.18315 ±1.50957

b 7.85686 ±0.13499

W
id

th
 (

m
ic

ro
m

e
te

rs
)

TOF (ms)

 x width (um)

 y width (um)

Figure 16. Width versus time data.

From the fitting, the velocities were found to be 8.39(5) mm/s in the x direction and 7.8(1) mm/s in the y

direction. Using equation (7), the temperatures in both directions were calculated to be 0.722 µK for x,

and 0.638 µK for y. Although the system is in thermoequilibrium, the temperatures obtained are not

Page | 12

identical because of some fitting issues at lower TOF. The data obtained at 6 and 7 ms is suspected to be

saturated.

Number of Atoms

The number of atoms in the cloud is calculated from the quantum mechanical properties of the 87 Rb

atoms using beer’s law. This number can be estimated by applying the experiment and fitting

parameters into equation (10).

 , Equation (10)

where δ is the detuning in half line widths, realpix is the size of a real pixel, and λ is the wavelength of

the beam.

From Figure 17, it can be seen that the data varies only slightly with respect to time because the number

of atoms should remain the same even though the density changes. The minor discrepancy between the

number of atoms is due to some possible variation between clouds.

Figure 17. Number of atoms versus TOF.

By plotting the position of the center of the cloud versus time, it was observed that the cloud was

moving only in the y direction (Figure 18).

0 2 4 6 8 10 12 14 16

0

100000

200000

300000

400000

500000

N
u

m
b

e
r

o
f
a

to
m

s

TOF (ms)

Number of Atoms

Page | 13

6 8 10 12 14 16 18

300

400

500

600

700

800

900

D
is

ta
n

c
e

 (
P

ix
e

ls
)

Time(ms)

 y direction

 x direction

Figure 18. Cloud displacement versus TOF.

Cloud Displacement

 Because the change in displacement is a quadratic function of time when acceleration is constant, the y

data was fit to the equation of motion shown below to measure the constant acceleration in which the

cloud was moving:

 , Equation (11)

0.006 0.008 0.010 0.012 0.014 0.016 0.018

-0.0024

-0.0022

-0.0020

-0.0018

-0.0016

-0.0014

-0.0012

-0.0010

-0.0008
Data: Data1_B

Model: line

Equation: -0.5*P1*x^2+P2

Weighting:

y No weighting

Chi^2/DoF = 7.7001E-11

R^2 = 0.9997

P1 9.89137 ±0.06105

P2 -0.00073 ±5.2631E-6

D
is

ta
n

c
e

 (
m

)

TOF (s)

y displacement

Page | 14

Figure 19. Cloud displacement in the y direction

From the fitting parameters it is observed that the cloud is moving with a downward acceleration of

9.89(6) m/s2. In other words, the cloud’s acceleration is due to gravity. This result also implies that the

magnification used is right.

Conclusion

The new camera system performance is satisfactory. The results obtained from the data agree with

previously obtained information from the old imaging system. The code developed works fine for

absorption images. In addition, the calibration of the camera gain was successfully accomplished by

using the measured camera shot noise. The camera was also tested in the real experimental set up. Data

collected the test experiment yield important information about the 87Rb atoms. The images of the

cloud disclosed many aspects about the cloud’s behavior during the expansion time. The Gaussian

surface fit allowed for the calculation of measurements like the temperature and the number of atoms.

The limited amount of time did not allow for more, but, in general, the main goals were accomplished

and good results were obtained. The new imaging system is expected to reveal innovative information

once it is integrated in the experimental set up.

The code routine works fine with the latest MATLAB version, but it still needs improvements to take full

advantage of the camera features. Although the double shutter mode was tested with a simple code

routine, the current code must be modified to apply this mode. In addition, the selection method of

initial guess values for the Gaussian surface fit should be improved because in the current code, a good

fit depends on how close these guesses are to the desired solution. Furthermore, a more user friendly

software can be developed using MATLAB’s Graphical User Interface (GUI).

Page | 15

 References

1. PCO.imaging. Accesed 25 July 2009. < http://www.pco.de/sensitive-cameras/pixelfly-qe/>.

2. Paschotta , Rüdiger. "Shot Noise." Encyclopedia of Laser Physics and Technology. Web.1 Aug

2009. <http://www.rp-photonics.com/shot_noise.html>.

3. "Beer’s law." Encyclopædia Britannica. 2009. Encyclopædia Britannica Online. 02 Aug. 2009

<http://www.britannica.com/EBchecked/topic/58441/Beers-law>.

http://www.pco.de/sensitive-cameras/pixelfly-qe/

Page | 16

Appendix A. Code

A. 1. Main Code

clear all

close all

%Number of times you want to run the experiment

nr_of_exp=1;

file_nr=16;

%Board number is 0 for one camera

board_number=0;

nr_of_images=3;

% Set camera parameters

exptime=1000; %exposure time in microseconds

%mode= 17; % Single asynchron shutter, software trigger

mode=16; % Single asynchron shutter, Hardware trigger

explevel=0; % Set level in (%) which time to stop the auto exposure mode,...

 % only valid if auto exposure mode is set

hbin=0; % Sets horizontal binning and region of camera

vbin=0; % Sets vertical binning of the camera

gain=1; % Sets gain value of the camera

bit_pix=12; % Sets how many bits per pixel are transfered

waittime_ms=exptime/1000+1000; %maximum amount of time to wait for the image in ms

for x=1:nr_of_exp

 %Initialize Camera

[board_handle,ret_bufnr,image_size,bufaddress,image_width,image_height]=InitializeCamera(board_nu

mber,nr_of_images,exptime,mode,explevel,hbin,vbin,gain,bit_pix,waittime_ms);

 %Collect Images

[image_stack]=CollectImages(bit_pix,image_width,image_height,nr_of_images,board_handle,ret_bufnr,

image_size,waittime_ms,bufaddress);

 %Close Camera

 [board_handle]=StopCamera(board_handle,ret_bufnr);

 %% Display images

 [nr_of_images]=DisplayImages(nr_of_images,image_stack,x);

 %% Optical Depth

 image=double(image_stack);

 ODimage=log((image(:,:,2)-0.*image(:,:,3))./(image(:,:,1)-0.*image(:,:,3)));

 %to prevent getting infinity values

 indices = find(ODimage==Inf); % help find

 ODimage(indices) = 0;

 figure

 imagesc(ODimage)

 title(['Optical Depth ',num2str(x)])

 colorbar

 %% Select out region of interest (ROI)

 xbin=4;

 ybin=4;

 xc=362;

 yc=609;

 xsize= 160;

Page | 17

 ysize=200;

 data=ROI(ODimage,xbin, ybin,xc,yc,xsize,ysize);

 figure

 imagesc(data), colorbar

 title(['ROI ',num2str(x)])

 %Saves the stack of pictures

 filename=['data folder/imagestack#' num2str(file_nr) '_' date '.txt'];

 dlmwrite(filename,image_stack);

 msg=['wrote image' filename]

 filename=['data folder/ODimageROI#' num2str(file_nr) '_' date '.txt'];

 dlmwrite(filename,data)

 msg=['wrote ' filename]

 %% fit the optical depth image

 [test2]=Fitting(data);

end

A. 2. Initialize Camera function

function

[board_handle,ret_bufnr,image_size,bufaddress,image_width,image_height]=InitializeCamera(board_nu

mber,nr_of_images,exptime,mode,explevel,hbin,vbin,gain,bit_pix,waittime_ms)

comment=0;

% Check if library has been already loaded

if not(libisloaded('PCO_PF_SDK'))

 loadlibrary('pccamvb','pccamvb.h','alias','PCO_PF_SDK');

end

% Initialize Camera

[error_code,board_handle] = pfINITBOARD(board_number);

if(error_code~=0)

 disp(['Could not initialize camera. Error is ',int2str(error_code)]);

end

error_code=pfSETMODE(board_handle,mode,explevel,exptime,hbin,vbin,gain,0,bit_pix,0);

if(error_code~=0)

 disp(['SETMODE failed. Error is ',int2str(error_code)]);

 pfCLOSEBOARD(board_handle);

 return;

end

% Get the ccd size

[error_code,ccd_width,ccd_height,image_width,image_height,bit_pix]=pfGETSIZES(board_handle);

if(error_code~=0)

 disp(['GETSIZES failed. Error is ',int2str(error_code)]);

 pfCLOSEBOARD(board_handle);

 return;

end

% Get image size

image_size=image_width*image_height*floor((bit_pix+7)/8);

% Create buffers

bufnr=-1; %-1 is to create a new buffer

[error_code, ret_bufnr] = pfALLOCATE_BUFFER(board_handle, bufnr, image_size);

if(error_code~=0)

 disp(['ALLOCATE_BUFFER failed. Error is ',int2str(error_code)]);

 pfCLOSEBOARD(board_handle);

 return;

end

% Map buffer

Page | 19

 end

 if(error_code~=0)

 disp(['WAIT_FOR_BUFFER failed. Error is ',int2str(error_code)]);

 else

 if(comment)

 disp([int2str(imanr),'. image grabbed to buffer ',int2str(ima_bufnr)]);

 else

 disp([int2str(imanr),'. image grabbed ']);

 end

 end

 if(ima_bufnr<0)

 error_code=1;

 end

 if(error_code==0)

 if(comment)

 disp('call pfCOPY_BUFFER, copy the data from the buffer to the Matlab image stack');

 end

 [error_code,image_stack(:,:,imanr)]=

pfCOPY_BUFFER(bufaddress,bit_pix,image_width,image_height,image_stack(:,:,imanr));

 else

 if(comment)

 disp('call pfREMOVE_BUFFER_FROM_LIST, an error occured remove the buffer from the working

list');

 end

 [error_code]=pfREMOVE_BUFFER_FROM_LIST(board_handle,ret_bufnr);

 if(error_code~=0)

 disp(['REMOVE_BUFFER_FROM_LIST failed. Error is ',int2str(error_code)]);

 end

 end

 toc

end

A. 4. Close Camera function

function [board_handle]=StopCamera(board_handle,ret_bufnr)

% Stop the camera

error_code=pfSTOP_CAMERA(board_handle);

if(error_code~=0)

 disp(['STOP_CAMERA failed. Error is ',int2str(error_code)]);

end

% Unmap the mapped buffer before call to FREE_BUFFER

error_code=pfUNMAP_BUFFER(board_handle,ret_bufnr);

if(error_code~=0)

 disp(['UNMAP_BUFFER failed. Error is ',int2str(error_code)]);

end

% Free buffer memory

error_code=pfFREE_BUFFER(board_handle,ret_bufnr);

if(error_code~=0)

 disp(['FREEBUFFER failed. Error is ',int2str(error_code)]);

end

% Close the driver

error_code=pfCLOSEBOARD(board_handle);

if(error_code~=0)

 disp(['CLOSEBOARD failed. Error is ',int2str(error_code)]);

end

A. 5. Display images function

function [nr_of_images]=DisplayImages(nr_of_images,image_stack,x)

 figure('Position',[100,100,1000,300])

 for n=1:nr_of_images

 subplot(1,nr_of_images,n)

 imagesc(image_stack(:,:,n));

Page | 20

 colormap('gray')

Page | 21

subplot(1,2,2)

plot(data(ytrace,:),'b')

hold on

plot(fit(ytrace,:),'m')

hold off

title('trace at y=yc')

xlabel('x')

ylabel('Intensity')

%legend('Data','Fit')

%residuals

figure

imagesc(data-fit),colorbar

title('Residuals')

function [z] = GaussSurf(SurfGaussGuess,xxx,yyy)

A=SurfGaussGuess(1);

xwidth=SurfGaussGuess(2);

ywidth=SurfGaussGuess(3);

xc=SurfGaussGuess(4);

yc=SurfGaussGuess(5);

b=SurfGaussGuess(6);

mx=SurfGaussGuess(7);

my=SurfGaussGuess(8);

z=A.*exp(-((xxx-xc).^2)./(2*xwidth^2)).*exp(-((yyy-yc).^2)./(2*ywidth^2))+b+mx.*xxx+my.*yyy;

