University of Colorado REU in Computational
Condensed Matter Physics

Cly!> Fln .

Aggadt 11, 200

Introduction

My work in the 2006 REU program at the University of Colorado involved
molecular dynamics simulation of condensed matter systems under Professor
Matthew Glaser and graduate student Zachary Smith. The first half of the
summer was spent writing computer code simulating mixtures of spheres and
spherocylinders. The second half of the summer this code was used to measure
the diffusion properties of a carbon nanotube in an aqueous environment. In
this paper I describe two basic computational methods of molecular dynamics
simulation I learned over the course of the summer in Section I, and in Section
IT I describe the results of the carbon nanotube simulation.

1 Computational Methods of MD Simulation

Molecular dynamics (MD) simulation generally involves computationally time-
evolving molecular systems and calculating time averages of desired thermody-
namic properties. Such an approach may be contrasted with molecular Monte
Carlo simulations, which sample the phase space of systems (independent of
time) to calculate thermodynamic properties. The most computationally expen-
sive portion of virtually any MD simulation is the calculation of inter-particle
forces, so much effort is expended in developing efficient particle interaction
routines. There exist two standard approaches which greatly improve the “all
pairs” force calculation algorithm.

The all pairs algorithm is the simplest method of calculating inter-particle
interactions. To determine the net force exerted upon a given particle, it sums
the forces exerted upon the given particle by all other particles in the system.
In a system of N particles, this requires N? forces calculations. Invoking New-
ton’s Third Law improves the situation slightly, requiring N(N — 1)/2 force
calculations, but the algorithm still scales as N2. Another common practice
for short-range systems is to institute a maximum distance, r_cutof f, which
forms a “halo” around a given particle. Only the forces contributed by parti-
cles within the given particle’s halo are summed to give the total force on the
particle-the rest of the forces are discounted. This makes sense for short-range
systems because beyond r_cutof f (which is usually equal to 2.50, where o is the
characteristic length of the potential function) the contributing forces become
vanishingly small.

Yet even this trick does not provide a substantial boost in efficiency, for the
program must still check the separation distance of every particle pair combina-
tion in order to filter those separated by more than r_cutof f. For this reason,
such a routine is still considered an N2, “all pairs” algorithm. To mitigate this
poor efficiency, MD simulations typically employ either of two tricks: the neigh-
bor list or the cell list. Both are straightforward concepts, but they require a
fair bit more programming than the naive all pairs approach.

The neighbor list scheme begins in the same way as the all pairs scheme,
by placing a halo of radius r_cutof f around a given particle. Neighbor list

Figure 1: Neighbor list cartoon.

schemes then go one step further and place another halo (also centered around
the particle) a certain distance beyond the first halo. This distance is referred to
as the skin distance, and the space between the first and second halos is called
the skin (see Fig. 1). Every particle in the system is assigned an identification
number, and linked lists are then utilized to record which particles are within
r_cutof f + skin_distance (the second halo) of the given particle. To calculate
the force on the given particle, the program needs not check every particle
in the system for being within r_cutof f of the given particle, but only those
particles on the linked list [1, pp. 147-149]. Of course, after some time new
particles may enter or exit the region of space encompassed by the second halo,
and the list must be updated with sufficient frequency such that no particle
comes within r_cutof f of the given particle without being detected. This is
achieved by keeping track of the displacements of all particles in the system since
the most recent neighbor list update. Whenever any particle’s displacement
magnitude exceeds skin_distance/2, the neighbor lists must be updated. (The
prescribed update distance is skin_distance/2, and not skin_distance, because
in the worst-case scenario one particle may be on the verge of another particle’s
outer halo. If they both move directly toward each other, they will be separated
by just a shade over r_cutof f after both have moved skin_distance/2 .)

It is advantageous to use neighbor lists only when the number of particles
within each outer halo (ny,) is much less than the total number of particles within
the system. The number of particles within each outer halo is (on average) given
by n, = %71'7"}?; p, where ry, is the radius of the outer halo (typically 2.7¢) and p
is the particle density [2, p. 552].

Figure 2: Cell list cartoon.

To compare neighbor list efficiency to all pairs efficiency, first realize that
because all pairs requires N (N — 1)/2 calculations to compute the total energy
of the system, the computational time is simply Taiipairs = ¢N (N — 1)/2, where
¢ is the computational time per particle pair. Neglecting updates, the computa-
tional time required using the neighbor list scheme is ¢ny, IV, which is obviously
a marked improvement if ny, <« N. Taking updates into account, however, in-
troduces the extra term ﬁ—‘N 2 where ¢y, is the computational time taken to
determine if a particle pair is separated by less than r_cutof f + skin_distance,
and n, is the average number of iterations after which the neighbor lists must
be updated. The overall efficiency of the neighbor list scheme is therefore

Ch

Tl = cnpy N + — N2, (1)

u
“FExperimentation” must be performed to determine what skin length gives the
most efficient combination of ny, and n,.

In the cell list scheme, the system unit cell is partitioned into a grid, with
each unit constituting a cell. Two arrays are maintained—one which designates
the “head” particle in each cell, and another which lists all other particles in
each cell (see Fig. 2). To check for particles within r_cutof f of a given particle,
the program simply checks the surrounding cells rather than the entire system.
If the cells’ dimension of minimum length measures r_cutof f or greater, then
the program needs only check one cell deep in all directions. In contrast to
neighbor lists, cell lists must be updated every iteration. Fortunately, this takes

only N calculations. The efficiency of the cell list scheme is given by
et = eneN + caN, (2)

where n. = 27p7"§ and ¢ is the computational time taken to determine the cell
occupied by a given particle [2, p. 553].

The most efficient MD routines usually employ a combination of both the
neighbor list and cell list approaches. Neighbor lists are used to directly calcu-
late inter-particle forces, and cell lists are implemented to speed neighbor list
updates. Note that with this approach cell lists need not be updated every
iteration, but only when the neighbor lists need updating. The efficiency of this
algorithm is then [2, p. 553]

Talel = cnp N + @N (3)

u

2 Diffusion Properties of Carbon Nanotube in
Water

In his mathematical elucidation of Brownian motion in 1905, Einstein derived
the following Gaussian probability distribution for a one-dimensional Brownian
particle [3, p. 461]:

(4)

p(t,x) = @~ x")2] .

1
ex —
VDt P { 4Dt

From this equation it is clear that the constant D determines the rate at which
the probability distribution of the particle spreads, or diffuses, over time. This
diffusion constant is a property of the size and shape of the particle, as well as its
interactions with surrounding particles. In addition to changing position over
time, spherically asymmetric particles also change in orientation. The rotational
diffusion constant is thus a measure of the rate of such a particle’s stochastic
change in orientation.

Many molecules of interest, including proteins, nucleic acids, viruses, and
carbon nanotubes, exhibit approximately stiff rod-like conformations. Recent
work has modeled short double-stranded DNA segments (with lengths of less
than 50 nm) as rod-shaped particles [4], and the diffusion properties of carbon
nanotubes have recently been explored through MD simulation [5]. To better
understand the properties of such molecules, we devised a two-dimensional MD
simulation to measure the rotational and translational diffusion coefficients of
rod-shaped molecules in water. As a case study, we simulated a carbon nanotube
(with a mass of 2700 amu, a length of 10 nm, and a diameter of 1 nm) in an
explicit solvent of water molecules held at a constant temperature of 298 K.
The system was held at constant volume, with a pressure of approximately
0.065 J/m?. Particles interacted via a Lennard-Jones potential, given by

vor=e[(2)"- ()] g

Random Walk of a Spherocylinder

10 15 20 25 30 35 40

Figure 3: Random walk of carbon nanotube in one arbitrary simulation run.

Mean Squared-Displacement vs. Scaled Time
of Spherocylinder

_y = 0.1065x% - 24.57
R? = 09956

]

Displacement
[np]

[A=
o o o o o
"

Scaled Mean Squared-

a 200 400 B00 800 1000 1200 1400

Scaled Time

Figure 4: < 2 > vs. machine time for carbon nanotube.

Mean Angular Squared-Displacement vs. Scaled
Time of Spherocylinder

=

7 y=2.703E-03x% - 1.975E+00
R =9.977E-01

3

—_

-
=
z
£
T
o
e 2
=
N
=

5
i
g
"]
i
E
=
<
=

[
e

1000 1500 2000

Scaled Time

Figure 5: < 62 > vs. machine time for carbon nanotube.

Here € sets the energy scale of the system, and o sets the length scale. These
parameters were chosen to match those in [6], so € = 0.79 kcal/mol and o =
0.29nm.

We ran several simulation runs (see Fig. 3 for the random walk taken by the
spherocylinder in one simulation) and then plotted the mean-squared displace-
ment and the mean-squared angular displacement of the spherocylinder versus
the scaled machine time. Figures 4 and 5 give the slopes of these data sets.
Note that we fit only the linear portions of the data; at short times, a particle
in Brownian motion maintains a “memory” of its initial position or orientation,
and only after this short-term memory has been lost does the particle enter the
linear regime.

To calculate the two diffusion constants from the slopes of these graphs,
we must first convert the slope values from machine units to SI units, then
determine how the diffusion coefficient is mathematically related to the mean-
squared displacement. The translational diffusion coefficient is given in units
of length-squared per unit time; the unit of length of the system was set by
the diameter of a water molecule, so one machine unit of length corresponded
to 0.29 nm. Our simulation sampled the data once every five units of machine
time, each of which were 7 x 1071% seconds in length [6, p. 3101], so the slope
from Fig. 4 converts to Mmians = 2.56 x 1078 cm? /s. Likewise, the slope from
Fig. 5 converts to myor = 7.72 x 10° rad?/s.

To ascertain the mathematical relationship between the particle’s mean-
squared displacement and its diffusion coefficient, we start by determining the
dependence of the mean-squared displacement expectation value of a one-dimensional
Brownian particle upon time, which is given by the equation (for z, = 0 at

0=0)
t <z?>= \/4er /J:O z% exp {—@] dx. (6)

The integral f:r;o 2 exp [—axﬂ dz is equal to /7, so we obtain the simple result
< z?>=2Dt. (7)

The preceding derivation was for assumes a one-dimensional system; the added
degrees of freedom in higher dimensions result in the modification

< 2% >=2dDt, (8)

where d is the dimensionality of the system. Relating this result to the slopes
of Figures 4 and 5 (and realizing that the system is two-dimensional) yields the

equations
MMtrans

Dtrans - 4 (9)
and —_—
Dot = —. (10)
The translational diffusion coefficient of the carbon nanotube is therefore Dy ans =
6.40 x 1072 cm?/s , and the rotational diffusion constant is Doy = 1.93 x
105 rad?/s.

3 Conclusion

The preceding calculations of carbon nanotube diffusion coefficients must be
considered rough and preliminary, for no statistical analysis has yet been con-
ducted. The translational diffusion coefficient is several orders of magnitude
below that found experimentally by Pecora [4, p. 21] for a similarly-sized seg-
ment of double-stranded DNA, though our calculation is expected to yield a
much smaller value since our system was two-dimensional system. Whether
or not our simulation agrees with experiment in three dimensions has not yet
been determined. Additional work is clearly required to obtain improved, more
reliable results.

My research this summer was an incredible experience. I learned an incred-
ible amount about MD simulation and condensed matter physics, and I wish to
thank Zach Smith and Matt Glaser for their patience and eagerness to answer
any and all of my questions.

References

[1] M.P. Allen & D.J. Tildesley. Computer Simulation of Liquids. Oxford Uni-
versity Press, New York, NY, 1987.

[2] D. Frenkel & B. Smit. Understanding Molecular Simulation: From Algo-
rithms to Applications. Academic Press, London, England, 2nd edition, 2002.

[3] R.K. Pathria. Statistical Mechanics. Elsevier, New Delhi, India, 2nd edition,
2004.

[4] R. Pecora. Macromol. Symp. 2005, 229, 18-23.

[5] S. Jackobtorweihen, F.J. Keil, & B. Smit. Temperature and Size Effect on
Diffusion in Carbon Nanotubes (J. Phys. Chem. B).

[6] Y. Lansac, Prabal K. Maiti, M. Glaser. Coarse-grained simulation of polymer
translocation through an articial nanopore (Polymer). 2004, 45, 3099-3110.

