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1 Introduction

Over the past �fty years, lasers have become one of the most valuable tools for studying

physics. Monochromatic, phase coherent laser light can be used for experiments which were

impractical or impossible with traditional light sources. Of course, since the laser’s

invention, fundamental limitations on a laser’s freqency stability and phase coherence time

have been recognized [1]. Yet, most lasers are limited by technical noise sources such as

vibrations, temperature 
uctuations, and thermal noise of the resonator mirrors. This

instability limits a laser’s usefullness for applications such as precision spectroscopy,

measurements of physical constants, and atomic clocks. For this reason, signi�cant research

continues in the �eld of laser stabilization. The Ye goup at JILA is currently endeavoring

to achieve a laser with linewidth below .5 hertz. This result will match the best laser

stability ever recorded and increase the precision of the group’s strontium atomic clock. In

this paper, I will report on this experiment and the progress made during a ten week

period with the group. Furthermore, this paper will serve as a brief introduction to the

Pound-Drever-Hall method of laser stabilization which is commonly used in ultra-stable

laser systems.
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2 Laser Stability

A common and useful way to characterize a laser’s frequency noise is by its spectral

density. The spectral density of frequency variations is de�ned as

Sv �
�ν2

r.m.s(f)

b
[Hz2/Hz]. (1)

Where b is the bandwidth of the frequency noise, and ν2
r.m.s. is the \power" of the frequency

excursions at a given frequency (note the peculiar units Hz2/Hz). The frequency spectral

density of a laser is the cause of its linewidth, �ν, and lineshape. Of course, the lineshape

of a laser is the same as saying the spectral density of optical power, Se. Given a constant

frequency spectral density over a bandwidth b, if the noise bandwidth, b < �νr.m.s., then

the lineshape is Gaussian. If b > �νr.m.s., the lineshape will be Lorentzian. In general, a

laser’s lineshape is a convolution of the two. [2] In either case, the linewidth is proportional

to the amplitude of the frequency modulation, ν2
r.m.s.

�ν / Sv(f) (2)

Is it accurate to assume the frequency variations of the laser are uniform? The answer is,

sometimes. The careful physicist must calculate Se from the laser’s autocorrelation

function [3]. Yet, in general, common noise sources contribute to the noise over known

frequency ranges. Figure 1 shows a plot of limiting noise sources over a 100kHz bandwidth

for the current clock laser setup.
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Figure 1: Spectral density of frequency 
uctuations for a 698nm laser stabilized below 1
kHz. Thermal noise is the dominant noise source at low frequencies and dominates the
instability of the laser.

From Figure 1, we see that the limiting factor to laser stability is thermal noise. This

thermal noise is caused by fundamental 
uctuations in the mirror substrate (Brownian

motion) at nonzero temperatures. The job of the physicist stabilizing a laser is to decrease

this noise spectral density as much as possible over a large bandwidth. To do this,

Fabry-Perot cavities and feedback control techniques such as the Pound-Drever-Hall (PDH)

method are used.

3 Fabry-Perot Cavities and PDH Stablization

Fabry-Perot (FP) cavities are useful for stabilizing a laser because they act as a constant

frequency reference. More precisely, FP cavities resonate at distinct frequencies governed

by the relation,

ω = nc/2L, (3)

where n is an integer and L is the length of the cavity. This equation is easy to understand

using wave optics. If the laser frequency agrees with the condition of Equation 3, for each

pass through the cavity the electromagnetic �eld, the light will constructively interfere.
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More complete descriptions can be found in a good optics book [4]. For a cavity with

perfect mirrors, the resonant condition is exact. However, if the mirrors have loss{and they

always do{then the cavity has resonant peaks with width, δν centered around the resonant

frequency in Equation 3. In fact, the linewidth of the cavity is best characterized by the

cavity’s �nesse. Finesse is the most useful quantity used to characterize an FP cavity.

F =
ωFSR
δν

(4)

where ωFSR is known as the free spectral range of the cavity and is de�ned by the frequency

spacing between cavity resonances, c/2L. The �nesse of a cavity is solely dependent upon

the optical losses as light travels between the mirrors. Cavities with a �nesse of over

100,000 are used to construct ultra-stable lasers with linewidth below one hertz.

The goal of the physicist stabilizing lasers is to compare his laser’s frequency with that

of the cavity and use a feedback system to correct for the error. The laser transmission

through an FP cavity is shown below in Figure 2.

Figure 2: Transmission coe�cient from a Fabry-Perot cavity.

A simplistic way to lock the laser frequency would be to measure the laser transmission

from the cavity in order to lock the frequency to some point detuned slightly from

resonance. One would not lock directly on resonance with this method since the

transmission signal is symmetric around this point. The feedback system would not know

which direction to apply a correction. For this reason the range of a suitable error signal is
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limited to one side of the transmission signal. More importantly, this method is 
awed

because the error signal would be sensitive to amplitude noise in the laser as well as

frequency noise. Pound-Drever-Hall stabilization addresses both of these problems.

The golden idea of PDH stabilization is to modulate the laser’s frequency and monitor

the laser’s re
ection from the FP cavity in order to obtain a more useful error signal. This

error signal is obtained by measuring the amplitude and phase of the re
ected light. There

is no device which can directly measure the phase of an oscillating electric �eld, but the

PDH method gives us a simple and clever way to make the measurement. For a FP cavity

with no losses, the re
ection coe�cient for the electric �eld is given by,

F (ω) =
r(exp(i ω

∆νfsr
)� 1)

1� r2exp(i
∆νfsr
ω

)
. (5)

For a laser modulated with a modulation amplitude, β, the electric �eld can be expanded

as a series of Bessel functions and written [5],

E(ω) = E0[J0(β)eiω + J1(β)ei(ω+Ω)t � J1(β)ei(ω+Ω)t] (6)

Where ω is the laser frequency, 
 is the modulation frequency, and J0 and J1 are the

Bessel function coe�cients of the series expansion. Equation six shows how modulating the

electric �eld creates an incoming wave which appears in frequency space as a large carrier

with two sidebands. How can we conceptualize this new modulated laser interacting with

the FP cavity? The system simply behaves as if three waves were interacting with the

cavity: The carrier with frequency, ω, and the two sidebands with frequencies ω + 
 and

ω � 
. The re
ected light is this electric �eld with each term multiplied by the re
ection

coe�cient at the corresponding frequency. The magnitude of the electric �eld squared is

the power of the re
ection signal.
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P =PcjF (w)j2 + Ps[jF (ω + 
)j2 + jF (ω � 
)]j2 (7)

+ 2
√
PcPsRe[F (ω)F � (ω + 
) (8)

� F (ω)F � (ω � 
)]cos
t+ Im[F (ω)F � (ω + 
) (9)

� F (ω)F � (ω + 
)]sin
t+ (2
terms) (10)

This is measured in a photodetector. The important terms in this measured signal are

those that oscillate at the frequency 
. The goal is to demodulate this oscillating term to

measure the factor in front which contains the error signal. This can be done with either

the sine or cosine term. The solution is found by combining the re
ection signal with a pure

sine oscillation from the local oscillator. We then have an electronic signal which contains,

Im[F (ω)F � (ω + 
) (11)

� F (ω)F � (ω + 
)]sin
t � sin
t (12)

The constant term out in front is the error signal, E(ω), and the sine sqaured term becomes

sin2(
t) = 1� cos2(ωt) (13)

Aha! By mixing the two sines together, we have created a demodulated term with the error

signal. Experimentally, the rest of the measured signal is thrown away with a low pass

�lter. Also, in real setups, the phase of the two sine terms is never necessarily equal, so a

phase shifter is used to create the correct error signal shown below in Figure 3.
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Figure 3: Measured error signal from a cavity with F=1000. The red trace shows the
measured optical carrier with sidebands.

Now that a useful error signal has been produced, the laser frequency is controlled using

standard feedback methods.

4 Technical Considerations

The slope of the error signal around resonance, shown in Figure 3, is very nearly [5]

E � �4
p
PcPs

π�ν
(14)

where Pc and Ps are the power of the laser at the carrier frequency and sideband frequencies

respectively. �ν is the cavity linewidth. So, cavities with higher �nesse have a larger

sloped error signal compared to the noise of the system. This allows for greater control.

Cavities with relatively lower �nesse, perhaps 100 or 1000, are usually limited by quantum

shot noise at the photodetector in the PDH con�guration. Since the slope of the error

signal is not as large as that of the ultra-high �nesse cavities generally used, the shot noise


uctuations limit the sensitivity of the setup to smaller frequency deviations of the laser.

Another technical consideration is mode matching to the FP cavity. Traditional FP

cavities with planar mirrors are rarely used in practice because they are quite sensitive to

misalignments. Cavities with spherical mirrors are pre�ered. The standing waves of this
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type of cavity are actually Gaussian beams [4]. The lasers being used must be focused

correctly so that the beam divergence matches the radius of curvature of each mirror.

If a laser is locked to a cavity, 
uctuations in the cavity length contribute to noise just

the same as inherent laser frequency 
uctuations. Because of this, all FP cavities used for

laser stabilization must be precisely temperature controlled and constructed of materials

with low thermal expansion coe�cients. Temperature control becomes an important

technical aspect to consider when constructing a laser stabilization setup.

Lastly, PDH stabilization su�ers from a sensitivity to so-called \Residual Amplitude

Modulation" (RAM). When our laser is frequency modulated at frequency 
, amplitude

modulation is introduced at the same frequency. This spurious RAM will be recieved on

the photodetector as a term with sin(
t) oscillation and will be demodulated into the error

signal. As the RAM changes amplitude over time, possibly with variations in temperature,

the baseline of the error signal can 
uctuate. For lasers locked to high �nesse cavities, this

can be a serious problem. The best solution currently known is to prevent RAM from

leaking onto the signal.

5 Experimental Setup: 40cm Cavity

The Ye labs strontium atomic clock has achieved an overall uncertainty of 1 � 10−16. The

linewidth of the clock laser is .5 hertz. Despite this fact, laser stability is still the limiting

factor in the precision of the atomic clock. Earlier in this paper, Figure 1 showed us that

the limiting factor for this stability is currently thermal noise. One way to reduce the

contribution of this noise is to design a longer cavity. Indeed, this is one of the ways that a

new 40cm cavity stabilization system can improve the current clock laser stabilization.

This cavity, which is currently being setup for integration into the strontium clock, is

shown below in Figure 4. The new 40 cm cavity is expected to have a factor of 10 increased

insensitivity to thermal noise. This is in part due to the increased length of the cavity.
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Also, the mirrors of the 40cm cavity are coated with fused silica substrate instead of the

ultra low expansion (ULE) coating, the coating on the current fabry perot cavity. Fused

silica exhibits lower thermal noise than ULE material.

Figure 4: 40cm fabry-perot cavity made of ULE material with fused-silica mirrors.

The Pound-Drever-Hall locking scheme discussed above will be used to create a 698nm

stable laser system with this optical cavity. However, before the diode laser can address the

super-cavity, it must be \pre-stabilized" to a linewidth around 1kHz. This was
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accomplished with a smaller optical cavity with a linewidth of 2.8MHz and a �nesse around

1000. A diagram of the experimental setup for PDH locking is shown below in Figure 5 [5].

Figure 5: Schematic for a PDH setup. The re
ection signal from the optical cavity is

detected and combined with the local oscillator signal in order to demodulate the error

signal.

From this setup, the spectral density was measured using a Fourier Transform machine.

The extrapolated linewidth of the laser was 550� 200Hz. The stabilization lock was seen

to have a bandwidth of nearly 2.5MHz which is typical for a PDH locked laser.

6 Conclusion

The current atomic frequency standard created by the strontium clock in Ye labs has

reached a total uncertainty of 1 � 10−16. This uncertainty is less than the national

standard{the Cs ion clock housed at the National Institute of Standards and Technology

(NIST). By creating a more stable laser system, lasers will be able to probe the narrow

transitions in strontium even more precisely. The current laser stabilization system uses a

vertically mounted 7cm Fabry-Perot cavity with a �nesse around 200,000 [6]. A new

system, consisting of a 40cm horizontal cavity with comparible �nesse is currently being

integrated into the atomic clock system. The 40cm cavity is expected to have a factor of

ten less sensitivity to thermal noise, or thermal 
uctuations in the mirror substrate. My 10
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week project project was to setup the prestabilization of the 698nm laser to a

prestabilization cavity. After the prestabilization, the laser’s stability will be comparable

with the 40cm cavity’s linewidth. The prestabilization achieved a linewidth near 550hz, a

very suitable stability which will allow further stabilization to the 40cm cavity.
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