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1 Introduction

1.1 Research Experience for Undergraduates Overview

This summer I worked with Profs. John Cumalat and Kevin Stenson in high energy physics. My project was
to look at data from FOCUS (a.k.a. E831 at Fermilab) to determine if the rare decays D0 → Ksπ

+π−π+π−π+,
D+ → Ksπ

+π−π+π−π+π−, D+ → KsKsKsπ
+, and D+

s
→ Ksπ

+ could be observed. I then compared these
decays to other, previously seen decays to set upper limit branching ratios.

1.2 FOCUS

The FOCUS experiment (aka E831) is a charm photoproduction experiment. It is located in the Wideband Area
of Fermilab and collected data during the 1996-1997 fixed target run. Reconstruction of data began in 1998 and
was finished by the end of 1999. The analysis of this data continues to the present.

1.2.1 FOCUS Beamline

The FOCUS beamline begins as a proton beam, accelerated from rest to 800 GeV using a series of five accelerators.
It begins as hydrogen gas, ionized by the addition of electrons. The H− ions are accelerated electrostatically to
.750 MeV through a system of voltage dividing nodes (Cockcroft-Walton). They are then accelerated to 400 MeV
using a linear accelerator (LINAC). LINAC is a series of alternating high field and free field regions. As the ions
exit LINAC, they pass through a thick carbon foil which strips the ions of their electrons, leaving only protons.
The booster, a synchotron about 500 ft. in diameter, accelerates a group of protons to 8 GeV. It takes 12 groups
of protons to fill the main ring at Fermilab. The main ring accelerates the protons to 150 GeV and injects them
into the Tevatron. The Tevatron uses liquid helium cooled superconduction dipole magnets to contain the proton
beam and accelerate it to 800 GeV. The main ring and the Tevatron are both synchotrons with diameter 1 km.

Proton extraction is a process of slowly removing the beam and sending it down fixed target beamlines. Electro-
static devices and magnets in the switchyard split and direct the beam into three major areas: proton, neutrino,
and meson. The beams in each of these areas are again split. The radio frequency acceleration cavities of the
Tevatron operate at 53 MHz, which means that the protons arrive at the experiment in regularly spaced 18 ns
intervals.

To create the photon beamline, incident 800 GeV protons strike a cryogenically cooled liquid deterium target.
The interactions produce many particles, but specifically they produce π0s that decay into 2 photons. A series
of magnets and converters remove the other particles produced in the interactions. Powerful diple magnets sweep
away charged particles. The neutral particles in the beam strike a photon converter, which is a piece of lead
50% of a radiation thick. In this process, the photons convert to e+e− pairs and other particles pass through.
Quadropole magnets focus the electrons and positrons. These magnets bend the charged portion of the beam
around a dump that collects non-interacting neutral particles. Momentum recombining dipoles recombine the elec-
trons and positrons (which have been split into two beams). The recombined beam is then focused and strikes the
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Figure 1: FOCUS Beamline

radiator, a sheet of lead 20% of a radiation thick, where the bremsstralung process produces photons. Sweeping
dipoles redirect the charged portion of the beam to a recoil positron detector and a recoil electron detector. The
neutral part of the beam continues towards the experiment target. The mean energy of the photons is around 190
GeV. A lead wall and lead collimator remove background synchotron radiation.

An advantage to this process is that the interactions in the primary target caused by hadrons in the beam are
greatly reduced, as the hadron contamination of the beam is very low. A disadvantage to this process is that very
few photons are generated relative to the number of protons in the beam.

1.2.2 FOCUS detector

The FOCUS detector is actually a system of smaller devices and detectors. These detectors provide particle track-
ing and identification.

The following devices track and vertex particles in the FOCUS detector. Silicon microstrips are essentially reverse
bias semiconductors. Charge produced by ionizing particles is gathered at the end of each strip. A multiwire pro-
portional chamber (PWC) is a mesh of wires in several planes. Each plane is alternately high voltage or grounded.
The PWC is placed in a gas chamber, so that charged particles passing through ionize gas molecules. The electric
field accelerates the electrons removed from these particles toward the grounded wires. Along the way, the electrons
ionize more of the gas, and the cascade of charge that develops is deposited on the grounded wires. Straw tube
chambers use the same concepts as PWCs. The difference between the two is that the voltage in a straw tube cham-
ber is across a metal tube with a ground wire running through the center. In between these tracking devices are
two magnets. The change in the slopes of the tracks through the magnets is used to find the momentum of a particle.

The following devices help with particle identification. Cerenkov detectors rely on the Cerenkov effect to tell the
difference between pions, kaons, and protons. The Cerenkov effect is a “shockwave” of light produced when a
particle travels faster than light travels through a specific medium. The presence or absence of this light is an
indication of the particle identification. Calorimeters destructively measure the energy of particles. In electromag-
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Ks6pi - exponential fit, no cuts
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Ks6pi - exponential fit, with cuts
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Figure 5: Ks6π data- single Gaussian with exponential background, before and after cuts are applied

Ks6pi Monte Carlo - Double Gaussian fit, no cuts
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Ks6pi Monte Carlo - Double Gaussian fit, with cuts

0

500

1000

1500

2000

2500

3000

1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1

ID
Entries
Mean
RMS

            100
          13137

  1.873
 0.5417E-01

  257.6    /    92
P1  0.1062E+05   165.4
P2   1.865  0.9190E-04
P3  0.3738E-01  0.2413E-02
P4   27.00   2.417
P5   28.50   5.853
P6  -195.2   86.00
P7  0.7091E-02  0.1024E-03
P8  0.2355  0.9279E-02

Yield = 10622 ± 165

M=1865.26±0.092 MeV

σ=37.384±2.413 MeV

Significance = 64.3758

Width of Gaussian 1 =  0.0373839

Width of Gaussian 2 =  0.00709121

Figure 6: Ks6π Monte Carlo - double Gaussian with quadratic background, before and after cuts are applied

2 Applied Cuts

Each of the four channels I worked with this summer required similar techniques. In each ntuple of data, the
signal (if it exists) is obscured by tremendous amounts of background. We try to isolate the signal by reducing
background. We do this by cutting events based on certain kinematic variables. Additionally, Monte Carlo methods
are used to simulate the data. The Monte Carlo is used as a measure of efficiency in the branching ratio. This
section includes plots of both data and Monte Carlo for every signal and normalization channel. In each figure,
the plot on the left is a mass plot with no cuts applied and the plot on the right is a mass plot with the final cuts
applied. Mass (measured in GeV) is on the x-axis and the number of events is on the y-axis.

2.1 Ksπ
+π−π+π−π+π−/Ksπ

+π−π+π−

There was no easily observable signal in the Ks6π data, so the cuts were chosen by maximizing the Monte Carlo
signal divided by the square root of the data background. The normalization mode for Ks6π is Ks4π. For this
channel, we required that the distance between the primary vertex and the secondary vertex, divided by the error
in that distance be greater than 8. For the pion daughters, we required that non-pion hypotheses be favored over
the pion hypothesis by no more than 5 units of log-liklihood. We required that there be more than two tracks in
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Ks4pi data - Quadratic fit, no cuts
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Ks4pi data - Quadratic fit, with cuts
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Figure 7: Ks4π data - single Gaussian with quadratic background, before and after cuts are applied

Ks4pi Monte Carlo - Double Gaussian fit, no cuts
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Ks4pi Monte Carlo - Double Gaussian fit, with cuts
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Figure 8: Ks4π Monte Carlo- double Gaussian with quadratic background, before and after cuts are applied
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Ks5pi - exponential fit, no cuts
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Ks5pi - exponential fit, with cuts
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Figure 9: Ks5π data- single Gaussian with exponential background, before and after cuts are applied

Ks5pi Monte Carlo - Double Gaussian fit, no cuts

0

2000

4000

6000

8000

10000

12000

14000

16000

1.7 1.75 1.8 1.85 1.9 1.95

ID
Entries
Mean
RMS

            100
         195069

  1.858
 0.5689E-01

  176.4    /    62
P1  0.7504E+05   459.7
P2   1.870  0.3999E-04
P3  0.6798E-02  0.8800E-04
P4   1484.   11.24
P5  -85.47   70.56
P6 -0.2916E+05   921.1
P7  0.1771E-01  0.6285E-03
P8  0.6774  0.1400E-01

Yield = 75038 ± 460

M=1869.62±0.04 MeV

σ=6.798±0.088 MeV

Significance = 163.126

Width of Gaussian 1 =  0.00679807

Width of Gaussian 2 =  0.0177138

Ks5pi Monte Carlo - Double Gaussian fit, with cuts
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Figure 10: Ks5π Monte Carlo - double Gaussian with quadratic background, before and after cuts are applied

the primary vertex. We required that there be only one candidate per event. The justification for this cut is that
we choose only one candidate per event because it is highly unlikely that more than two charm particles are created
in each event. Even so, we usually only see one or two charm particles. We choose only the best candidate, based
on whether it comes from a D∗, has more than two tracks in the primary vertex, and has the highest l/sig (length
between primary and secondary vertices divided by the error in that length). We eliminate any tracks consistent
with being e+e− pairs. We require that the error in the proper lifetime of the D0 particle be less than 0.08. Lastly,
we require that adding tracks from the secondary vertex into the primary vertex does not significantly increase the
confidence level of the primary vertex.

2.2 Ksπ
+π−π+π−π+/Ksπ

+π−π+

There was no easily observable signal in the Ks5π data, so the cuts were chosen by maximizing the Monte Carlo
signal divided by the square root of the data background. The normalization mode for Ks5π is Ks3π. For this
channel, we required that the distance between the primary vertex and the secondary vertex, divided by the error
in that distance be greater than 15. For the pion daughters, we required that non-pion hypotheses be favored over
the pion hypothesis by no more than 5 units of log-liklihood, that is, the pi consistency had to be larger than
-5.0. We required that there be more than two tracks in the primary vertex. We required that there be only one
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Ks3pi data - quadratic fit, no cuts
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Ks3pi data - quadratic fit, with cuts
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Figure 11: Ks3π data - single Gaussian with quadratic background, before and after cuts are applied

Ks3pi Monte Carlo (resonant)- Double Gaussian fit, no cuts

0

5000

10000

15000

20000

25000

30000

1.7 1.75 1.8 1.85 1.9 1.95

ID
Entries
Mean
RMS

            100
         250860

  1.855
 0.5096E-01

  203.3    /    62
P1  0.1578E+06   516.0
P2   1.869  0.2894E-04
P3  0.1539E-01  0.3397E-03
P4   1398.   11.12
P5  -3155.   65.75
P6 -0.2188E+05   983.0
P7  0.7714E-02  0.9673E-04
P8  0.3725  0.1871E-01

Yield = 157841 ± 516

M=1869.12±0.029 MeV

σ=15.39±0.34 MeV

Significance = 305.893

Width of Gaussian 1 =  0.0153899

Width of Gaussian 2 =  0.00771357

Ks3pi Monte Carlo (resonant)- Double Gaussian fit, with cuts
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Figure 12: Ks3π Monte Carlo- double Gaussian with quadratic background, before and after cuts are applied
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3Kspi data - quadratic fit, no cuts
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3Kspi data - quadratic fit
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Figure 13: 3Ksπ data- single Gaussian with quadratic background, before and after cuts are applied

3Kspi Monte Carlo - Double Gaussian fit, no cuts
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3Kspi Monte Carlo - Double Gaussian fit
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Figure 14: 3Ksπ Monte Carlo - double Gaussian with quadratic background, before and after cuts are applied

candidate per event. The justification for this cut is the same as above. We eliminate any tracks consistent with
being e+e− pairs. We require that the momentum of the D0 particle be greater than 40 GeV . We require that the
D0 particle decays outside the the material. Lastly, we require that adding tracks from the secondary vertex into
the primary vertex does not significantly increase the confidence level of the primary vertex.

2.3 KsKsKsπ
+/Ksπ

+π−π+

There was no easily observable signal in the 3Ksπ data, so the cuts were chosen by maximizing the Monte Carlo
signal divided by the square root of the data background. The normalization mode for 3Ksπ is Ks3π. For this
channel, we required that the distance between the primary vertex and the secondary vertex, divided by the error
in that distance be greater than 3. For the pion daughters, we required that non-pion hypotheses be favored over
the pion hypothesis by no more than 5 units of log-liklihood. We eliminate any tracks consistent with being e+e−

pairs. We require that the momentum of the D0 particle be greater than 40 GeV . We do not allow different
vees to share the same tracks. We require that the maximum absolute value of the normalized mass of any of the
kaon daughters be less than three standard deviations of the nominal Ks mass. Lastly, we require that difference
between the D0 mass and the combined 3Ks mass be greater than 0.15.
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Ks3pi data - quadratic fit, no cuts

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

1.7 1.75 1.8 1.85 1.9 1.95

ID
Entries
Mean
RMS

            100
        1546648

  1.834
 0.7919E-01

  80.46    /    64
P1  0.2643E+05   594.4
P2   1.871  0.1956E-03
P3  0.9298E-02  0.2174E-03
P4  0.1605E+05   27.69
P5 -0.1994E+05   245.1
P6 -0.5003E+05   2920.

Yield= 26433 ± 594.443

M=1871.2±0.196 MeV

σ=9.298±0.217 MeV

Significance = 44.5

Ks3pi data - quadratic fit, with cuts
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Figure 15: Ks3π data - single Gaussian with quadratic background, before and after cuts are applied

Ks3pi Monte Carlo (resonant)- Double Gaussian fit, no cuts
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Ks3pi Monte Carlo (resonant)- Double Gaussian fit, with cuts
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Figure 16: Ks3π Monte Carlo- double Gaussian with quadratic background, before and after cuts are applied
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Kspi data - quadratic fit, no cuts
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Kspi data - quadratic fit, with cuts
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Figure 17: Ksπ data- single Gaussians with quadratic background, before and after cuts are applied

Kspi Monte Carlo - double Gaussian fit, no cuts



KsK data - quadratic fit, no cuts
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KsK data - quadratic fit, with cuts
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Figure 19: KsK data- single Gaussians with quadratic background, before and after cuts are applied

KsK Monte Carlo - double Gaussian fit, no cuts
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KsK Monte Carlo - double Gaussian fit
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Figure 20: KsK Monte Carlo- double Gaussian with quadratic background, before and after cuts are applied
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momentum of the D0 had to be larger than 40 GeV and the momentum of the pion had to be larger than 15 GeV .
We eliminated daughters consistent with being electrons. We also required that different vees cannot share tracks.
We used an isolation cut on the secondary vertex of less 0.02. We required that the reduced chi-squared (χ2/DOF )
for fit to the track of the daughters be less than 0.2. We also cut on the intersection of the pion and the Ksπ
momentum vector. For vee type 1, we used an l/sig cut greater than 11 and an isolation cut on the secondary ver-
tex less than 0.2. For vee type 4, we used an l/sig greater than 9. For vee type 5, we used an l/sig cut greater than 10.

Vee type 9 is the only non-magnet vee type, and it had a seperate set of cuts. We used an l/sig cut greater than 7.
We required that other tracks put into the secondary vertex could not increase the confidence level of the secondary
vertex. We required the same for the primary vertex. We required the error on the lifetime of the D0 be less than
.12 ps. Lastly, we required that the error in the z-coordinate of the vertex of the vee be less than 1.5.

3 Fitting the plots

In order to determine the number of events in each signal, we fit the data or Monte Carlo with some type of Gaus-
sian function. For the high multiplicity channels (Ks6π and Ks5π) we use a Gaussian function with an exponential
background to fit the data. Because there is no signal, the Gaussian has a fixed mass and width. For the other
channel in which we do not see a signal (3Ksπ), we use a Gaussian function with a quadratic background. Again,
its mass and width are fixed. For all four channels described in this report, the Monte Carlo plots were fitted with
a double Gaussian function with a quadratic background. The Ksπ data was fitted with a Gaussian function with
a quadratic background, as well. The mass and width of the large Gaussian (the D+ peak) were not fixed, while
the mass and width of the smaller Gaussian (the D+

s
peak) were held fixed. In the instances when we had to fix

either the mass or the width, the values for these variables were chosen by using the comparable Monte Carlo values.

Both the Ksπ and KsK plots look different from the others because there are two peaks in each plot. The first
peak (that is, the peak at lower mass/the right peak) is where a D+ particle has decayed to either Ksπ or KsK.
The second/higher mass peak is where a D+

s
particle has decayed to either Ksπ or KsK. The D+

s
decays are

Cabibbo supressed. One of the more interesting problems of the summer was reflection in the Ksπ data. We added
two functions to the fit for Ksπ to account for reflections from KsK. These reflections occur when the second
kaon in KsK data is misidentified as a pion. To create these functions we used KsK Monte Carlo that had been
misidentified as Ksπ. The reflection from D+ → KsK is the blue function in fig. 17 and the reflection from
Ds → KsK is the red function.

4 Uncertainties

The uncertainties in our branching ratios can be broken down into two main types: statistical and systematic.
There are many types of systematic uncertainties. Each uncertainty described below was added in quadrature to
get a total relative systematic uncertainty. This value is factored into the upper-limit calculation for channels in
which no signal was observed or it is quoted with the branching ratio in the case the a signal is observed.

4.1 Statistical

The stastical uncertainty was a fairly simple calculation in which the uncertainty in the yield was divided by the
yield for both normalization data and Monte Carlo and the signal Monte Carlo. All three statistical uncertainties
were added in quadrature to get an overall statistical uncertainty. These stastical uncertainties were then factored
into the total relative systematic uncertainty. The stastical uncertainty on the signal data is reported with the
branching ratio.

4.2 Systematic

We had many measures of systematic uncertainty. These include how the data was fit, whether the Monte Carlo
included resonance, how the branching ratios changed as the cuts were varied, and the inherent tracking uncertain-
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ties of the experiment.

To determine the uncertainty due to the fitting function for the Monte Carlo, both the normalization and signal
Monte Carlo were fit two ways. The first was a single Gaussian function with a quadratic background; the second
was a double Gaussian function with a quadratic background. We took the percent difference between the ratio
of the yields from the signal and normalization Monte Carlo fit with a single Gaussian function and the ratio of
the yields from the signal and normalization Mont Carlo fit with a double Gaussian function. To determine the
uncertainty due to the fitting function for the normalization data, we fit it with a single Gaussian function and a
double Gaussian function (both with quadratic backgrounds). We took the percent difference in yield between the
two as our measure of uncertainty. The fit uncertainty from the Monte Carlo was added in quadrature with the fit
uncertainty from the normalization data to determine an overall fit uncertainty.

Resonance occurs when a D particle (in our case) decays to intermediate particles and then those particles de-
cay to the final products. Ks5π, for example, can decay as follows: D+ → Ksa

+

1 and a+

1 → ρ(1450)π+ and
ρ(1450) → π+π−π+π−. The uncertainty due to resonance was calculated through the use of resonant and non-
resonant Monte Carlo. We fit the resonant and non-resonant Monte Carlo identically (using the same function and
same cuts) and took the percent difference in the yields as our measure of uncertainty.

Another measure of systematic uncertainty was the stability of the branching ratios as the cuts were varied. Branch-
ing ratios depend on both data and Monte Carlo, which is simulation of the data. If the Monte Carlo accurately
simulates the data, the branching ratio should remain constant, even if the cuts are changed. We use this uncer-
tainty because it is impossible to perfectly model the data. For the three channels in which no signal was seen
(Ks6π, Ks5π, and 3Ksπ), we recorded the corrected yield (data yield divided by Monte Carlo yield) of the nor-
malization mode while varying each cut individually. We then took the standard deviation of the corrected yields
as our uncertainty. For the channel in which we saw signal (Ksπ), we used a similar process, except that we used
the branching ratio instead of the corrected yield.

The last systematic uncertainty was due to the tracking efficiencies inherent in the experiment. The uncertainty
on charged tracks is .2% and the uncertainty on Ks tracks is 7.1 %.

Statistical Systematic (fit) Systematic (resonance) Cut Stability Tracking Uncertainty

Ks6π/Ks4π 0.048 0.131 0.231 0.001 0.004
Ks5π/Ks3π 0.014 0.082 0.074 0.001 0.004
3Ksπ/Ks3π 0.020 0.051 0.040 0.001 0.137
Ksπ/KsK 0.063 0.445 0.000 0.013 0.000

Total Relative Systematic Uncertainty

Ks6π/Ks4π 0.270
Ks5π/Ks3π 0.112
3Ksπ/Ks3π 0.153
Ksπ/KsK 0.450

5 Conclusion

5.1 Branching Ratios and Upper Limits

For the channels in which no signal was seen, we cannot calculate a definitive branching ratio. Instead, we calculate
an 95% confidence level upper limit on the branching ratio. To do so, we integrated the branching ratio likelihood
function

p(B) ∝
1
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from 0 to our upper limit L. That is, 0.95 =
L
∫

0

p(B)dB. The results are given in the table below.

Upper Limit Branching Ratio

Ks6π/Ks4π 0.0135
Ks5π/Ks3π 0.0034
3Ksπ/Ks3π 0.0035

Because we observed a signal in Ds → Kspi, we quote a conventional branching ratio.

Branching Ratio

Ksπ/KsK 0.223±.100±.04

5.2 Final Thoughts

The results I found this summer will eventually be published, so I intend to continue working with Profs. Cumalat
and Stenson after the REU program is finished. We still have some work to do on the all the channels. I would
like to say tank you to Profs. Cumalat and Stenson for making this summer such a positive experience, for giving
me the opportunity to tour Fermilab and give a talk to the FOCUS collaboration, and for being extremely patient
with a clueless undergraduate physics student.

I would also like thank everyone involved with the REU program for offering research opportunities to undergradu-
ates. I consider my time at the University of Colorado an extremely valuable. Thank you for letting me be involved
in “real” physics.
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