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Introduction

To form a typical Bose-Einstein condensate (BEC), bosonic atoms are cooled until they

condense into the same quantum mechanical state. However, in some atoms, such as 87Rb, a

Feshbach resonance occurs that allows for the creation of diatomic molecules [1]. In this case,

we can have a coupled atomic-molecular condensate. In particular, there exist solitonic, or

solitary wave, solutions to the coupled differential equations that describe this atomic-molecular

system. Furthermore, it is possible to obtain a purely molecular condensate. The question, then,

is which possibility, the atomic-molecular soliton or the molecular condensate, will be lower in

energy and thus will be preferentially formed? The aim of this study is to explore this question

by considering the energies and forms of these condensates and the conditions under which each

one can form.

Equations for the System

The energy of the coupled atomic molecular system (in one dimension) is given by the

following functional:
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Here ΨA is the wavefunction for the atomic condensate, while ΨM is the wavefunction for the

molecular condensate. The energy functional can easily be generalized to three dimensions by

replacing the derivative terms with
2
. In this energy functional, the derivative terms

represent the kinetic energy contribution; technically, the coefficients should beħ2 / 2m for the



atomic condensate and ħ2 / 4m for the molecular condensate (note that we use 2m instead of m

for the molecular condensate, since it is a diatomic molecule with twice the mass of an atom).

However, the units of the wavefunctions and of all the other coefficients can easily be redefined

so that they absorb theħ2 / m. The quartic terms in the energy functional represent atom-atom,

atom-molecule, and molecule-molecule interactions. We assume that gA and gM and will both be

positive, that is, that atom-atom and molecule-molecule interactions will be repulsive. We allow

gAM to be negative as long as the sum total of interactions is repulsive. ν relates to the binding 

energy of the molecules, that is, the energy difference between a diatomic molecule and two free

atoms; it is called the detuning, and can be adjusted experimentally with a magnetic field [1].

The cubic terms in the energy functional are the Feshbach coupling terms, and they relate to

interconversions between atoms and molecules; we assume λ to be positive.

2
A and 2

M , as typical quantum mechanical wavefunctions, relate to the

probabilities of finding atomic or molecular condensate at a specific location. However, since a

condensate will consist of many particles, 2
A and 2

M may be described as density

functions. When these functions are integrated over all space, they give the total number of

particles in the condensate. Thus we have the following number functional:
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Note that since each molecule consists of two atoms, the coefficient of 2
M is 2, so that the

integral gives the total number of atoms in the condensate, whether bound or free.

The problem is to find wavefunctions for the atomic and molecular condensates that will

yield energy minima, subject to the constraint that particle number must remain constant. We

may then define a new functional:



NEH (3)

Here, μ, called the chemical potential, is the Lagrange multiplier for the constraint of constant

number. Thus, we wish to minimize H, and this can be done by taking the functional derivatives

of H and setting them equal to zero:
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After these differentiations are carried out the result is the following equations:
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Here, after differentiating, we have assumed that the solutions are real. These are the two

coupled differential equations that must be solved to obtain the condensate wavefunctions.

It is clear from looking at the equations that the condensate system has three distinct

phases. First, it is possible that both condensate wavefunctions are equal to zero. This is a trivial

solution, and is not of particular interest. Both the energy and particle number for this solution

are zero, and thus it will only be favored over solutions that have positive energy. Second, one

can see that by substituting ΨA = 0 into the first and second equations, it is possible to have

ΨA = 0 and ΨM ≠ 0. This is the molecular condensate phase. Thirdly, it is possible to have both 

wavefunctions nonzero.

Molecular Condensate Phase

If we let ΨA = 0, then equations (5) reduce to the following single equation:
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This equation has the same form as Newton’s second law for an anharmonic oscillator. If both

sides of the equation are multiplied by dΨM/dx and integrated, the following equation is

obtained:
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The constant of integration E may be thought of as the classical energy. This equation has the

form Energy = Kinetic energy + Potential energy, or E = K + U. The problem of finding the

condensate wavefunction is now reduced to finding the equations of motion of a classical particle

in a quartic potential well. Specifically, the potential energy has the following form:
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Recall that we have assumed gM to be positive; however, we allow μM to be either positive or

negative. But if μM is negative, the shape of potential energy will simply be a downwards-

opening parabolic shape (though steeper than a parabola, since this is a quartic polynomial).

Such a potential energy shape will allow only one (unstable) solution at ΨM = 0; we thus obtain

on n n nono 



For small ΨM, the potential can be approximated as a simple harmonic oscillator potential, since

the quadratic term dominates the quartic term. However, as ΨM increases, the oscillating

wavefunction becomes more and more anharmonic. If we set one of the maxima of the potential

as the initial amplitude of the wavefunction, there are two possibilities. We could have a solution

that is constant in all of space. In this case the solution will be:
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One can also think of a particle starting at one of the potential maxima and rolling,

infinitesimally slowly, off the maximum, into the minimum, and up to the maximum on the other

side. To obtain the solution in this case, equation (7) can be solved by separation of variables.

The solution is as follows:
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This wavefunction is known as a dark soliton and is illustrated in Fig. 2.

Fig. 2. Dark soliton solution of equation (7).

It is possible also to have ΨM = 0 as a solution for this potential, since there is a critical point of

the potential energy at ΨM = 0. These three solutions are the only pertinent analytical solutions

for this phase. If the amplitude of ΨM ever becomes greater than
M

M

g
, then the corresponding



solution will diverge. For any maximum amplitude between zero and
M

M

g
, it becomes

necessary to use numerical solutions.

The energy functional for the molecular condensate takes the form:

dx
g

x
E MM

MM 24
2

24
1 (11)

For each of the possible solutions of equation (6), except ΨM = 0, this integral diverges.

However, we can think of the integrand of equation (11) as an energy density. For the constant

solutions of equation (9), the energy density is constant in space and equal to
Mg2

4 22

. It is

clear that the energy density of this condensate is negative, and thus favored over ΨM = 0, when

2
1

. However, we have also argued that 02M . Thus we find that
2
1

. The

preceding two inequalities are satisfied only when ν is negative. For the hyperbolic tangent dark

soliton solution, the energy density is not constant in space and is more difficult to compute.

However, it is possible to calculate an average of the energy density over a given interval, and

this average approaches the energy density for the constant solution as x approaches infinity; this

is to be expected, since the hyperbolic tangent function approaches a constant as x approaches

infinity.

Similarly, the integral for particle number diverges for most solutions of equation (6).

However, the integrand of the particle number integral is simply the density of the condensate at

a particular region in space. Thus, for the constant solutions of equation (9), the density is equal

to
Mg

)2(2
. The possible values for the particle density are limited by the restrictions onμand



ν given in the preceding paragraph. Since 
2
1

2
1 , the possible values of the number

density range between 0 and Mg/4 . As with the energy density, the average number density

for the dark soliton solution approaches the density for the constant solution as x approaches

infinity.

Atomic-Molecular Condensate Phase

The atomic-molecular condensate phase is much more difficult to study than the

molecular condensate phase, because both coupled equations of (5) must be solved. As a start,

one may consider solutions of (5) that are constant in space. In this case, the equations of (5)

become:
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These equations are, however, still complicated coupled algebraic equations. It is not difficult to

solve the first equation of (12) for ΨA, but when the result is substituted into the second equation,

one must still solve a cubic equation. Although cubic equations are in general solvable, the

general solutions are complicated enough that the results are not enlightening. It is possible to

obtain manageable solutions with an appropriate choice of values for the various coefficients of

the polynomial terms, but it is difficult to say how valuable these solutions are for studying the

condensate system.

Another way to simplify equations (5) is to assume that ΨM = k ΨA for some constant of

proportionality k. If this value for ΨM is substituted into equations (5), the following equations

result:
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For this proportionality assumption to work, the coefficients of corresponding polynomial terms

in each equation must be equal. Thus we have the following equations:
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It is then a simple matter to reduce this set of equations to the following conditions:
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Thus, if the molecular wavefunction is proportional to the atomic wavefunction, it must be equal

or opposite.

Let us assume, then, that ΨM = -ΨA. This is not qualitatively different from the

assumption that ΨM = ΨA because the only difference will be the sign of ΨA, and no odd power

of ΨA appears in the energy or particle number integrals. The first of equations (13) then

becomes
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This equation, like (7), has the form of Newton’s second law for a classical particle moving in a

quartic potential. Equation (16) may be integrated to yield:
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In this case, the potential energy function is as follows:
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As was the case with the molecular condensate, μmay be either positive or negative. Ifμ

is positive, the potential energy function for small ΨA will be another anharmonic oscillator, like

the molecular condensate potential. However, due to the presence of the cubic term, the potential

energy will not be symmetric about the origin. For large ΨA, the quartic term will dominate, and

the potential will go to negative infinity. (Fig. 3)

Fig. 3. Potential energy profile for positive μ.

This potential energy profile will allow for a number of bound solutions, in addition to the

constant solutions that occur at the critical points. A typical bound solution is shown in Fig. 4.

Fig. 4. Bound solution of equation (17).

Ifμis negative, the potential energy function will approximate a downward-facing

parabola for small ΨA. If μand the coefficient of the quartic term are not too large, the cubic



term will dominate for moderately positive ΨA, and the potential energy function will reach a

minimum. However, the quartic term will eventually dominate, and the potential energy function

will go to negative infinity. (Fig. 5)

Fig. 4. Potential energy profile for negative μ.

This potential energy function also allows for a number of bound solutions, besides the constant

solutions. In particular, this potential energy function allows for a bright soliton solution. One

can think of a particle resting at the origin at x = -∞, rolling off towards the minimum

infinitesimally slowly, hitting the spot where the potential energy crosses the horizontal axis at

x = 0, and rolling back to the origin at x =∞. This solution corresponds to a total (classical)

energy of zero. Thus, equation (17) becomes
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Equation (19) has been solved for the case of no interactions (all g terms equal to zero) [1]. The

result is the following:
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If the interaction terms are not neglected, the equation becomes much more complicated, but it

can still be solved (by separation of variables). The result is the following:
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In terms of ν, (20) becomes xA 3
sech

2
2 ; (21) maintains the same form when

expressed in terms of ν, but we have AMA gga
3
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. Fig. 6 illustrates bright soliton

solutions to equations (5). The positive solution is the atomic condensate wavefunction, while

the negative solution is the molecular condensate wavefunction.

Fig. 6. Bright soliton solutions of equations (5).

For equation (21) to work as a solution to equations (5), the conditions of equations (15)

must be met; especially, the three g parameters must satisfy the specified relationship; otherwise,

consistent solutions such that ΨM = ±ΨA will not be obtained. Furthermore, equation (21)

assumes that the constant a is real. Thus the following inequality must be satisfied:
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The preceding inequality gives the lower bound for ν. The upper bound for ν is zero; because μ is 

negative and μ = 2ν/3, ν must also be negative. If ν were equal to its lower bound, the bright 

soliton solution would be a constant; the potential energy function for this situation is shown in

Fig. 7. The solution will be located at the maximum that is found to the right of the origin.

Fig. 7. Potential energy function at critical ν.

Comparison of Atomic-Molecular and Molecular Condensate Energies

Although it is very difficult in general to find the constant solutions of (12), it is not

necessary to find the exact solutions to compare energies of atomic-molecular condensates with

molecular condensates. For constant solutions, the energy functional (equation (1)) becomes,
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Now let us denote the total density of the condensate as ρ2. Then we have,
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This value for the square of the atomic wavefunction may be substituted into equation (23). We

know that 2/M . Thus, we can define a new variable, x, such that 2/xM . Thus

11 x . Thus, the energy function is now a quartic polynomial function of x. The problem is

to find the value of x that will minimize this polynomial. Actually finding this value of x requires

finding the critical points of the polynomial and comparing the values of E(x) at these points



with the values of E(x) at -1 and 1, the endpoints. It can be shown that if the coefficient of the

quartic term of the polynomial ( AM
M

A g
g

g 2
2

2
4

4
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energy will occur at the endpoints when
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This suggests that the pure molecular condensate only appears when ν is sufficiently small. If the 

coefficient of the quartic term is negative, however, it is much more difficult to find the

conditions for the presence of the molecular condensate.

The energy of the bright soliton will be finite, since this solution goes to zero at ±∞. Its

energy can be calculated from equation (1). For the case of no interactions (equation (20)), the

energy turns out to be:
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The particle number corresponding to the bright soliton is:

2
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Now, suppose that we also have a molecular condensate of constant density that exists only over

a finite length L. We require that LΨM
2 = N, the same particle number as the atomic-molecular

condensate. The energy of the molecular condensate is then found by evaluating the integral of

(11) from 0 to L. The result is,
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This energy is somewhat greater than the energy of the atomic-molecular soliton, which means

that the atomic-molecular soliton is favored over the molecular condensate. Similar comparisons

can be done when interactions are included, and the result is the same: the atomic-molecular

soliton is favored over a molecular condensate.

Numerical Solutions

None of the solutions of (5) that have been presented so far are general solutions to the

system of equations. In fact, there are only a few special cases in which it is possible to obtain

analytical solutions to the equations. There are several methods by which numerical solutions

can be obtained. The technique that has been used to study equations (5) first of all notes that the

equations can both be written in the following manner: L(u) = N(u, v); here, u and v are

wavefunctions, L is a linear operator, and N is a non-linear operator. Specifically, equations (5)

may be represented as follows:
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The linear operators may both be represented as matrices; let us denote these matrices as LA and

LM, respectively. The non-linear operators may be denoted as NA(ΨA,ΨM) and NM(ΨA,ΨM).

Equations (29), then, become,
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Here, the wavefunctions are both discretized, that is, they are both column vectors of values at

discrete points along the x-axis.



What is done first is to make an initial guess as to the shape of the wavefunctions; for

instance, if one is looking for bright soliton solutions to the equations, it is convenient to choose

as an initial waveform a triangular shape, or perhaps a Gaussian distribution. To obtain the next

approximation to the exact solution, one first multiplies both sides of the equations in (30) by the

inverses of the linear operators:
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The u functions are not the actual wavefunctions. It would indeed be possible to have these u

functions be the next approximations to the wavefunctions, but if this is done, these solutions

will tend to either diverge or go to zero as n increases. We assume, then, the following:
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αand βare simply constants; they function as rescaling parameters. To determine values for α

and β, we impose the following conditions:
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When these integrals are evaluated, the result is a pair of coupled algebraic equations in αand β.

These equations can then be solved, either analytically or numerically.

The process described above is then repeated for as many times as needed. The goal is to

obtain a solution that does not change between consecutive iterations. This numerical method

can work very nicely to give solitonic solutions of equations (5). In fact, it can be used to



produce solitonic solutions in which ΨA and ΨM are not proportional to each other. Fig. 8 shows

solitonic wavefunctions for which μ ≠ 2ν/3.

Fig. 8. Numerical soliton solution of equations (5)

The disadvantage of this numerical technique is that it requires the solution of coupled algebraic

equations. In general, there will be several solutions to these equations, and some of them may

be complex. In fact, the specific problem that has been encountered is the situation in which all

solutions are complex except one ((0, 0) will always be a solution of these equations, but we are

not looking for a solution in which both wavefunctions are equal to zero; we do not need

numerical techniques to find this solution). As of yet, this problem has not been resolved.

Results and Predictions

The results of this study may be summarized as follows. First, it is possible to find

constant solutions of equations (5) in three distinct phases: both wavefunctions equal to zero,

both wavefunctions non-zero, or the atomic wavefunction equal to zero and the molecular

wavefunction non-zero. If the detuning is greater than the critical value given in (25), the atomic-

molecular mixture will be favored, as long as the quantity AM
M

A g
g

g 2
2

2 is positive. Second,

in the case of no interactions, it is possible to find bright solitons analytically when the detuning



is negative and when μ = 2ν/3. These solitons are energetically favored over the molecular 

condensate phase. Finally, if interactions are present, analytic bright solitons exist if the

conditions of (15) hold, and if 0
3

4 2

AMA gg
. These solitons are also favored

energetically over the molecular condensate phase. If ν is not negative, or the conditions of (15)

do not hold, solitonic solutions can still be found, but they have not been studied thoroughly

enough to determine which phase is favored under these conditions.

Finally, we would like to estimate the actual experimental value for the critical detuning

given in (22) for 87Rb. For this isotope, the Feshbach resonance occurs at a magnetic field of

685.43 G [1]. According to [1], we can calculate the interaction and Feshbach coupling

parameters as follows:
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Here, μB is the Bohr magneton. a is the scattering length for atom-atom collisions, B is the

width of the Feshbach resonance, and is the difference between the magnetic moments of

the atoms and molecules. These definitions for the interaction and Feshbach parameters leads to

a value of the critical detuning of J104.7 30 . The difference in energy due to different spins of

the free atoms and molecules in a magnetic field is BBsE , where s is the spin, in this case ½.

The calculated value of the detuning, then, implies a shift in the magnetic field of 0.016 G; this

value is approximately equal to the width of the Feshbach resonance, ΔB.
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