.

Liquid Crystals (LCs)

- 0 O-

$$
\hat{n} \equiv-\hat{n}
$$

The Order Parameter

Surface Anchoring

Surface treatment allows one to control orientations of LC molecules at the surface of a solid substrate (glass plate); ensemble of chains - homeotropic alignment (\perp to suface) using surfactant, polyimide, or silane molecules
microgrooved surface homogeneous alignment (//) rubbed polyimide

Planar

chose alignment planar
homeotropic
tilted
tilted

homeotropic

Alignment by external fields: IN-PLANE SWITCHING

Basics of azo-benzene dye molecules and their sensitivity to light

Photoisomerized dye

- Azobenzenes molecules reorient perpendicular to the polarization of the exciting light due to isomerization process.
- The methyl red derivative (DMR) is used to form self-assembled monolayers (azoSAMs).

DMR

Motivation and Procedure for Producing Monolayers

-Thorough cleaning of glass slides.
-Soap and water
-Sonicate in IPA, Acetone, and DI water

- Submerge and bake in Pirrahna at $90^{\circ} \mathrm{C}$
-Submerge in DMR solution and bake at $45^{\circ} \mathrm{Cx}$
- Azo-SAM can be used to align liquid crystals (LCs).

Create desired boundary conditions

$\odot_{\mathbf{P}}$

Applying and Aligning Monolayers

Clean Glass

Or

Glass with Monolayer

Light Polarization

$(1-10) k H z$

Equipment Used

-Laser power used
~. 2 mW at objective

- $\lambda=488 \mathrm{~nm}$

Create desired boundary conditions

- Use confocal microscope to write on two slides to create desired boundary conditions.

AZO SAM
$\square \bullet \quad \bullet$

How Twisted Nematic Display Works?

"Bright" state can correspond to field-on state and also to field-off state, depending on the design:

E -field is OFF

Note that two different polarization modes can be used

Rotation \& Translation by laser polarization

-Power ~ . 2 mW
-Adjusted polarization by about 90°

Moving particles by realigning LCs

-Power ~ . 2 mW
-Green area is uniformly aligned

Conclusions

-Monolayers provide yet another means of liquid crystal alignment.
-Monolayers affect the bulk of liquid crystal material by defining condition only at the surfaces.
-Dynamic alignment/realignment
-Monolayers used with tightly focused laser beams allow for creation of micro-scale patterns with increased resolution.
-Of interest for fundamental science - unlimited \# of boundary conditions
-Particles and cluster movable at powers ~10-100 times smaller than those used in optical laser tweezers.

Acknowledgements

REU Program, Dennis Gardner, Gabriel Stockdale
Yue Shi, Eva Korblova, David Walba Department of Chemistry and Biochemistry

Liquid Crystal Materials Research Center University of Colorado, Boulder, CO 80309, USA.

Chemistry Department, Cal Poly Pomona
Hector C. Mireles
Physics Department, Cal Poly Pomona

