Lasers & Photons on Demand: Exploring the Atomic Applications of Strontium

David Carlson

JILA, University of Colorado

REU Final Presentation August 7, 2008

Table of Contents

- 1 Introduction
- 2 Strontium Laser
- **3** Photons on Demand
- 4 Conclusion

Why Strontium?

Photons on Demand

- Extremely long lifetime optical transition
- ${}^{1}S_{0} {}^{3}P_{0}$ transition is doubly forbidden
- Linewidth is extremely narrow (mHz vs. MHz)
- Used to drive atomic clock here at JILA

Basic Theory

• Atom - Field interactions

Basic Theory

- Atom Field interactions
- Coherence time

Basic Theory

- Atom Field interactions
- Coherence time
- Ring laser

wants Elegations vis. 3

Describing the Atoms

- State vector for two-level atoms: $|\psi(t)\rangle = c_a(t)|a\rangle + c_b(t)|b\rangle$
- Density matrix

$$\rho = \left(\begin{array}{cc} c_{a}c_{a}^{*} & c_{a}c_{b}^{*} \\ c_{b}c_{a}^{*} & c_{b}c_{b}^{*} \end{array} \right) = \left(\begin{array}{cc} \rho_{aa} & \rho_{ab} \\ \rho_{ba} & \rho_{bb} \end{array} \right)$$

Density Matrix Equations of Motion

$$\begin{split} \dot{\rho}_{aa} &= W' \rho_{bb} - \gamma \rho_{aa} - \frac{i}{\hbar} V'_{ab} e^{i(\omega_0 - \omega)t} \tilde{\rho}_{ba} + \frac{i}{\hbar} V'_{ba} e^{-i(\omega_0 - \omega)t} \tilde{\rho}_{ab} \\ \dot{\rho}_{bb} &= -W' \rho_{bb} + \gamma \rho_{aa} + \frac{i}{\hbar} V'_{ab} e^{i(\omega_0 - \omega)t} \tilde{\rho}_{ba} - \frac{i}{\hbar} V'_{ba} e^{-i(\omega_0 - \omega)t} \tilde{\rho}_{ab} \\ \dot{\tilde{\rho}}_{ab} &= -\gamma_{ab} \tilde{\rho}_{ab} + \frac{i}{\hbar} e^{i(\omega_0 - \omega)t} V'_{ab} (\rho_{aa} - \rho_{bb}) \end{split}$$

Describing the Light Field

Start with a classical wave

$$E(z,t) = \frac{1}{2} \sum_{n} E_n(t) e^{-i(\omega_n t + \phi_n)} U_n(z) + c.c.$$

After some math

Equation of Motion for Field

$$\dot{E}_n = -rac{\omega}{2Q_n}E_n - rac{\omega}{2\epsilon_0}\mathrm{Im}(2pe^{-i(kz+(\omega_0-\omega)t)}\widetilde{
ho}_{ab})$$

Adiabatically Eliminating the Field

- Field relaxes much faster than the atoms
- Set $\dot{E}_n = 0$ and find steady-state solution

A Promising Outlook

- Laser linewidth 16 orders of magnitude smaller than normal!
- Preliminary calculations show such a system is feasible
- Should be realizable with currently available technology
- Could be built in JILA in the near future

What Are Photons On Demand?

- Want an exact number of photons at a precisely determined time
- Applications in quantum networking and cryptography

Our Approach

- Atoms arranged in cavity
- On-resonant laser pulse triggers stimulated emission
- ullet Photons decay out of cavity at rate κ

Hamiltonian Operator

Schrödinger Equation

$$\frac{\partial \psi}{\partial t} = \frac{1}{i\hbar} H \psi(t)$$

- Need to determine Hamiltonian for each individual component in the system.
 - Atoms H_a
 - Light field H_f
 - Interaction between atoms and field H_{a-f}
 - Pump laser $H_{pump}(t)$
- $\bullet \ \ H_{total}(t) = H_a + H_f + H_{a-f} + H_{pump}(t)$

The Density Matrix ρ

- Necessary to represent damping
- ullet Impossible to know state vector ψ exactly
- Only know probabilities of states
- Density matrix used to represent this mixture

Master Equation

$$\frac{\partial \rho}{\partial t} = \frac{1}{i\hbar} (H(t)\rho(t) - \rho(t)H(t)) - \frac{\kappa}{2} (a^{\dagger}a\rho(t) + \rho(t)a^{\dagger}a - 2a\rho(t)a^{\dagger})$$

Time Evolution of Light Field

- With no atoms, pulse enters cavity and decays
- With atoms, pulse initiates large wave of photons into cavity
- Noise from pulse is negligible

Photon Probabilities

The Future

- Proof-of-concept results from both projects
- Further, more detailed simulations will be required
- Current technology should be sufficient to realize both systems

Introduction Strontium Laser Photons on Demand Conclusion

Acknowledgements

- Murray Holland
- Dominic Meiser