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Abstract. Crowded environments modify the diffusion of macromolecules,
generally slowing their movement and inducing transient anomalous subdiffusion.
The presence of obstacles also modifies the kinetics and equilibrium behavior of
tracers. While previous theoretical studies of particle diffusion have typically
assumed either impenetrable obstacles or binding interactions that immobilize
the particle, in many cellular contexts bound particles remain mobile. Examples
include membrane proteins or lipids with some entry and diffusion within
lipid domains and proteins that can enter into membraneless organelles or
compartments such as the nucleolus. Using a lattice model, we studied the
diffusive movement of tracer particles which bind to soft obstacles, allowing tracers
and obstacles to occupy the same lattice site. For sticky obstacles, bound tracer
particles are immobile, while for slippery obstacles, bound tracers can hop without
penalty to adjacent obstacles. In both models, binding significantly alters tracer
motion. The type and degree of motion while bound is a key determinant of the
tracer mobility: slippery obstacles can allow nearly unhindered diffusion, even
at high obstacle filling fraction. To mimic compartmentalization in a cell, we
examined how obstacle size and a range of bound diffusion coefficients affect
tracer dynamics. The behavior of the model is similar in two and three spatial
dimensions. Our work has implications for protein movement and interactions
within cells.
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1 Introduction

The diffusion of macromolecules in crowded envi-
ronments is generally slowed relative to the un-
crowded case, and particle motion can undergo tran-
sient anomalous subdiffusion [1]. The motion of lipids
or macromolecules within biological membranes can
be affected by crowding [2–9], because the membrane
contains both macromolecules and inhomogeneities in
membrane composition [10, 11]. In the cell interior,
macromolecules, organelles and other cellular struc-
tures can inhibit motion, or in contrast, enhance sam-
pling of non-crowded regions [12]. Biological crowders
can also contain interaction sites which further mod-
ify the macromolecular motion [13]. The kinetics and
equilibrium behavior of interactions between mobile
proteins can be modified by crowding [14, 15]. The
magnitude of the effects of crowding on macromolecu-
lar motion and reactions is important to determine the
limiting rate of biological processes such as signaling
receptor activation.

Because of its biological importance, the effects of
crowding on diffusion and macromolecular interactions
have seen significant experimental and theoretical
work [16, 17]. Lattice gas models have been used
to demonstrate the effects of crowding [18, 19],
binding [20, 21], and repulsion [22] on the diffusion
of tracer particles. These effects—including transient
anomalous diffusion at short times and hindered
normal diffusion at long times—have been studied for
both immobile [23] and mobile obstacles [24,25].

Although most theoretical work has focused on
anomalous diffusion in crowded systems made up of
impenetrable obstacles with attractive or repulsive
surfaces [18–20, 22, 26], there is growing evidence of
the importance of soft compartments and barriers in
biological systems. In membranes, lipids can be only
partially excluded from lipid rafts or domains. When
they do interact, they can still diffuse within them
[27–30]. Lipid motion can be hindered, though not
stopped, near α-synuclein protein aggregates [31]. For
all of these cases, theoretical considerations of a two-
dimensional system should include the effects of the
soft interaction potentials and bound-state mobility.

Inside the cell, intrinsically disordered or low-
complexity domains can act as soft obstacles or wells,
with rapid diffusion within the wells. Membrane-less
organelles spontaneously form from low-complexity
domain proteins. They are typically highly dynamic

assemblies [32], which show fast intra-particle diffusion
times, and allow rapid entry and exit of constituents
[33]. Proteins which interact with intrinsically
disordered proteins can still diffuse during the binding
interaction [34, 35]. This effect may be particularly
pronounced in the central channel of the nuclear pore
complex, which contains a high density of binding
sites on intrinsically disordered domains. Recent
simulation work suggests that the disordered protein
binding pockets can exchange on transport factors
[35], providing a clear mechanism for mobility while
bound to an obstacle. Particles are weakly excluded
from individual disordered protein chains due to the
lowering of the polymer chain entropy [36], but are
expected to allow other macromolecules to enter, and
pass through, the space that they occupy. The
increasingly recognized importance of proteins which
are intrinsically disordered or contain low-complexity
domains within their assemblies warrants a more
careful consideration of the differences between the
previously well-studied models, in which binding
immobilizes the bound species, and a model which
includes soft interactions and obstacles or barriers in
which the bound species may remain mobile.

Motivated by the biological importance of binding
interactions which can retain mobility of the bound
particle, we studied a minimal model with bound tracer
mobility (figure 1). In our model, tracer particles move
on a 2D or 3D lattice in the presence of immobile
obstacles, to which the tracers can bind. A primary
distinction between our model and many others that
consider binding or adhesion is that others typically
consider adhesion between a tracer and an adjacent
hard obstacle, in which there is no overlap between
tracers and a hard obstacles core [20, 22, 24]. Here,
obstacles are soft: tracer particles can overlap with
obstacles, with an energy penalty (or gain) ∆G upon
moving to a lattice site occupied by an obstacle.
Unlike previous work modeling lipid rafts, we closely
examine the dependence on binding, instead of just
pure exclusion or free entry into lipid regions [4].

To understand the effects of bound mobililty,
we first consider the limits of ‘sticky obstacles’, in
which tracers are immobile while bound, and ‘slippery
obstacles’, in which tracers are mobile while bound.
We use lattice Monte Carlo methods to explore a
range binding energy and obstacle filling fraction. We
also examine the effects of semi-sticky obstacles—i.e.,
intermediate bound diffusion coefficient—and obstacle
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Figure 1. Model schematic. Tracers (colored circles) hop
on a lattice of empty sites (white squares) and obstacles (gray
squares). Tracer binding with a soft interaction potential allows
them to overlap with obstacles (top). For sticky obstacles,
the only allowed moves of a bound tracer are to empty sites
(unbinding). For slippery obstacles, tracers can hop to other
obstacles while remaining bound. Arrows denote possible moves
and P the probability that a given move is accepted.

size effects, which demonstrates how diffusion is
altered in a crowded environment with compartments
with different properties—such as a cell [21]—is
altered. Our results demonstrate how binding and
bound-state motion independently impact particle
dynamics, including long-time normal diffusion and
anomalous diffusion. Bound tracer mobility increases
the long-time diffusion coefficient, reduces the transient
anomalous time, and eliminates caging for all times
typically observed above the percolation threshold.
These results demonstrate that mobility of bound
particles can benefit biological systems by allowing
mobility even in highly crowded environments.

2 Model

Our model seeks to build on stochastic lattice-gas
models that have been important to understanding
tracer dynamics in the presence of immobile and
mobile hard obstacles [18], anomalous subdiffusion
[19], and effects of binding on diffusion [20]. Saxton
showed that the tracer diffusion coefficient drops
to zero at the percolation threshold, the critical
concentration of obstacles at which a continuous path
of vacancies through which a tracer can move no longer
exists. Above this percolation threshold, diffusion is
anomalous at long times. The effects of tracer and
obstacle size [26, 37, 38] and adhesion and repulsion to
sites adjacent to obstacles [22] on transient subdiffusion
and long-time diffusion have been studied. Extensions

Figure 2. Mean-squared displacement 〈r2〉 divided by time
delay t as a function of time delay t for (a) impenetrable
obstacles, (b) repulsive slippery obstacles (∆G = 2), (c)
repulsive sticky obstacles (∆G = 2), and (d) attractive sticky
obstacles (∆G = −2). Different colors correspond to different
filling fraction ν. Curves with non-zero slope indicate anomalous
diffusion, and the horizontal asymptote indicates the long-time
diffusion coefficient. Each curve represents an average over
tracers, independent time windows, and obstacle configurations.

to mobile obstacles which interact with each other have
demonstrated how obstacle clustering dynamics can
influence the diffusivity of tracers [39]. Numerically
exact methods for calculating diffusion coefficients
using the Nernst-Einstein relation [40,41] and Markov
chains [42] have been implemented as a different
approach to analyzing these systems; the Nernst-
Einstein approach can lower the computational cost
of measuring diffusion coefficients for lattice gases [37].
Protein motion in polymer networks has been studied
using random-walk and self-avoiding-chain models for
immobile [43] and mobile [24, 44] hard chains. Studies
of chains with binding sites found that modeling
chain dynamics allowed a mapping onto randomly
distributed obstacles with an effective volume, and
showed how sliding along a defined chain can effect
tracer dynamics [44, 45]. In some previous work,
the effects of binding and sliding while bound were
entangled because both effects were encoded by a single
parameter [44, 45]. Domains with different diffusion
coefficients and sizes—to model lipid rafts—have been
studied, but the analysis only included total or no
exclusion although it was noted that binding effects
could play a large role [4].

In our model, tracer particles undergo a random
walk on a square lattice and interact with immobile
obstacles. The interaction is characterized by a binding
free energy; for simplicity, we neglect any additional
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Figure 3. Top panel: Illustration of fitting procedure, showing 〈r2〉/t vs time delay t for simulation data (blue), line fitted to
horizontal asymptote (red dashes), line tangent to point of maximum absolute slope of the curve (red dash-dots), and anomalous
time ta (black dots) for different parameters. Bottom panel: instantaneous scaling exponent α vs time delay t. (a, d) Slippery
obstacles with ∆G = 1, ν = 0.95: normal diffusion occurs for all measured time. (b, e) Sticky obstacles with ∆G = 2, ν = 0.45. (c,
f) Sticky obstacles with ∆G = −5, ν = 0.50.

activation barrier. The characteristic binding free
energy change of a tracer that hops from an empty site
to an obstacle site is ∆G (in units where kBT = 1).
We consider both attractive (∆G < 0) and repulsive
(∆G > 0) obstacles. We use the Metropolis algorithm
[46] to accept or reject candidate binding (probability
PB) and unbinding (probability PU ) events. Each
tracer occupies a single site lattice site, but the obstacle
size is varied to represent domains of characteristic
size. Obstacles are squares with sides of length lobst,
measured in units of the lattice spacing.

To study the effects of tracer particle motion while
bound, we considered the limits of perfectly sticky and
slippery obstacles (fig. 1), as well as the intermediate
‘semi-slippery’ case. In all models, obstacles are soft,
so that tracers overlap with obstacles when bound.
For sticky obstacles, no hopping between obstacle sites
can occur, but tracers can exit an obstacle in any
direction that would move the tracer to an unoccupied
site. For slippery obstacles, tracers can hop between
adjoining obstacles while remaining bound. In the
limit of perfectly slippery obstacles, in which bound
motion is identical to unbound motion, there is no
difference in hopping rates between free and bound
tracers. For semi-slippery obstacles, we vary the bound
diffusion coefficient.

2.1 Simulation methods

In our kinetic Monte Carlo scheme, at each time
step a tracer attempts a move in a randomly chosen
direction. Moves from empty → empty are always
accepted, empty → obstacle moves are accepted
with probability min(e−∆G, 1), obstacle → empty
moves are accepted with probability min(e∆G, 1),
and obstacle → obstacle moves are always
accepted/rejected if obstacles are slippery/sticky
(fig. 1); for semi-slippery obstacles, the acceptance
probability is Dbound/Dfree. If a tracer’s move is
rejected, it remains immobile for that time step. We
assume noninteracting tracers.

Initially, obstacles were uniformly randomly
placed on the lattice, at the specified filling fraction,
without overlaps. Next, tracers were randomly placed
on obstacles and empty sites at their equilibrium
occupancy, as determined by the filling fraction of
obstacles ν, and binding energy ∆G. The fraction
of tracers on obstacles is proportional to the obstacle
filling fraction times the Boltzmann factor, νe−∆G,
while the fraction of tracers on empty sites is
proportional to the fraction of empty sites, (1 − ν).
The equilibrium fraction of tracers on obstacles of size
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1 is then

fo =
νe−∆G

νe−∆G + (1− ν)
. (1)

Using an initial fraction of tracers bound to obstacles
determined from fo avoids the time required for
binding equilibration in the simulations, ensuring
that mean-squared displacement measurements are
independent of a time origin.

We performed 2D simulations with 200 tracers
on a 256 × 256 periodic lattice for 105 − 107.5 time
steps, with recording interval of 10 − 100 steps. For
each parameter set (determined by filling fraction and
binding energy), we averaged over 96 separate obstacle
configurations. We varied ν from 0 to 1 and ∆G from
−5 to 10. 3D simulations used similar parameters with
a 256× 256× 256 periodic lattice. In the semi-slippery
case, we varied the ratio of bound to free diffusion
coefficient Dbound/Dfree between 0 (perfectly sticky)
and 1 (perfectly slippery) in steps of 0.2, for binding
energies ∆G = 1, 2, 3,∞ for two filling fractions,
ν = 0.3 and 0.6. When varying obstacle size, we used
square obstacles with the length of a side, lobst, equal
to odd values from 1 to 15.

2.2 Trajectory analysis

We determined tracer mean-squared displacement
(MSD) as a function of time delay by averaging
over all tracers, 100 randomly selected independent
time origins, and obstacle configuration. For long
time delays for which 100 independent time intervals
were not available, we averaged over the maximum
number of independent time intervals. As previously
mentioned, averaging over time windows improves our
statistics; note that the time origins are not unique,
since the placement of tracers in their equilibrium
binding distribution ensures that there is no initial
binding equilibration time. We have verified that that
are no aging effects [47, 48], i.e., MSD measurements
that depends on simulation time, in our model (data
not shown).

We sought to quantify the effects of binding and
obstacle filling fraction on tracer mobility. In systems
with either purely Fickian diffusion or particular
obstacle geometry, the mean-squared displacement
grows as a power law in time:

〈r2〉 = 2dDtα, (2)

where 〈r2〉 is the ensemble-, time-origin-, and obstacle-
configuration-averaged mean-squared displacement, d
is the spatial dimension, D is the diffusion coefficient,
α is the diffusion scaling exponent, and t is the
time delay. This fractional diffusion equation has
been studied extensively [49], both because it emerges
from certain microscopic theories and as a means
to quantify anomalous random walks. Fractional

diffusion has been experimentally measured in cells,
using fluorescence recovery after photobleaching [50],
fluorescence correlation spectroscopy [51], and single-
particle tracking [52]. For hard obstacles, α reflects the
non-homogeneity and fractal structure of a cluster. In
this case, α can be thought of as a measure of a local
landscape, in which obstacles have the possibility of
trapping a tracer and introducing memory effects into
the system. The value of α does not quantify the time
it takes to escape a trapping cage; but α < 1 suggests
the possibility that the landscape can cage tracers. In
the α→ 0 limit, a tracer is fully caged, and the α→ 1
limit represents Fickian diffusion.

However, many systems have more complex
dynamics that are not power law. For example, tracer
dynamics can be transiently anomalous: subdiffusive
on short time scales and Fickian on longer time
scales (fig. 2b). The dynamics can be quantified
using a phenomenological approximation in which the
exponent α is treated as time dependent [19,26,37,38,
42, 53]. Thus, r2 ∼ tα holds only over particular time
scales.

For non-power-law dynamics, we can apply
equation 2 locally, with a phenomenological, time-
varying exponent. Then α(t) is defined by local fitting

to the the logarithm of 〈r
2〉
t :

log

(
〈r2〉
t

)
= log (2dD) + (α(t)− 1) log (t) . (3)

so that α(t) − 1 is the local slope of the 〈r
2〉
t versus

t curve on a log-log plot. As seen in figs. 2 and 3,
the instantaneous effective α varies with delay time.
Thus, a power-law MSD scaling with time, such as
can arise from fractional Brownian dynamics, does not
encompass the complexity of our crowded diffusion
model, as has been found previously [8, 38].

At short time, our model typically exhibits
anomalous diffusion. However, in some conditions, the
short-time behavior is diffusive, with an intermediate
anomalous regime. We defined αmin as the minimum
instantaneous value of α (the most anomalous
exponent). We characterized the transition between
short- or intermediate-time anomalous diffusion and
long-time normal diffusion by the time scale ta,
determined as the intersection of the horizontal long-

time asymptote of 〈r
2〉
t with a line tangent to the

point of the maximum rate of decrease of this curve
(fig. 3b,c). We found that this transition time could
be robustly determined for a wide range of diffusion
coefficients and anomalous behavior. We denote ta
the anomalous time. Qualitatively, it is the crossover
time from short-time subdiffusion to long-time Fickian
diffusion. While αmin characterizes how trapped a
tracer is, ta quantifies how long it takes a tracer to
escape a cage.
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Figure 4. Sticky obstacles of size 1 in 2D. (a, d) Diffusion coefficient D∗, (b, e) anomalous time ta, and (c, f) minimum scaling
exponent αmin as a function of obstacle filling fraction ν for positive (top) and attractive (lower) binding energy. Note that points
for ∆G = 10 are partially hidden behind ∆G = ∞. The approximate locations of the critical occupancies νl and νu are indicated
with gray dotted lines.

We defined the long-time Fickian diffusion coeffi-
cient as

D = lim
t→∞

〈r2〉
2dt

. (4)

All diffusion coefficient measurements are expressed in
terms of the scaled diffusion coefficientD∗ = D

D0
, where

D0 = l2

2dτ is the diffusion coefficient in the absence of
obstacles, where l is the distance between lattice sites
(here defined to be 1), and τ the time interval between
steps (also set to 1).

In some cases, we were unable to determine all
of D∗, αmin, and ta. For some parameter sets, the

slope of r2

t vs. t on a log-log plot approached a non-
zero constant, indicating that diffusion was anomalous
over all measured time delays, so that the Fickian
diffusion coefficient was not well-defined. For other
parameter sets, the r2

t versus t curve did not reached
a clear asymptote during the simulation time. We
therefore could not determine D∗, but could measure
αmin. When tracer diffusion was normal over all or
nearly all measured time delays, neither αmin nor ta
were well-defined, but D∗ could be measured.

3 Sticky soft obstacles

We initially focus on the limit of perfectly sticky
obstacles of size 1, to determine the effects of stickiness,

filling fraction, and binding energy on tracer motion.
We varied parameters over a wider range for the 2D
model, with a comparison to 3D results for some
parameter sets.

Figure 5. The two types of percolation threshold in our lattice
model: the lower critical occupancy νl (left) and the upper
critical occupancy νu (right). For the lower critical occupancy,
which is the standard percolation threshold, the percolating
network is the obstacles. At the upper critical occupancy,
the percolating network is the interface between two or more
obstacles. The barrier to tracer motion is shown as a black lines;
obstacle-obstacle boundaries which cannot be crossed by a tracer
in the sticky model are shown in red. Without binding, tracers
cannot pass through the lower percolating network. If they can
bind, tracers can ‘hop through’ the lower percolation barrier with
or without bound motion.
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For sticky obstacles, the motion of a bound tracer
to an adjacent obstacle is prohibited. This could
occur, for example, because the net free energy cost
of binding to an obstacle is a result of an attractive
binding interaction, with a high free energy barrier to
moving to an adjacent site. Here, we consider the limit
that the free energy cost of moving to an adjacent
obstacle is so large that it approaches infinity. This
situation provides an important point of comparison
to explicitly test the effects of bound-state diffusion on
tracer behavior.

We separately consider repulsive and attractive
obstacles (fig. 4). Note that we include the case
∆G = 0, that is, where the binding interactions
are neither attractive nor repulsive, but still block
moves to adjacent obstacles. We define the lower
critical occupancy νl as the filling fraction at which
the diffusion is non-Fickian for all time scales for
impenetrable obstacles (∆G = ∞). In the limit of
a hard repulsive obstacle, D∗ decreases with filling
fraction, and approaches zero at the percolation
threshold expected for hard obstacles on a square
lattice, νl ≈ 0.4 [54], where ta diverges [18]. The
lower critical occupancy is the percolation threshold,
at which there is no longer a continuous path of empty
sites (fig. 5).

For finite binding free energy in our model,
Fickian diffusion can still occur above the percolation
threshold νl because soft binding allows tracers to ‘hop
through’ single obstacles via binding and unbinding.
Without soft binding of the type we consider, obstacle
percolation would prevent a tracer from moving
between vacancy clusters. In other words, tracers that
start in an area caged by obstacles are stuck there.
With soft binding, tracers that start in a cage can
hop onto an obstacle and then hop off into a new
vacancy cluster. For soft binding interactions and
sticky obstacles, there is an upper critical occupancy
νu ≈ 0.72 at which the long-time diffusion coefficient
approaches zero irrespective of binding energy (fig. 4).
Above νu, tracers become caged regardless of the
binding kinetics. Therefore, there is a different
type of percolating network above the upper critical
occupancy: the percolation of the inter-obstacle
boundary (fig. 5). At the upper critical occupancy,
there is a second adjacent obstacle preventing the
tracer from ‘hopping through.’ Note that as expected,
the transition time ta appears to diverge on the
approach to the upper critical occupancy (fig. 4). We
are unaware of a theoretical value for this percolating
density, but our results suggest its approximate value
is 0.72 in 2D (fig. 4).

Intermediate repulsive binding energy leads to
intermediate behavior, as expected. For strong
repulsion, e.g., ∆G = 5, D∗ remains small, though

clearly non-zero, up to the upper critical occupancy,
while ta monotonically increases until it diverges at
νu.

Anomalous dynamics appear in the slope of 〈r2〉/t
on a log-log plot. The most anomalous behavior occurs
when the scaling coefficient α reaches its smallest value,
αmin. We find that αmin decreases with filling fraction
and binding energy (fig. 4c). Adding more obstacles
and increasing the repulsion causes greater hindrance
of tracer motion. We note that αmin ≈ 0.7 near νl

for impenetrable obstacles, as found previously [4, 19].
Finite repulsive binding energy leads to a smaller
exponent (αmin < 0.7) than the infinite case at filling
fraction above νl. For lower values of ∆G, the scaling
coefficient does not go to zero at the upper critical
occupancy νu. Note that the sharp cutoff with filling
fraction occurs because we did not collect data past νu.

Sticky obstacles with attractive binding interac-
tions show a more rapid falloff in the diffusion coeffi-
cient and larger anomalous time (fig. 4). The upper
critical density νu ≈ 0.72 is in the same vicinity as
for ∆G > 0. The dependencies of the diffusion coeffi-
cient on filling fraction for positive and negative bind-
ing energy are similar for low magnitude of the bind-
ing energy, but the diffusion coefficient falls off more
rapidly with filling fraction for highly attractive obsta-
cles. This occurs because an attractive obstacle con-
fines a tracer in one position until it escapes, while
a repulsive obstacle only impedes tracer motion for
one time step. Therefore, repulsive interactions require
several obstacles to transiently confine a tracer, while a
single attractive obstacle can cause confinement. Note
that we did not include large attractive binding free
energy in our analysis.

For attractive obstacles, αmin is independent of
binding energy over the range we studied (fig. 4).
The characteristic time for a tracer to unbind from
an attractive obstacle depends on the binding energy,
leading to the energy-dependent variation in the
anomalous time we observe. However, it is properties
of the obstacle arrangement, rather than of binding,
which determine the shape of the MSD curve, and
therefore the αmin. The minimum anomalous exponent
occurs when tracers are, on average, confined to a cage
formed by inter-obstacle boundaries and single-site
wells. Therefore, the minimum anomalous exponent
is approximately the same for all binding energy, but
varies with filling fraction.

We note that the sticky soft obstacle model
studied here does not simply map to the impenetrable
obstacles at a lower effective obstacle filling fraction.
Such a mapping cannot be made because tracers can
‘hop through’ single obstacles via binding, while never
being able to hop between obstacles. Sticky obstacles
allow for move attempts—and blocks—that would
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Figure 6. Sticky obstacles of size one in 3D. (a) Diffusion coefficient D∗, (b) anomalous time ta, and (c) minimum scaling exponent
αmin as a function of obstacle filling fraction. The approximate locations of the critical occupancies νl and νu are indicated with
gray dotted lines.

Figure 7. Slippery obstacles in 2D. (a, d) Diffusion coefficient D∗, (b, e) anomalous time ta, and (c, f) minimum scaling exponent
αmin as a function of obstacle filling fraction ν for positive (top) and attractive (lower) binding energy. The approximate locations
of the critical occupancies νl and νu are indicated with gray dotted lines.

never be attempted in the impenetrable case.

3.1 Sticky soft obstacles in 3D

We extended our study of single-site sticky repulsive
obstacles to three dimensions, to determine whether
the spatial dimension plays a key role in the tracer
behavior (fig. 6). The results are qualitatively the same
as the 2D model (fig. 4). However, in 3D, the lower
and upper critical occupancies appear at higher filling
fraction: a higher obstacle filling fraction is required
to percolate a 3D lattice. The anomalous time is
also typically smaller in 3D. For soft sticky obstacles,

increasing the spatial dimension does not change the
qualitative features of our model, but does shift the
critical occupancies and anomalous time.

4 Slippery soft obstacles

When obstacles are perfectly slippery, bound tracers
can hop to adjacent obstacles without penalty. Our
model of perfectly slippery obstacles contains an
occupancy-energy inversion symmetry: the dynamics
are invariant to changing the filling fraction by
switching obstacles and empty sites (ν → 1− ν) while
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Figure 8. Slippery obstacles of size 1 in 3D. (a) Diffusion coefficient D∗, (b) anomalous time ta, and (c) minimum scaling exponent
αmin as a function of obstacle filling fraction ν. The approximate locations of the critical occupancies νl and νu are indicated with
gray dotted lines.

simultaneously switching the sign of the binding energy
(∆G → −∆G). In other words, a low filling fraction
of attractive obstacles is equivalent to a high filling
fraction of repulsive barriers (fig. 7).

Slippery obstacles remove the obstacle percolation
threshold for all measured binding energies (fig. 7).
The curves for ∆G = 10 for the repulsive slippery
obstacles qualitatively resemble the sticky case (fig. 4),
because the diffusion coefficient approaches zero for
ν ≈ 0.4. However, for slippery obstacles, the
anomalous time increases, but does not diverge, at
the percolation threshold, and then decreases at larger
filling fraction. For slippery obstacles with finite
∆G, one can always find a time after which the
system displays normal diffusion. Slippery obstacles
lead to non-monotonic behavior: for large enough
ν, the diffusion coefficient increases and anomalous
time decreases. For high obstacle filling fraction,
binding increases tracer mobility, because they can hop
along the percolating network of obstacles. Similarly,
the minimum exponent is non-monotonic with filling
fraction.

4.1 Slippery soft obstacles in 3D

As for sticky obstacles, we examined tracer motion
with single-site slippery obstacles in three dimensions
(fig. 8). The results are qualitatively the same as the
2D model (fig. 7), with typically smaller anomalous
time.

4.2 Comparison of sticky and slippery obstacles in
2D

The limits of perfectly sticky and slippery obstacles
are most similar at low filling fraction (fig. 9). In
general, slippery obstacles lead to exponents closer to
one (less anomalous) than do sticky obstacles, because
tracers are not caged by the obstacle-obstacle interface.

Even for relatively small values of the binding energy
(|∆G| ≤ 3) and intermediate filling fraction, sticky and
slippery obstacles lead to significantly different tracer
dynamics (fig. 9). Slippery obstacles, on which motion
can occur for high obstacle filling fraction, allow normal
diffusion with coefficients comparable to those for low
filling fraction. This effect may be important to explain
the rates of a number of biological processes that are
diffusion-limited, including transcriptional regulation
and nucleo-cytoplasmic transport.

5 Semi-slippery obstacles

Having compared the limits of perfectly sticky
(Dbound = 0) and slippery (Dbound = Dfree) obstacles,
we now study intermediate cases. We varied the
bound diffusion coefficient for repulsive binding energy
∆G = 1, 2, 3,∞ and filling fraction ν = 0.3 and 0.6.
For finite binding energy, increasing Dbound increases
the long-time diffusion coefficient (fig. 10). This effect
is larger for higher filling fraction and lower binding
energy, when tracers spend more time bound. Varying
Dbound has little effect on the anomalous time at low
filling fraction, because ta is already near the threshold
at which we can accurately measure it. However,
increasing Dbound decreases ta at higher filling fraction,
because tracers can more quickly escape obstacles when
their bound diffusion coefficient is larger. Similarly,
varying Dbound has little effect on αmin at low ν, but
does make diffusion less anomalous at higher filling
fraction, because increasing bound motility reduces
tracer caging.

6 Varying obstacle size

We varied the length of the obstacles lobst, while
maintaining their square shape. Increasing the obstacle
size (with filling fraction fixed) clusters obstacles. Since
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Figure 9. Comparison of models with slippery repulsive obstacles (solid lines), sticky repulsive obstacles (dashed lines), and hard
repulsive obstacles (purple dashed line). (a) Diffusion coefficient D∗, (b) anomalous time ta, and (c) minimum scaling exponent
αmin as a function of obstacle filling fraction ν. The gray dotted lines are indicating the approximate locations of critical occupancies
νl and νu.

Figure 10. Semi-slippery obstacles in 2D. Varied the bound diffusion coefficient from the sticky Dbound = 0 to slippery
Dbound = Dfree limit for single site lobst = 1 obstacles. Top panel: (a, d) Diffusion coefficient D∗, (b, e) anomalous time ta,
and (c, f) minimum scaling exponent αmin as function of Dbound for low filling fraction ν = 0.3 (top) and high filling fraction ν = 0.6
(bottom).

in our model the binding penalty occurs only for
empty → obstacle moves, increasing the size of
obstacles effectively reduces the number of binding
sites: more obstacle sites are interior to obstacles,
rather than on their perimeter. For sticky obstacles
with lobst = 1, tracers can easily hop through cages,
since their bound motion is only blocked by an
obstacle-obstacle interface. Increasing the obstacle size
guarantees that individual obstacles will contain an
obstacle-obstacle interface, which makes it less likely
that tracers can hop through neighboring obstacles
(fig. 11). Increasing obstacle size at fixed filling fraction

also increases the typical distance between obstacles.
These changes alter obstacle percolation effects: νl and
νu depend on lobst.

6.1 Sticky obstacles of varying size

First, we examined tracer dynamics on sticky obstacles
of variable size (fig. 12). Qualitatively, large sticky
obstacles have a soft surface (binding can occur on
surface sites, although hops along the surface are
still blocked), but a hard core (interior sites are
inaccessible). A significant change in dynamics occur
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Figure 11. Cartoon showing size effects for sticky and impenetrable obstacles. Red lines indicate borders between obstacles that
cannot be crossed by a tracer.

when lobst increases above 1. Any obstacle with
lobst > 1 is fundamentally different from lobst = 1,
because larger obstacles are guaranteed to contain sites
with an adjacent obstacle site. Increasing lobst prevents
hopping across the interior of any one obstacle, which
can hinder tracer motion. The cages are thus more
robust. Tracers can still hop across corners, unlike in
the case of a purely repulsive interaction (fig. 11).

The dependence of tracer dynamics on binding
energy changes upon increasing the obstacle size above
1 (fig. 12). For size-one obstacles, particles can hop
through a single obstacle, and so lower binding energy
leads to higher long-time diffusion coefficient. In
contrast, with larger obstacles, high binding energy
leads to an increased diffusion coefficient. With higher
repulsion, a tracer is less likely to bind to the surface
of an obstacle where it can get stuck. Thus, for larger
obstacles, higher repulsion can facilitate motion.

For lobst > 3, increasing obstacle size increases
the cage size, and so the long-term diffusion coefficient
and the anomalous time both increase smoothly,
in agreement with previous work on impenetrable
obstacles [26]. The anomalous time increases with
lobst above 3, because the effective cage size increases:
tracers take longer to explore a cage to escape. For
lobst ≥ 3 and small filling fraction, the size dependence
is roughly energy independent. The dynamics
are dominated by blocked obstacle → obstacle
moves, rather than by the energy dependence of
empty → obstacle moves. For low filling fraction,
αmin remains > 0.9, suggesting that obstacle caging
effects are minimal.

Next, we examined a higher packing fraction
ν = 0.6, chosen because it is between νl and νu for
size-1 obstacles in 2D. The effects of obstacle size on
percolation are significant, leading to larger changes in
behavior than for ν = 0.3. As lobst increases, obstacles
are on average spaced farther apart, which increases
νl.

In contrast, the upper critical concentration is

more complicated, because now each obstacle contains
within it obstacle-obstacle interfaces. The upper
critical concentration decreases below 0.6 for lobst = 3,
and therefore the dynamics are anomalous at all times;
ta diverges and D∗ goes to zero. Above lobst = 3, the
upper critical concentration increases with increasing
obstacle size. For lobst = 5, νu > 0.6, leading to
long-time Fickian diffusion. Here ta decreases with
lobst, because the time required for a tracer escape
a cage is not dominated by the cage size (as it was
for low ν), but by the time needed to find a gap
between cages. As lobst increases, the gaps become
larger on average, lowering the escape time. Overall,
above lobst = 5, the behavior is only mildly dependent
on either obstacle size or binding energy, making the
long term diffusivities primarily a function of the filling
fraction.

6.2 Slippery obstacles of varying size

Understanding the effects of variable obstacle size on
tracer motion is more straightforward for the case of
slippery obstacles, because the difference between edge
and interior obstacle sites is eliminated (fig. 13). In
the perfectly slippery limit, increasing lobst effectively
lowers the number of binding sites: tracers experience
the binding energy change only when binding to
obstacle edge sites, but can move freely through
obstacle interior sites. Therefore, D∗ and αmin increase
with obstacle size, an effect that is larger for higher
filling fraction, because obstacle overlaps at high filling
fraction lower the fraction of obstacles that impede
motion and cage tracers. In nearly all cases, ta
increases with obstacle size, because the effective cage
size grows. The exception occurs for impenetrable
obstacles, where increasing lobst increases the size of
vacancies between cages, allowing caged tracers to
escape more quickly.
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Figure 12. Size effects for sticky obstacles in 2D. (a, d) Diffusion coefficient D∗, (b, e) anomalous time ta, and (c, f) minimum
scaling exponent αmin as a function of obstacle filling fraction ν for ν = 0.3 (top) and ν = 0.6 (lower).

Figure 13. Size effects for slippery obstacles in 2D. (a, d) Diffusion coefficient D∗, (b, e) anomalous time ta, and (c, f) minimum
scaling exponent αmin as a function of obstacle filling fraction ν for ν = 0.3 (top) and ν = 0.6 (lower).

7 Conclusion

In this paper, we have studied a lattice model of
tracer particles that diffuse and experience crowding

due to immobile obstacles. While most previous
work has considered hard (impenetrable) obstacles, we
consider soft (penetrable) obstacles characterized by
a binding free energy that allows tracers to overlap
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with obstacles. We also consider the effects of varying
the tracer mobility while bound, including the limiting
cases of ‘sticky’ obstacles (which immobilize bound
tracers) and ‘slippery’ obstacles (which allow full tracer
mobility), as well as the intermediate regime between
the two.

In some cases, diffusion crowded media leads
to dynamics that are anomalous (r2 ∼ tα) with a
constant α [1]. However, our system typically does
not give a power-law dependence of the MSD on time
delay; this has been seen by others [8, 38]. As a
result, we quantified a long-time diffusion constant
(D∗), the timescale on which the systems transitions
from anomalous to Fickian (ta), and the minimum
instantaneous anomalous exponent (αmin).

Our results demonstrate the key differences
between sticky and slippery obstacles. For sticky
obstacles, increasing the obstacle filling fraction
decreases the diffusion coefficient and increases the
degree of anomalous diffusion. Above an upper
critical occupancy νu ≈ 0.72 in 2D, diffusion becomes
anomalous at all times, independent of binding energy.
In the sticky case, the minimum anomalous exponent,
αmin monotonically decreases with filling fraction,
because adding more obstacles creates more cages in
which tracers become transiently confined.

For slippery obstacles, by contrast, tracers
always reach normal diffusion after a sufficiently
long time; even increasing the filling fraction above
the percolation threshold does not eliminate tracer
motion. For nonzero binding free energy, we find
a novel non-monotonic dependence of D∗ on filling
fraction: increasing the filling fraction away from zero
introduces binding sites that slow tracer diffusion, but
for sufficiently high filling fraction, bound mobility
allows tracer motion along clusters of obstacles. The
anomalous exponent decreases with binding energy
magnitude, but varies non-monotonically with filling
fraction. For low filling fraction, αmin decreases as
more obstacles are added, because binding transiently
traps tracers on isolated obstacles. For sufficiently high
density, diffusion becomes more normal when tracers
hop along clusters of obstacles while bound.

For intermediate ‘semi-slippery’ obstacles, we
demonstrate that in the crossover from from sticky
to slippery behavior, D∗, αmin, and ta vary
smoothly. Increasing bound diffusion always makes the
diffusion coefficient larger and the diffusive motion less
anomalous.

We varied obstacle size to examine how relatively
large obstacle ‘domains’ affects tracer motion in our
model. For sticky obstacles, increasing obstacle size
above 1 led to a sharp jump in tracer properties. This
occurs because larger obstacles always contain interior
obstacle sites, which are inaccessible to tracers in the

sticky model. For large obstacles, increasing repulsive
binding energy tends to increase the tracer diffusion
coefficient, because tracers spend less time trapped in
a binding site.

For slippery obstacles, perimeter and interior
obstacle sites are both accessible, which means that
varying obstacle size has effects that are easier
to understand intuitively. The diffusion coefficient
and anomalous exponent increase with obstacle size,
because larger obstacles lead to a fewer obstacle-empty
boundaries. The effect of obstacle size on ta varied with
filling fraction, due to competing effects on increasing
cage size and increasing gaps between cages.

Our models separately represent effects of soft
interactions (through the binding energy) and bound-
state motion (through obstacle stickiness/slipperiness).
Sticky and slippery obstacles show dramatically
different tracer dynamics, even at short time and low
filling fraction. Slippery obstacles lead to a diffusion
coefficient which varies non-monotonically with filling
fraction, with high values at both high and low
obstacle densities. As the filling fraction increases from
zero, the particles are more and more inhibited by
obstacles. However, as the obstacle density increases,
particles which bind can more easily move between
obstacles. This may describe transport factor motion
within the nuclear pore complex, where transport
factors can slide on the disordered FG Nups [35].
Therefore, biological systems may use soft interactions
and slippery obstacles to allow particle diffusion, even
in the highly crowded cellular interior.

Our work highlights how soft interactions and
bound-state mobility can dramatically change tracer
motion. These effects are relevant to biological
systems, ranging from membrane-less organelles to
lipid rafts. Although most previous theoretical work
on crowded diffusion has focused on the anomalous
exponent, these biological examples highlight the
importance of changes in the diffusion coefficient. For
example, proteins which do not passage through the
nuclear pore complex on biologically relevant time
scales (minutes to hours) cannot have biological effects,
and so the speed of passage is the fundamentally
important biological quantity. The long-time diffusion
coefficient varies dramatically in our model between
hard obstacles, soft sticky obstacles and soft slippery
obstacles (figure 9). Thus, the effective permeability of
obstacles and the degree to which bound particles can
diffuse can be used by cells to tune macromolecular
motion.
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