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Microscopic origins of anisotropic active stress in
motor-driven nematic liquid crystals†

Robert Blackwell, Oliver Sweezy-Schindler, Christopher Baldwin, Loren E. Hough,
Matthew A. Glaser and M. D. Betterton*

The cytoskeleton, despite comprising relatively few building blocks, drives an impressive variety of

cellular phenomena ranging from cell division to motility. These building blocks include filaments, motor

proteins, and static crosslinkers. Outside of cells, these same components can form novel materials

exhibiting active flows and nonequilibrium contraction or extension. While dipolar extensile or

contractile active stresses are common in nematic motor-filament systems, their microscopic origin

remains unclear. Here we study a minimal physical model of filaments, crosslinking motors, and static

crosslinkers to dissect the microscopic mechanisms of stress generation in a two-dimensional system of

orientationally aligned rods. We demonstrate the essential role of filament steric interactions which have

not previously been considered to significantly contribute to active stresses. With this insight, we are

able to tune contractile or extensile behavior through the control of motor-driven filament sliding and

crosslinking. This work provides a roadmap for engineering stresses in active liquid crystals. The mechanisms

we study may help explain why flowing nematic motor-filament mixtures are extensile while gelled systems

are contractile.

1 Introduction

The cellular cytoskeleton drives important biological phenomena
including cell migration, cell division, muscle contraction, and
organelle transport.1 Cytoskeletal filaments (microtubules
and f-actin), motor proteins (myosins, kinesins, and dynein),
and static crosslinkers are also ingredients in synthetic active
matter which exhibits new physics such as nonequilibrium self
organization and internally generated flows.2–12

Understanding cytoskeletal active matter requires connecting
microscopic interactions between filaments, motors, and cross-
linkers to macroscopic material properties and dynamics.
Experiments on reconstituted systems of stabilized filaments
lacking polymerization dynamics, purified motors, and cross-
linkers have observed dipolar anisotropic active stresses in
orientationally ordered systems. Microtubule–kinesin bundles
show extensional motion and extensile flows in a nematic
state,10,13,14 while orientationally aligned actin–myosin bundles
contract along the bundle axis.8,9,15,16 Based on these experi-
mental observations and symmetry considerations, dipolar
anisotropic active stresses have been incorporated into conti-
nuum theories of cytoskeletal active matter.17–22 However,

these phenomenological theories are unable to provide insight
into the microscopic origin of active stresses, which remains
poorly understood.

The origins of extensile or contractile dipolar stresses are
nontrivial because they cannot occur from symmetric pairwise
interactions. On antiparallel filaments, motors present on each
end of a crosslink tether drive relative filament sliding: when
each motor head moves toward the plus end of the filament to
which it is bound (Fig. 1a), the crosslinking motor exerts forces
that separate filament minus ends.23 If filaments meet at their
minus ends, the pair first contracts until the filament midpoints
are aligned, and then extends. Symmetric sliding causes no net
contraction/extension because the initial contraction is balanced
by the subsequent extension.24–26 On parallel filaments, both
motors move toward the filament plus ends and no net sliding of
the pair occurs23 (Fig. 1b), in the absence of motor pausing at
filament ends24–26 or other motor correlations.27

Recently, we discovered that a minimal physical model of
microtubule-motor mixtures generates persistent anisotropic
extensile stress in an active nematic liquid crystal phase, using
a new computational model of motor binding/unbinding that
obeys detailed balance.28 Here we extend the model to include
longer filaments, static crosslinkers, and more general motor
force–velocity relations and dissect the origins of active stresses in
this system. We find that expectations for stress generation based
on the consideration of isolated filament pairs are misleading and
that insight requires the consideration of many-body effects.
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Although steric interactions between particles play an important
role in all liquids, they have so far been neglected in most models
of polar filaments driven by crosslinking motors, which consider
isolated filament pairs. (We note that the effects of steric inter-
actions on filament alignment have been considered.25,29)

We find that steric interactions play an important role in active
stress generation. Motors slide anti-aligned filaments apart, pushing
their minus ends into the ends of other nearby filaments. This
increases steric interactions at filament ends relative to filament
sides and leads to extensile stress production. We also find
extensile stress generation for polar-aligned filament pairs due to
motors that are slowed by a retarding force. When a motor walks
on a polar-aligned filament pair, the leading head experiences a
retarding force that slows its movement. Then the lagging motor
is able to catch up, a process which reduces the contractile force
sliding the filaments relative to each other. Reduced pair con-
traction leads to net extensile stress production. With this
insight, we can tune our system to change the balance between
extensile and contractile stress. Our results suggest that motor
properties and the degree of fluidity are crucial determinants of
extensile versus contractile stress in 2D active liquid crystals.

2 Model

We consider a 2D model of filaments with crosslinkers and
motors that drive active motion28 (Fig. 2a). Our goal was to
consider a simple physical model able to generate anisotropic
active stress. We therefore considered fixed-length, rigid filaments
crosslinked and moved by motors, and neglected additional
effects such as filament flexibility, motor pausing, and multi-
motor bundles, to consider the minimum number of para-
meters and complexity.

Filaments are rigid polar rods of length l, diameter b, and
aspect ratio r = l/b = 20. Motors bind, unbind, move toward
filament plus ends with a linear force–velocity relation, and
exert forces on filaments. Motors bind to two filaments simulta-
neously with a probability weighted by the Boltzmann factor of

the motor extension. To determine the motor unbinding model,
we note that some kinesin motors unbind more rapidly with
applied force,30 but the crosslinking kinesin-5 motor shows no
force-dependent unbinding,31 and myosin motors unbind more
slowly with applied force.32 Here for simplicity we assume that
motor unbinding is force independent, as was also considered
previously.26 Forces and torques on filaments occur due to motors,
short-range steric repulsion, anisotropic local fluid drag by the
solvent, and random thermal forces, as discussed below.

Our model differs from previous simulation models of motor-
filament systems33–35 in the treatment of motor/crosslink binding
and unbinding: previous work used simple binding rules that
do not obey the principle of detailed balance. In our model we
accurately calculate the crosslink partition function to ensure that
the equilibrium distribution is recovered for static crosslinkers.28

This improved treatment of the statistical mechanics of motor/
crosslink binding and unbinding is important to determine how
alterations from equilibrium motor/crosslink distributions occur
due to nonequilibrium activity and the resulting active forces
generated.

Here we briefly outline the simulation model; further model
details are available in previous work.28 Filaments undergo
Brownian dynamics with center-of-mass equations of motion

xi(t + dt) = xi(t) + Ci
�1(t)�Fi(t)dt + dxi(t), (1)

for filaments indexed by i, where the random displacement
dxi(t) is Gaussian-distributed and anisotropic, with variance
hdxi(t)dxi(t)i = 2kBTCi

�1(t)dt, kB is Boltzmann’s constant, T is
the absolute temperature, Fi(t) is the systematic (deterministic)
force on filament i and Ci

�1(t) is the inverse friction tensor,

Ci
�1(t) = gJ

�1ui(t)ui(t) + g>
�1[I � ui(t)ui(t)]. (2)

Here gJ and g> are the parallel and perpendicular drag coeffici-
ents of the rod. The equations of motion for filament reorienta-
tion are

uiðtþ dtÞ ¼ uiðtÞ þ
1

gr
TiðtÞ � uiðtÞdtþ duiðtÞ; (3)

Fig. 1 Overview. In schematics, lighter shading labels filament plus ends and color indicates filament plus-end orientation (red up, blue down).
(a) Schematic of motor-driven sliding of polar anti-aligned filaments. Motor heads (orange) move toward filament plus ends, producing forces that slide
filaments toward their minus ends. The filament pair initially contracts (left), and then extends (right). (b) Schematic of motor motion on polar-aligned
filaments. Motors move toward filament plus ends, producing no relative sliding of the pair. (c) Schematic of motor-driven anisotropic extensile stress in a
nematic state. (d) Schematic of motor/crosslink driven anisotropic contractile stress in a nematic state.
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where gr is the rotational drag coefficient, Ti(t) is the systematic
torque on particle i, and the random reorientation dui(t) is Gaussian-
distributed, with variance hdui(t)dui(t)i = 2kBT/gr[I � ui(t)ui(t)]dt.
To achieve proper dynamics for both long and short filaments,
all drag coefficients g>, gJ, and gr were calculated using the method
of Löwen et al.36

The steric interaction potential between rods is the WCA
potential

uWCA rminð Þ ¼
4kBT

b

rmin

� �12

� b

rmin

� �6" #
þ kBT ; rmin o 21=6b

0; rmin � 21=6b;

8>><
>>:

(4)

where rmin is the minimum distance between the two finite line
segments of length l that define the filament axes and b is the
effective rod diameter. Note that rmin is an implicit function
of the center of mass positions and orientations of the two
interacting filaments. The typical distance of closest approach
between rods is comparable to b, and the thermodynamic
properties closely resemble those of hard rods with aspect ratio
l/b, a model that is well-characterized both in 2D37 and 3D.38,39

We took extra care to prevent unstable overlapping configurations,
as discussed previously.28

Motor- and crosslink-mediated interactions and activity occur
in a semi-grand canonical ensemble in which a reservoir of
motors is maintained in diffusive contact at a fixed chemical
potential mm with filaments to/from which they can bind/unbind.
Static crosslinkers are treated similarly. The motors are assumed
to be noninteracting both in solution and in the bound state, so
the motor reservoir can be treated as an ideal solution, and there
is no steric interference among bound motors. We assume that,
due to the relatively low motor and crosslinker concentrations
we study and the availability of multiple surface binding sites on
three-dimensional filaments, motors are generally able to avoid
steric interactions with each other and with crosslinkers. We
therefore neglect motor–motor, motor–crosslink, and crosslink–
crosslink steric interactions.

Bound motors have a free energy um(rm), where rm is the
extension of the motor. As in previous work,26 we treat motor
attachment (detachment) as a one-step process in which motors
bind to (unbind from) two filaments simultaneously, and we
assume a binding rate of

kon(r) = k0e�bum(r) (5)

and an unbinding rate of

koff(r) = k0, (6)

Fig. 2 Overview of the model and results. In schematics, lighter shading labels filament plus ends and color indicates filament plus-end orientation
(red up, blue down, see color wheel in panel d). (a) Schematic of the model. Crosslinking motors (orange) and static crosslinkers (grey) bind and unbind;
motor heads move toward filament plus ends. Filaments experience forces due to motors and crosslinkers, random thermal kicks, short-range steric
repulsion, and drag from the solvent. (b) Schematic of steric interaction-induced stresses in an equilibrium system with no motors. Side–side steric
interactions are contractile, while end–end steric interactions are extensile. (c) Virial anisotropy density per interaction for an equilibrium system (black)
and an active system (red). Anisotropic stress is a function of y, the pair separation along the nematic director measured in the polar nematic frame.
(d) Snapshots of a constant-pressure simulation of an active system driven by motors (Video S3, ESI†). The periodic simulation box elongates along the
director ( y direction), indicating generation of anisotropic extensile stress. Both equilibrium and active simulations have a filament packing fraction
f = 0.4157, N = 4000 filaments, and filament aspect ratio r = 20. Active system has motor parameters stall force f = 6.0, concentration c = 0.5, inverse
lifetime k0,m = 1.0, run length c = 0.64, interaction range Rc ¼ 1

� ffiffiffi
2
p

, and Peclet number Pe = 1.358.
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where b = (kBT)�1 is the inverse temperature in energy units. In
contrast to previous work that used simple binding/unbinding
rules such as a constant binding rate whenever a motor/
crosslink head is within a certain distance of a filament,33–35

this choice of binding and unbinding rates ensures that the
correct equilibrium distribution is recovered for static cross-
linkers. Given a distribution of motors bound to filaments,
we compute the forces and torques exerted on filaments by
differentiating um(rm) with respect to the filament positions
and orientations.

The endpoints of bound motors translocate toward the plus
ends of the filaments to which they are attached with a piecewise
linear force-dependent velocity42 v = v0 max(0,min(1,1 + FJ/Fs)),
where the parallel force component FJ = Fi�ûi, v0 is the maximum
translocation velocity, and Fs is the stall force. To keep the
model as simple as possible while still capturing the major
physics, end pausing of the motors has been excluded. Motors
unbind immediately upon reaching the plus end of either of the
two filaments to which they are attached. For simulations with
both static crosslinkers and motors, bound crosslinkers remain
fixed at their attachment sites until they detach according to
eqn (6). The reversed force–velocity model is identical to the
normal motor model except that the motors move faster under
load according to the relation v = v0 max(1,1 � FJ/Fs). Motor
heads with a force along their direction of motion will move
at speed v0.

To compute the motor/crosslinker binding probability for
given filament positions and orientations, we calculate the
expected number of motors for each filament pair in the system
in equilibrium,28

Nij

� �
¼ cm

ðl=2
�l=2

dsi

ðl=2
�l=2

dsje
�xmrm

2 si ;sjð Þ; (7)

where xm = bKm/2, Km is the motor spring stiffness, si and
sj are coordinates along the central axes of filaments i and j,
respectively, and the implicit dependence of rm on filament
coordinates has been suppressed. Motors/crosslinkers bind
stochastically to the filament pair with a probability proportional
to hNiji, ensuring that detailed balance is satisfied and the equili-
brium distribution is recovered for static crosslinkers and fixed
filaments. The average number of motors/crosslinkers that bind
to filaments in a time interval dt is

Nah i ¼ k0dt Nch i ¼ k0dt
XN
io j

Nij

� �
: (8)

The number Na of motors/crosslinkers that bind in the interval
dt follows a Poisson distribution P Nað Þ ¼ Nah iNa e�Na

�
Na!.

In the kinetic Monte Carlo cycle, the number of bound
motors/crosslinkers Na is drawn from this distribution, and
Na motors/crosslinkers are inserted by first selecting pairs of
filaments with relative probability phNiji and then sampling
from the appropriate bivariate normal distribution to choose
motor/crosslinker endpoints that lie on the selected pair of
filaments.

The overall hybrid Brownian dynamics/kinetic Monte Carlo
procedure thus consists of the following steps:

(1) Compute forces and torques on filaments, and evolve
filament positions and orientations dt forward in time according
to the Brownian dynamics equations of motion (eqn (1) and (3)).

(2) Displace each motor endpoint by vdt along the filament
to which it is attached with translocation velocity v given by the
force–velocity relation.

(3) Determine the number Nd of motors that unbind, and
remove this number of motors at random.

(4) Compute the expected number of bound motors hNiji for
all pairs of filaments (eqn (7)) and determine the number Na of
motors that bind. Randomly select Na pairs of filaments with

relative probability Nij

� �,PN
io j

Nij

� �
, and insert a motor

between each selected pair of filaments by sampling from a
bivariate normal distribution.

(5) If system includes static crosslinkers, repeat steps three
and four for crosslinkers.

We nondimensionalize using the filament diameter b, the
thermal energy kBT, and the diffusion time t, defined as the
average time for a sphere of diameter b to diffuse 2b, t = b2/D.
Then the motor and reversed motor models depend on seven
dimensionless parameters: the filament aspect ratio r = l/b, the
filament packing fraction f = N/V(lb + pb2/4), the range of motor
mediated interaction Rm = [kBT/(Kb2)]1/2, the motor concentration
c = zmr

2b2eu0/(kBT), the motor run length c = vm/(k0l), the motor
stall force f = fsb/(kBT), and the Peclet number (the ratio of
translocation and diffusion rates) Pe = vmt/(3pb). The motor and
static crosslinker model introduces three additional parameters, the
range of static crosslinker mediated interaction Rc = [kBT/(Kcb

2)]1/2,
the static crosslinker concentration cc = zcr

2b2eu0,c/(kBT), and the static
crosslinker lifetime tc = 3p/(k0,ct). Parameter values are summarized
in Tables 1 and 2.

3 Measurements

To characterize the simulation results, we determined density–
density correlations, motor distributions, and active forces for fila-
ment pairs in different configurations, as a function of rij = rj� ri, the
separation of filaments i and j. The pair distribution function is

gðrÞ ¼ V

NðN � 1Þ
XN
i

XN
jai

d rij � r
� 	* +

: (9)

The pair distribution function g(r) will typically tend to 1 at
infinity for a normal fluid. However, since we often want to
observe subsystems of the fluids, such as only polar-aligned
pairs, the limiting behavior at infinity is not typically 1 but some
smaller fraction. To make comparisons between systems more
accessible, we instead study

hðrÞ ¼ gðrÞ � lim
r!1

gðrÞ (10)

which tends to zero at large distances for all subpopulations.
Using this expression, we can easily determine if a system has
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excess or depleted correlation at a given pair separation by
examining the sign of the distribution function h(r).

3.1 Stress and stress anisotropy density

The osmotic stress tensor of a periodic system of N interacting
filaments at temperature T in a d-dimensional volume V is
given by

R ¼ NkBT

V
Iþ 1

V
hWi; (11)

where the first and second terms on the right-hand side repre-
sent the ideal gas and interaction contributions, respectively, I is
the unit tensor, and W is the virial tensor,44

W ¼
XN
io j

rijFij : (12)

where the sum ranges over all interacting pairs of filaments,
and Fij is the force from filament j on filament i. The angular
brackets in eqn (11) denote an average over time. Here we have
assumed that the temperature of the system is isotropic and
well-defined, so that

XN
i¼1

PiPi

mfil

* +
¼ NkBT

V
I; (13)

where Pi is the momentum of filament i and mfil is the filament
mass (here assumed the same for all filaments). Filaments have
momentum based on their instantaneous movements on short
time-scales. This motion is in thermal equilibrium with the
background fluid, connecting molecular motion to Brownian
motion.

While this relation is clearly true in the equilibrium case, it
is less obvious that this relationship holds for active filament/
motor systems. However, a purely mechanical definition of
osmotic pressure leads to the same expression even for non-
equilibrium particle suspensions in the low Reynolds number
hydrodynamic regime,45 and we will assume that eqn (11) holds
in the following discussion.

The isotropic pressure is

hPi ¼ 1

2

X2
j¼1

Sjj

� �
; (14)

and the average stress anisotropy is

DS = hSyyi � hSxxi, (15)

where the y direction corresponds to the instantaneous nematic
director orientation and x the perpendicular axis (Fig. 2b). The
stress anisotropy DS = Syy � Sxx is positive for extensile stress
and negative for contractile stress. The total stress tensor is

Table 2 Dimensionless groups used in simulations

Symbol Parameter Value Notes

f = N/V(lb + pb2/4) Filament packing fraction 0.4157 Chosen to give nematic state at equilibrium in the absence
of motors

r = l/b Filament aspect ratio 20 Value for 500 nm microtubules
c = r2b2eb(mc+u0) Motor concentration 0.5 Chosen to give average of 2 motors per nearby filament pair
cc = r2b2eb(mc+u0,c) Static crosslink concentration

(motor and crosslink model)
Reference 0.5,
range 0.25–0.5

Chosen to give average of 2 crosslinkers per nearby filament pair

Rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT= Kb2ð Þ

p
Range of motor mediated
interaction

1=
ffiffiffi
2
p

Chosen to be of order 1 for a short-range interaction

c = v0/(k0l) Motor run length Reference 0.64,
range 0.04–1.28

Motor-induced active stresses are largest when c is of order 1

f = fsb/(kBT) Motor stall force 6 See Table 1
Pe = vwZb/(kBT) Peclet number Reference 1.358,

range 0.085–2.72
Varies with motor speed

k0,mt Inverse motor lifetime 1.0 See Table 1
k0,ct Inverse static crosslink lifetime

(motor and crosslink model)
Reference 0.01,
range 0.001–1.0

Varied

Table 1 Parameters used in simulations

Symbol Parameter Value Notes

kBT Thermal energy 4.11 � 10�21 J Room temperature
l Filament length 500 nm Chosen
b Filament diameter 25 nm Alberts et al.40

Z Fluid viscosity 1.0 Pa s Cytoplasmic viscosity, Wirtz41

r Linear density of motor binding sites
along filament

— Appears only in dimensionless concentration

mc Motor chemical potential — Appears only in dimensionless concentration
u0 Motor binding free energy — Appears only in dimensionless concentration
v0 Motor speed (zero force) Reference 9.0 mm s�1,

range 0.56–18 mm s�1
Of order 1 mm s�1, Visscher et al.42

k0 Unbinding rate of motors 28.1 s�1 Processivity of 320 nm, Schnitzer et al.42

fs Stall force 1 pN Visscher et al.42

K Motor spring constant 0.013 pN nm�1 Decreased from ref Coppin et al.43 to give appropriate range of
motor-mediated interaction for zero-equilibrium-length springs
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determined from all forces between filaments; both elastic
forces from crosslinks and steric forces from interfilament
repulsion contribute to the stress tensor. For the orientationally
aligned systems studied here we typically find anisotropic
dipolar stress: if motor activity favors pair extension, then
extensile dipolar stress is generated and drives the material to
extend in the alignment direction and contract perpendicular
to the alignment direction (Fig. 1c) and vice versa for pair
contraction (Fig. 1d) which leads to contractile dipolar stress.
In constant-volume simulations, stress anisotropy is unable to
relax and can be measured over long runs. In constant-pressure
simulations, we adjust the simulation box size to achieve a
constant isotropic pressure.44 Persistent stress anisotropy leads
to continuous anisotropic deformation of the simulation box as
the system attempts unsuccessfully to reach a constant isotropic
pressure.

To characterize how different filament pair configurations
contribute to active stress generation, we measured the pair
normalized virial density tensor, which we denote wpair(r), and
the virial stress, which we denote rvir(r). Both are functions
of the filament separation r. The spatial distribution of stress
is useful for determining the nature of microscopic stress
generation. The virial stress density is

rvirðrÞ ¼
1

2N N � 1ð ÞV
XN
i

XN
jai

d rij � r
� 	

Fijrij

* +
: (16)

This density gives the average stress generated by pairs at separa-
tion r and has the property that

Ð
rvirðrÞdr ¼ Rvir, the total virial

contribution to the stress tensor. We can then define a virial stress
anisotropy density by taking the difference in the stress along and
perpendicular to the nematic director

Ds(r) = svir,yy(r) � svir,xx(r). (17)

By integrating the stress anisotropy density along the perpendi-
cular direction (x), we obtain the expression for the 1D stress
anisotropy density

DsðyÞ ¼
ð
DsvirðrÞdx: (18)

It can also be useful to know the stress contribution for a
given configuration without considering contributions due to the
pair distribution function. We call this function the configura-
tional virial stress density

rcðrÞ ¼
rvirðrÞ
gðrÞ ¼

1

2V2

PN
i

PN
jai

d rij � r
� 	

Fijrij

* +

PN
i

PN
jai

d rij � r
� 	* + (19)

and its corresponding anisotropy measure

Dsc(r) = Dsc,yy(r) � Dsc,xx(r). (20)

We also defined a pair normalized virial anisotropy density
Dwpair(y). Due to the tendency of active nematics to form polar
domains, the number of polar-aligned pairs outnumbers
the number of anti-aligned pairs in a typical simulation by

approximately ten to one. This difference makes comparing the
stress contributions from the polar-aligned and anti-aligned
subsystems difficult when considering the absolute magnitude
of stress contributions alone. In order to make quantitative
comparisons of the two subsystems with a properly intensive
property, we normalized the virial density w(r) by the number of
interacting pairs for each given subsystem. We defined an
interacting pair as a pair where the expected number of attached
motors in equilibrium was greater than the threshold Nc = 10�3.
The virial stress density per filament pair is

wpairðrÞ ¼

PN
i

P
jai

d rij � r
� 	

FijrijP
i

P
j4 i

Y Nijð1Þ
� �

�Nc

� 	 (21)

where hNij(1)i is the expected number of attached motors/cross-
linkers from eqn (7) for a concentration of 1, and Y(N) is the
Heaviside step function with Y(0) � 0. The total virial anisotropy
per filament is therefore

Dwpair(r) = wpair,yy(r) � wpair,xx(r) (22)

and its corresponding anisotropy measure as shown in the
figures

DwpairðyÞ ¼
ð
DwpairðrÞdx: (23)

Note that this anisotropy measure is independent of filament
orientations because summing over the simulation-calculated
values of Fij and Nij integrates out any explicit orientational
dependence on these quantities.

3.2 Reference frames and thresholding

In order to define a polar reference frame for unique comparison
of minus–minus, plus–plus, and plus–minus steric interactions we
considered the orientation of each filament ûi and the instanta-
neous nematic director n̂(t). To calculate n̂(t), we first calculated
the order parameter tensor Q(t), defined in 2D as

QðtÞ ¼ 2

N

XN
i

ûiûi � I (24)

where I is the identity matrix. The instantaneous nematic
director n̂(t) is then defined as the pseudovector corresponding
to the maximum eigenvalue of Q(t). Since the nematic director
is a pseudovector, we constrained n̂(t) to lie in the northern
hemisphere of the plane of the simulation. The instantaneous
polar nematic director for filament i is then defined as

n̂p,i(t) = sgn(ûi(t)�n̂(t))n̂(t). (25)

The frame given by n̂p,i(t) and the vector perpendicular to it
(n̂>

p,i(t)) are used for all spatial measurements excluding motor
densities. This reference frame distinguishes minus end–minus
end interactions from plus end–plus end interactions for anti-
polar pairs.

All colormap data have been thresholded for clarity. Thres-
holds represented by the minimum (maximum) value are shown
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as the minimum (maximum) values on the colorbar associated
with each density map. Values below (above) the thresholds are
shown as the color representing the minimum (maximum)
value on the associated colorbar. All colorbars are symmetric
to ensure zero is always represented by the same color.

3.3 Motor density vs. filament separation

To determine the motor density per filament as a function of
filament separation y, we measured the average number density
of motors attached to a filament pair at positions (ri, rj) in the
axis frame of each filament

nm raxisð Þ ¼ 1

2N

XN
i

XN
jai

Nm;ij d rij � û?i
� 	

û?i þ rij � ûi
� 	

ûi � raxis
� 	
 �* +

(26)

where N is the total number of filaments, Nm,ij is the number of
motors linking filament i to filament j, ûi is the vector along the
filament i, û>

i is the vector perpendicular to the filament i, and
raxis is a vector in this axis frame for particle i defined by (û>

i , ûi).
The factor of 1/2 is to compensate for the double counting of
the filament pairs. To determine this density as a function of
filament separation y, we integrated out the perpendicular (x)
contribution to the motor distribution function

nxlðyÞ ¼
1

2N

ð XN
i

XN
jai

Nxl;ij d rij � û?i
� 	

û?i þ rij � ûi
� 	

ûi� raxis
� 	
 �* +

dx:

(27)

By integrating again along y, we obtain the total number of
motors per filament ð

nxlðyÞdy ¼
Nxl

N
: (28)

4 Results
4.1 Comparison of equilibrium and motor-driven systems

In the absence of motors or crosslinkers, our system forms a 2D
nematic liquid crystal phase in constant-volume simulations at
the selected volume fraction (Fig. S1a, S2 and Video S1, ESI†)
which serves as a useful reference state for understanding active
stress generation. The stress produced arises solely from steric
interactions between filaments resulting from their Brownian
motion. When orientationally-aligned filaments undergo side–
side steric interactions, the repulsion tends to separate the
filaments perpendicular to the alignment direction, producing
contractile stress (Fig. 2b, left). End–end steric interactions
tend to separate the filaments along the y direction, producing
extensile stress (Fig. 2b, right). As a result, the pairwise virial
anisotropy density is positive (extensile) near y = �20 due to
end–end steric interactions and negative (contractile) near y = 0
(Fig. 2c and Fig. S2, ESI†). The contributions from different
configurations integrate to zero, giving an isotropic stress
tensor as required for an equilibrium system.

Motor activity drives extensile stress generation by altering
filament interactions. The driven system is typically an active

nematic phase with fluctuating polar lanes (Fig. 3, Fig. S1b and
Video S2, ESI†) characterized by extensile stress production and
the enhancement of the extensile peaks near y = �20 (Fig. 2c).
This occurs over a wide range of motor parameters (all systems
shown in Fig. 3 and for both anti-aligned and polar-aligned
filament pairs28). The periodic box of a constant-pressure simu-
lation elongates in the y direction, a hallmark of extensile stress
production (Fig. 2d and Video S3, ESI†). Motors both alter steric
interactions between filaments and directly produce forces
themselves, with different effects on polar anti-aligned versus
polar aligned pairs.

4.2 Motor-driven sliding enhances extensile interactions of
anti-aligned filament pairs

When we examine active stress generation by anti-aligned
filament pairs, we find that minus end–minus end interactions
are enhanced by motor-driven sliding, leading to a larger extensile
peak; while plus end–plus end steric interactions produce slightly
less extensile stress than at equilibrium (Fig. 4a and b, peaks at
y = �20). Motor sliding drives filament minus-ends first through
the system where they can interact with minus ends of other anti-
aligned filaments (Fig. 4a and Video S4, ESI†). This increases the
stress produced by minus end–minus end steric interactions
relative to an equilibrium system (Fig. 4b and c). In Fig. 4c, we
show integrals of the virial anisotropy density to determine con-
tributions for different filament separations. For the y o � 18
region that includes the minus end–minus end peak, the extensile
stress generated in the active system is approximately twice that in
equilibrium. For the region with y 4 18 corresponding to the plus
end–plus end peak, there is a slight decrease.

Strikingly, in the sliding region �18 o y o 18, the contrac-
tile stress present in the equilibrium system nearly vanishes in
the active system (Fig. 4c, center). As discussed above (Fig. 1a),
when two filaments meet at their minus ends, motors initially
cause contraction until the filaments are side-by-side, and then
extension as the filaments slide apart (visible in Fig. 4b as an
oscillation in the purple curve). The motor density is about 20%
higher on filaments in extending configurations versus contract-
ing (Fig. 4d). Therefore, motor driving adds additional forces
that favor extension, making filament side–side interactions less
contractile. Together these effects produce net extensile stress
for anti-aligned filament pairs.

4.3 Nonequilibrium motor tether relaxation generates
extensile stress on polar-aligned filament pairs

On polar-aligned filament pairs, motors favor the alignment of
filament centers of mass but do not cause significant relative
sliding of a pair (Fig. 4e). Accordingly, we find that motors on
polar-aligned pairs cause only slight changes in the steric inter-
actions: steric stresses produced both by end–end and side–
side steric interactions are both slightly increased compared to
the equilibrium system (Fig. 4f, black versus cyan curves).
However, motor forces cause a significant shift toward extensile
stress production. The leading motor experiences an opposing
force that slows it due to the motor force–velocity relation.
This reduces the crosslink tether y extension and reduces the
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y component of the force exerted by the crosslink, decreasing
filament pair contraction relative to a system with constant-
speed motors (Fig. 4e).

We can understand how this nonequilibrium tether relaxation
alters force production in a mean-field model of fixed filaments.
The motor number density c(s1,s2) depends on filament arc
length sj ( j = 1, 2) and evolves according to

@c
@t
¼ �@ v1cð Þ

@s1
� @ v2cð Þ

@s2
þ kon � koffc; (29)

where vj are the speeds of motor motion, kon is the motor
binding rate, and koff is the unbinding rate. The motor binding
kinetics are modeled as for the BD-kMC simulations (eqn (5)
and (6)), with the additional dimensional factor in the on rate

that makes the binding rate konðrÞ ¼
k0

a2
e�bu rcð Þ; where a is a

typical motor binding site size. For long parallel rods with aligned
centers of mass, the steady-state motor distribution satisfies

0 ¼ �@ v1cð Þ
@s1

� @ v2cð Þ
@s2

þ ge�a s2�s1ð Þ2 � koffc: (30)

Here g = k0ebu0�ad2

/a2, where d is the perpendicular separation of
the two rods, and a = bk/2. In this case, the equation for c and the
velocities are only functions of the motor extension parallel to the
filament axes, ym = s2 � s1. Therefore we find an ODE in ym:

d v1cð Þ
dym

� dðv2cÞ
dym

þ ge�aym
2 � koffc ¼ 0; (31)

which is a first-order linear inhomogeneous ODE in c,

v2 � v1ð Þc0 þ v2
0 � v1

0 þ koff

� 

c ¼ ge�aym

2

: (32)

where the primes denote differentiation with respect to ym.
If motors move at constant speed, v1 = v2 and v1

0 = v2
0 = 0, we

recover the same Gaussian distribution as for static crosslinks
(Fig. 4g):

cst ymð Þ ¼ g
koff

e�aym
2
: (33)

However, when motors instead move with a linear force–
velocity relation, the distribution becomes more concentrated
near zero extension and the shape is controlled by the parameter

Fig. 3 Snapshot phase diagram with varying lr and c. Other parameters found in Table 2. An isotropic bundled state in which long, polar-aligned bundles
are distributed with random orientation throughout the simulation box appears for high motor concentration and relatively small run length (c = 1.0,
lr = 0.04, 0.08). An active nematic state is much more prevalent, appearing for the majority of the parameter sets examined. The active nematic state
contains large, generally short-lived polar domains with relatively few free anti-polar filaments within the domains.
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z = koffFs/(kv0). In this case the motors move with a piecewise
linear force-dependent velocity given by

v Fjj
� 	

¼

v0; Fjj � 0

v0 1þ Fjj
�
Fs

� 	
; �Fs oFjjo 0

0; Fjj � �Fs:

8>>><
>>>:

(34)

The equation for c at steady state can be solved using an
integrating factor method with the integration constant set by
requiring that the solution goes to zero as |ym| - N. The
solution is

Here z = koffFs/(kv0) and the exponential integral function
EnðxÞ ¼

Ð1
1 e�xtt�ndt. When z is large (slow motors or high stall

force), the distribution is qualitatively similar to that of constant-
speed motors. However when zr 1 (fast motors or low stall force),

the distribution develops an integrable singularity as ym - 0.
This indicates a qualitative change in the motor distribution in
which a large population of motors with zero y extension develops,
significantly decreasing the y-direction contracting forces exerted
on filaments. Our analytical results agree well with simulation
results on fixed parallel rods for motor extension distributions
away from the rod ends (Fig. 4g).

The mean-field theory predicts that increasing the motor
stall force will increase z and decrease nonequilibrium tether
relaxation, thereby reducing extensile stress generation. We
tested this in bulk simulations of moving polar-aligned filaments

(all filament plus ends initially point in the same direction). As the
stall force increases, we observe a transition to decreased extensile
stress generation (Fig. 4h). As expected, the crossover point occurs
near z = 1, showing that the mean-field theory qualitatively

Fig. 4 Extensile stress generation by polar anti-aligned (top row) and polar-aligned (lower row) filament pairs. In schematics, lighter shading labels
filament plus ends and color indicates filament plus-end orientation (red up, blue down). (a) Motor-driven sliding of anti-aligned filament pairs tends to
increase steric interactions between filament minus ends and decrease steric interactions between filament plus ends. (b) Virial anisotropy density per
interaction for anti-aligned pairs compared to an equilibrium system with no motors, as a function of y, the pair separation along the nematic director
measured in the polar nematic frame. Black denotes the equilibrium reference system, red the total for the active system with motors, and cyan and
purple the contributions from steric and motor forces, respectively. (c) Integrated virial anisotropy contributions (integrals of curves in panel b) for
equilibrium and active systems. Black denotes the equilibrium reference system, red the total for the active system with motors. (d) Motor density as a
function of filament separation for anti-aligned pairs. (e) Motors on polar-aligned filament pairs exert forces in the alignment direction (Fy) and
perpendicular to the alignment direction (Fx) that tend to contract the filament pair (left). The larger opposing force on the leading motor slows its motion
and makes the tether relax, reducing the y-direction forces (right). (f) Virial anisotropy density per interaction for polar-aligned pairs compared to an
equilibrium system with no motors. (g) Distribution of motor y extension for motors moving on long fixed parallel filaments determined analytically (solid
lines) and from simulations (points). Analytic curves were calculated using the dimensionless parameters d = 1, k = 2, Fs = 6, b = 1, k0 = 1, u0 = 1 + ln 2,
a = 1, and v = 0 (constant speed curve), v = 1 (z = 3 curve), v = 4 (z = 0.75 curve). (h) Variation of extensile stress with stall force for systems of polar-aligned
filaments. Vertical lines indicate stall force values for which z = 1. In simulations, unless otherwise noted both equilibrium and active simulations have a
filament packing fraction f = 0.4157, N = 4000 filaments, and filament aspect ratio r = 20. Active system has motor parameters stall force f = 6.0,
concentration c = 0.5, inverse lifetime k0,m = 1.0, run length c = 0.64, interaction range Rc ¼ 1=

ffiffiffi
2
p

, and Peclet number Pe = 1.358.

c ymð Þ ¼

Fsg
2kv0

Eðzþ1Þ=2 aym2
� 	

ymj j � Fs=k

g
ffiffiffi
p
p

ekoff
2= 4av02ð Þ

2v0
ffiffiffi
a
p ekoff jymj=v0 1� erf

ffiffiffi
a
p

ymj j þ
koff

2
ffiffiffi
a
p

v0

� �� �
Fs=ko ymj j:

8>>>><
>>>>:

(35)
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explains the change in extensile stress generation as a function
of stall force. This comparison confirms that nonequilibrium
crosslink tether relaxation is an important mechanism of extensile
stress generation in our system.

4.4 Contractile stress production by altered motor kinetics or
static crosslinkers

Based on our analysis of nonequilibrium motor tether relaxa-
tion, we predict that altering motor kinetics to increase motor
tether y extension would produce contractile stress for polar-
aligned filaments. We formulated a reversed force–velocity model
in which the leading motor of a pair, which when experiencing a
retarding force from the crosslink spring, moves faster than the
trailing motor (Fig. 5a, Fig. S1c, S4 and Video S5, ESI†). This
mechanism is related to Dasanayake and Carlsson’s observation

of increased motor extension in a simulation model of contractile
actin–myosin gels.46 While motor kinetics of this type have not
been experimentally realized, this is a useful model to test our
understanding of the role of filament steric interactions in stress
generation. We find that although our system remains fluid, the
reversed force–velocity motors lead to reduced extensile stress by
end–end steric interactions and the corresponding generation of
contractile stress (Fig. 5b and Video S6, ESI†). As expected, motor
tethers become more extended in the y direction compared to the
conventional force–velocity model (Fig. 5c).

In actively-flowing nematic phases in the absence of static
crosslinkers, we generically find extensile stress generation.
A key contributor to extensile stress generation is the fluid
nature of the material, in which motor activity enhances minus
end–minus end steric interactions and decreases side–side

Fig. 5 Generation of active contractile stress in systems with altered motor force–velocity relation (top row) or static crosslinkers (lower two rows).
In schematics, lighter shading labels filament plus ends and color indicates filament plus-end orientation (red up, blue down). (a) Schematic of reversed
force–velocity relation model. Bound motors exert forces in the alignment direction (Fy) and perpendicular to the alignment direction (Fx) that tend to
contract the filament pair (left). For motors with a reversed force–velocity relation, the larger opposing force on the leading motor increases its speed,
increasing the motor tether extension and the y-direction forces (right). (b) Virial anisotropy density per interaction for the reversed force–velocity model
compared to an equilibrium system with no motors, as a function of y, the pair separation along the nematic director measured in the polar nematic
frame. Black denotes the equilibrium reference system, red the total for the system with reversed force–velocity motors, and cyan and purple the
contributions from steric and motor forces, respectively. (c) Distribution of motor y extension for the reversed force–velocity model (red) compared to
the conventional force–velocity model (blue). (d) Schematic of active system with static crosslinkers. Addition of static crosslinks partially gels the system,
reducing filament sliding and causing motors to adopt configurations with increased tether extension. (e) Virial anisotropy density per interaction for the
system with motors and static crosslinkers compared to an equilibrium system with no motors. Black denotes the equilibrium reference system, red the total
for the system with motors and crosslnkers, and cyan and purple the contributions from steric and motor/crosslinker forces, respectively. (f) Anisotropic
stress as a function of static crosslinker unbinding rate. (g) Snapshots of a constant-pressure simulation of a system with motors and static crosslinkers
(Video S8, ESI†). The periodic simulation box is adjusted to produce constant pressure and elongates perpendicular to the director (x direction), indicating
generation of contractile stress. Both equilibrium and active simulations have a filament packing fraction f = 0.4157, N = 4000 filaments, and filament aspect
ratio r = 20. Active system has motor/crosslink parameters stall force f = 6.0, motor concentration c = 0.5, motor inverse lifetime k0,m = 1.0, crosslink inverse
lifetime k0,c = 0.01, motor run length c = 0.64, motor/crosslink interaction range Rc ¼ 1

� ffiffiffi
2
p

, and motor Peclet number Pe = 1.358.
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steric interactions relative to an equilibrium nematic. Therefore, we
expect that decreased fluidity will favor the generation of contractile
stress by decreasing filament end–end steric interactions and/or
increasing filament side–side steric interactions. Indeed, the addi-
tion of long-lived static crosslinkers to our system (Fig. 5d) favors
contractile stress generation (Fig. 5e–g, Fig. S1d, S5 and Videos S7,
S8, ESI†). While the system develops complex structure and virial
anisotropy curves, we do find net contractile stress. Increasing the
off rate of static crosslinkers increases fluidity and allows a transi-
tion back to extensile behavior (Fig. 5f).

5 Conclusion

We used a 2D active nematic model of rigid filaments, crosslinking
motors, and static crosslinkers to study mechanisms of active stress
generation. Computing anisotropic stress density allowed us to
determine the role of different filament configurations in stress
generation. For an equilibrium system, filament end–end steric
interactions produce extensile stress and side–side steric interac-
tions produce contractile stress. These effects balance to give an
overall isotropic stress tensor. In motor-driven systems, we typically
find extensile stress generation: for polar anti-aligned filament
pairs, motor-driven sliding enhances extensile minus end–minus
end steric interactions and reduces contractile stress from side–
side interactions. For polar-aligned filament pairs, sliding forces are
relaxed when motors slow under a retarding force. This reduces
motor tether extension and filament pair side–side contraction,
thereby contributing to extensile stress generation. Based on our
understanding of systems with crosslinking motors, we predicted
alterations that would shift the system to contractile. Changing the
motor force–velocity relation to increase sliding forces on polar-
aligned filaments or adding long-lived static crosslinkers both lead
to contractile stress generation.

While one-dimensional bundle contraction or expansion
along the bundle axis and the bulk contraction or expansion
may appear quite different, they are related: both require break-
ing the contraction/extension symmetry shown in Fig. 1a, and
similar mechanisms can lead to both bundle and bulk contrac-
tion.26 A bundle or oriented system that extends along the
bundle axis produces a dipolar stress tensor that drives the flow
of material out along the bundle axis and in perpendicular to the
axis (Fig. 1c). If such dipolar active stress occurs locally in an
orientationally disordered system, particularly if motors or cross-
linkers induce local filament alignment, it leads to bulk contrac-
tion (expansion) in all directions,26 corresponding to a positive
isotropic pressure tensor. A similar connection exists for aniso-
tropic contractile stress and bulk contraction. The same micro-
scopic mechanisms can thus act in both types of systems.

Our work suggests that the balance between end–end and side–
side steric interactions and the nature of motor- and crosslink-
induced forces are determinants of extensile versus contractile stress
generation in nematic motor-filament systems. In our simulations,
extensile stress is typical for actively flowing motor-filament mix-
tures, as observed experimentally for reconstituted microtubule-
kinesin mixtures,10,13,14 while contractile stress is typical for

less-fluid systems with long-lived static crosslinkers, as occurs for
reconstituted actin–myosin bundles.8,9,15,16 This suggests that the
differing fluidities of microtubule–kinesin versus actin–myosin sys-
tems may contribute to their differences in active stress generation.

Could the tuning of steric interactions and fluidity by motors and
crosslinkers we describe be important in actin–myosin systems? Our
assumption of rigid filaments makes the model most relevant to
microtubules, which have persistence lengths of millimeters.1 Actin
filaments are more flexible, and their buckling is established to be
important for actomyosin contractility,7,15,47,48 making our model
not directly relevant to actin–myosin systems. Actin–myosin systems
often exhibit negative isotropic pressure, commonly referred to as
contractility (in contrast to the dipolar contractile stress described
here). Multiple microscopic mechanisms have been proposed as
important to actin–myosin contractility, including nonzero motor
size, crosslink tether elasticity, spatially-varying motor motion, and
filament buckling.5,7,15,26,46,47,49,50 However, the motor- and
crosslink-modulated alterations in steric interactions we describe
could also occur for actin filaments and may complement effects
of buckling in actomyosin gels.

Some experiments have observed that a minimum concentration
of static crosslinkers is necessary for contractility in actin–myosin
systems,5,12,51,52 consistent with our proposal that crosslink-induced
gelation favors contractile stress generation. However, other experi-
ments see contractility in the absence of static crosslinkers,53–55

demonstrating that static crosslinkers are not required for acto-
myosin contractility. Even in these systems, it appears that a
minimum myosin density is necessary to provide sufficient cross-
linking for contractility.50,54 The multiple myosin motors present in
a single myosin filament and their tug-of-war dynamics may allow
some fraction of the myosin motors to play the physical role of static
crosslinkers in our model. Consistent with our model results, it does
appear that sufficient crosslinking to form an actomyosin gel is
important for contractility. In future work, it would be of interest to
consider extensions to our model that would make it relevant to
experimental actin–myosin systems, including longer filaments,
filament flexibility, and varying density.
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