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Abstract

During cell division, microtubules in the mitotic spindle form antiparallel overlaps near the cen-

ter of the spindle. Kinesin motor proteins alter microtubule polymerization dynamics to regulate

the length of these overlaps to maintain spindle integrity. Length regulation of antiparallel overlaps

has been reconstituted with purified microtubules, crosslinkers, and motors. Here we develop a

theory of steady-state overlap length which depends on the filament plus-end motor concentration,

determined by a balance between motor arrival (motor binding and stepping in the overlap) and

motor departure (motor unbinding from filament tips during depolymerization) in the absence of

motor-driven sliding. Assuming that motors processively depolymerize and exhibit altered binding

kinetics near MT plus-ends improves the agreement between theory and experiment. Our the-

ory explains the origin of the experimentally observed critical concentration, a minimum motor

concentration to observe a steady-state overlap length.
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To regulate the size of organisms, tissues, cells, and subcellular structures, biological or-

ganisms must solve fundamental physics problems of measuring and controlling their size.

Cells use molecules that are nanometers in size to sense and regulate lengths of microns to

tens of microns. One elegant method to bridge this separation of scales uses cytoskeletal fil-

aments, which are structurally polar, micron-scale quasi-one-dimensional polymers tunably

constructed from nanometer-scale building blocks. Length regulation of cytoskeletal fila-

ments is biologically important for determining organelle and cell size [1–4]. Motor proteins

can regulate filament length by binding to filaments, walking toward one end, and altering

filament polymerization dynamics at the tip: because accumulation of motors at the tip can

depend on filament length, this mechanism allows length sensing and regulation [5–11].

In addition to length regulation of single filaments, overlaps between two filaments are

regulated in length. For example, the mitotic spindle that segregates chromosomes during

eukaryotic cell division is formed from polymers called microtubules (MTs) in a bipolar

structure, with MTs from each half of the spindle meeting in its center and forming stable

antiparallel overlaps. These overlaps are important for spindle force generation and are

regulated in length [12–15]. Previous work has examined how antiparallel sliding motors

such as kinesin-5 motors, which tend to separate overlapping filaments, and crosslinking

proteins from the PRC1/Ase1/MAP65 family, which tend to increase overlap length [16],

can balance to give stable overlaps [17–19]. Length-regulated overlaps can be created in

vitro via crosslinkers and motors that bind to the crosslinkers and exert force on them [20–

22]. In addition, Bieling and Surrey experimentally demonstrated regulated antiparallel MT

overlaps in a system in which little to no sliding occurs [23]. In this system, length regulation

appears to occur analogously to the single-filament case by kinesin motor proteins that are

recruited to the overlap by crosslinkers, then walk to MT plus-ends and slow their growth

[23]. Therefore, minimal ingredients of growing MTs, crosslinking proteins, and motors can

produce antiparallel overlaps of stable length. However, the precise mechanisms by which

motor activity at the MT plus ends leads to stable overlap length are not clear.

Theoretical models of motor protein traffic and length regulation have built on the totally

asymmetric simple exclusion process (TASEP) [24–27], and have successfully predicted fea-

tures of motor density profiles on MTs [28, 29]. For motors moving left to right on a single

filament, the density profile depends on the boundary conditions, leading to three phases:

the low-density phase (left-boundary dependence, abbreviated IN), the high-density phase
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(right-boundary dependence, abbreviated EX), and the maximum current phase (abbrevi-

ated MC) [24, 25, 30]. If the length of the filament is dynamic, MT polymerization creates

a different boundary condition which drives the overall density profile to one of these three

phases, and might make the steady-state length unstable [10, 11, 31–33]. Therefore, it is

interesting to examine the physical properties that make overlap length stable or unstable.

Here we develop a theory of overlap length regulation induced by motor proteins that

shorten MTs at their plus-ends, inspired by Bieling and Surrey’s experiments [23]. In our

model, motors bind to and unbind from sites on the overlap, step toward the MT plus-end

(if not sterically blocked by another motor), and switch between filaments [34, 35] (fig. 1A).

Entry and exit rates characterize how motors move into/out of the overlap. MTs grow at

their plus-ends in the absence of motors, but can shorten due to motor activity (fig. 1B).

A steady state is reached when the average number of motors entering the overlap equals

the number leaving. The steady-state overlap length therefore depends on motor density at

MT plus-ends, which can be described by balancing the inward and outward fluxes at the

ends [10, 11] or by a total binding constraint [34, 35]. Since the motor exit rate depends

on microtubule shrinking, higher bulk motor concentration leads to shorter overlap length.

Remarkably, we find that most simple mechanisms of motor-catalyzed MT shortening do

not quantitatively match the experimental data [23]. We identify one mechanism that can

explain the data, motivated by recent work that has identified altered motor binding kinet-

ics that can favor binding at MT plus-ends [36–43]. Such altered binding kinetics, along

with processive depolymerization of the MT, increases the effective motor density in the

overlap and changes the dependence of the steady-state overlap length on the bulk motor

concentration.

We consider two antiparallel MTs with overlap length L (fig. 1). Each site i on each

MT can be occupied by a motor (τ̂i = 1) or empty (τ̂i = 0). Motors in the overlap step

and are sterically excluded in a totally asymmetric exclusion process (TASEP), bind and

unbind according to Langmuir kinetics (LK), and switch MTs [23, 34, 35]. For simplicity, we

normalize rates by the motor speed, so the stepping rate is 1. Then the mean-field dynamics
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FIG. 1. Model schematic. Overlap sites in white, MT sites outside overlap in grey. (A) Motor

dynamics, including binding/unbinding, plus-end-directed stepping, and switching in the bulk. At

boundary sites, overlap entry (minus-end) and exit (plus-end) occur. (B) Microtubule dynamics

in the overlap. Growth and motor-dependent shrinking occur. R/L label right/left direction of

motor motion; +/- label MT plus=/minus-ends.

of the average motor occupancy 〈τ̂i〉 = τi satisfy

dτi,R
dt

= τi−1,R(1− τi,R)− τi,R(1− τi+1,R) + konc(1− τi,R)

− koffτi,R − sτi,R(1− τi,L) + sτi,L(1− τi,R) (1)

dτi,L
dt

= τi+1,L(1− τi,L)− τi,L(1− τi−1,L) + konc(1− τi,L)

− koffτi,L − sτi,L(1− τi,R) + sτi,R(1− τi,L), (2)

where i labels the site on the filament, R,L label the orientation of the MT, konc is the

normalized motor binding rate, koff the unbinding rate, and s the switching rate. Parameter

values were estimated from previous measurements [23] or comparison of our simulations to

the data [34] (table S1 [44]).

The overlap length is dynamic and regulated by motor occupancy at the MT plus-ends

[23]. In the absence of motors, MTs grow with speed u, but the growth speed is lowered
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if the plus-end site is occupied by a motor. We consider several possible models for motor

activity at the plus-end. Perhaps the simplest is density-dependent shrinking [9–11, 45],

which in the mean-field approximation gives an equation for MT length L

L̇ = u− wτe, (3)

where L̇ is the time derivative of the overlap length and τe is the average motor density

at the plus-end. Other possible models that depend only on the end occupancy include

density-dependent growth inhibition L̇ = u(1 − τe) − w, and density-dependent shrinking

and growth inhibition L̇ = u(1 − τe) − wτe. However, all of these models lead to a scaling

of steady-state overlap length with bulk motor concentration of the form L ∼ c−1, which

contradicts the experimental results [23].

To see this discrepancy, we analyze the linearized mean-field equations in the continuum

limit τi ' ρ(x). The full solution contains approximately linearly varying regions separated

by domain walls of negligible width [46], allowing us to solve the linearized equations and

treat domain walls as discontinuous jumps obeying a matching condition [26]. This allows an

analytic analysis of the steady-state overlap length. At steady-state the linearized equations

are [35]

0 = −∂ρR
∂x

+Konc(1− ρR)−KoffρR − SρR + SρL, (4)

0 =
∂ρL
∂x

+Konc(1− ρL)−KoffρL + SρR − SρL, (5)

defined on an overlap of length L with x between −L/2 and L/2. The density at the plus-

end of each filament is set to ρ, giving boundary conditions ρR(−L/2) = 0, ρR(L/2) = ρ,

ρL(−L/2) = ρ, ρL(L/2) = 0 [47]. The binding/unbinding and switching rates are then

Konc = N
l
konc, Koff = N

l
koff , and S = N

l
s, where N is the total number of sites in a

reference length l. We set the reference length l to be the length of a physical size of a

tubulin dimer, the minimal subunit of a microtubule. We define the total and difference

densities ρΣ = ρR + ρL and ρ∆ = ρR − ρL, which and find the general solution to the linear

equation ρΣ = A cosh(λx)+2ρ0, where A = ρ−2ρ0

cosh(λL/2)
, λ2 = (Konc+Koff +2S)/(Konc+Koff),

and ρ0 = Konc/(Konc+Koff). The boundary density ρ is determined by motor flux balance

at site e [10]:

dτe
dt

= ρ(1− ρ)− L̇ρ− wτe, (6)
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FIG. 2. Comparison of the experimental data [23] with the L ∼ c−1 scaling predicted by simple

length regulation mechanisms.

where ρ(1 − ρ) − L̇ρ is the flux from the bulk, and wτe is the flux due to MT shortening.

The system has a total binding constraint [35] (figure S1), which comes from balancing

net motor entrance into and exit from the overlap. For the continuum equations, this

constraint is
∫ L/2
−L/2(ρR + ρL) dx = 2Lρ0 − 2u

Konc+Koff
, where we have assumed the density-

dependent shrinking model of equation (3) at steady state, so the rate of motor exit from

the overlap due to filament shortening is wτe = u [44]. Then the steady-state overlap length

is determined by the bulk motor concentration∫ L/2

−L/2
ρΣ dx =

2(ρ− 2ρ0)

λ
tanh(λL/2) + 2ρ0L

= 2Lρ0 −
2u

Konc+Koff

, (7)

which can be inverted to relate the overlap length to the model parameters

L =
2

λ
tanh−1

[
λu

(Konc+Koff)(2ρ0 − ρ)

]
. (8)

The scaling of the steady-state overlap length with bulk motor concentration can be

derived through a Taylor expansion

L ≈ 2u

(Konc+Koff)(2ρ0 − ρ)
∼ 1

c
. (9)

The scaling L ∼ c−1 differs significantly from the experimental results [23] (fig. 2). All three

simple models of the end dynamics discussed above have this same scaling, suggesting that

they are not sufficient to explain the data.
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A Filament growth

B Filament shortening

+ +

Motor tracks growing end

Motor moves backward Motor unbinds
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FIG. 3. Schematic of growing and shrinking mechanisms considered in the model. (A) Filament

growth. The sites shown on the left represent site e− 1. In this mechanism, the motor moves to a

newly added site immediately. (B) Filament shrinking. The sites shown are the last site e and the

adjacent, second-to-last site e− 1. Processive depolymerization occurs when site e− 1 is occupied

but the site behind it is empty, and the motor moves backward as the final site is removed.

This discrepancy motivated consideration of other possible mechanisms by which motors

at the plus-end might shorten the MT. MT structure is altered near the plus-ends, which

can be recognized by kinesin motors [36–43]. Therefore we considered site-specific motor

binding and unbinding rates at the end site e and end tracking with MT polymerization (fig.

3). We also consider processive depolymerization, controlled by the MT shrinking rate and

the occupancy of the site adjacent to the end, which we label site e−1 with occupancy τe−1.

In this model, if site e − 1 is occupied, the motor at end site unbinds as the MT shortens,

while if site e− 1 is unoccuped, the end motor moves backward to the previous site as the

MT shortens (fig. 3). In addition, MT length dynamics are controlled by site e− 1 adjacent

to the end. i.e., L̇ = u− wτe−1. The mean-field time evolution of τe is then

dτe
dt

= kon,endc(1− τe)− koff,endτe, (10)

where c is the bulk motor concentration, and kon,end and koff,end are the on-rate constant and

off-rate. At steady state, τe =
kon,endc

kon,endc+koff,end
. If depolymerization is processive, the site e− 1

mean-field occupancy is determined by

dτe−1

dt
= ρ(1− ρ)− L̇ρ− wτe−1

+ wτe−1(1− ρ)(1− kon,endc

kon,endc+ koff,end

), (11)
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FIG. 4. The steady-state overlap length as a function of bulk motor concentration. The green-

dashed curve is from the linear model, and the black curve is the theoretical prediction using phase

space flow[35] (see the main text for the detail description). The critical concentration of the black

curve is around 2.2 nM. The shrinking rate is 50 µm min−1. Other parameters are the reference

values of table S1.

where wτe−1−wτe−1(1− ρ)
(

1− kon,endc

kon,endc+koff,end

)
is the flux due to MT length dynamics, and

the other terms are similar to those in equation (6). For small ρ, the steady-state outward

flux becomes u
kon,endc

kon,endc+koff,end
and flux balance requires that ρ(1− ρ) = u

kon,endc

kon,endc+koff,end
.

Using this linearized mean-field model with small-boundary density to determine the

steady-state overlap length, we find that the total binding constraint is 2Lρ0+
2u

kon,endc

kon,endc+koff,end

Konc+Koff

[48]. We then determine the steady-state overlap length (fig. 4), either in the linearized model

(dashed green curve) or in the full nonlinear model using phase-space flow to numerically

connect the boundary conditions [35] (black curve, see fig. 5). The blue points show the ex-

perimentally measured overlap lengths [23] and the red points results of kinetic Monte Carlo

simulations. This version of the model shows excellent agreement with the experimental

data.

The strong agreement between the simulations and mean-field model may be surprising,

given previous work: the variable length of the overlap creates an effective boundary condi-

tion on the bulk overlap, where the balance between the boundary and the motor flux from

the bulk creates a domain wall. This is characteristic of TASEP models [24–27]. Previous

work has argued that the strong correlation between two nearby sites around the domain
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FIG. 5. Illustration of steady-state overlap length computation using the phase space flow. Black

arrows indicate the local phase space flow in the ρR − ρL plane; the black line is the flow line that

crosses the Langmuir isotherm. The red curve is the path from (ρR(−L/2), ρL(−L/2)) = (0.125, 0)

to (ρR(L/2), ρL(L/2)) = (0, 0.125); the integrated length of this curve is the steady-state overlap

length [35].

wall leads to a failure of the mean-field description [24, 25, 27]. However, in our model the

binding and unbinding rates at the end are relatively large (compared to the bulk binding

kinetics) at site e, and therefore the correlation between τe−1 and τe is significant only when

the shrinking rate is high. In addition, the motor density ρ(L) at the other side of the

domain wall is usually small (especially when the shrinking rate is large), so the mean-field

description is a good approximation.

Our theory predicts that a steady-state overlap length cannot occur if the motor density

is too small. The phase-space method gives a natural interpretation of the minimum motor

concentration required for a steady-state overlap: when the boundary condition passes the

Langmuir isotherm point, the overlap length required to satisfy the boundary conditions

becomes infinite. Similarly, in the linearized approximation the overlap length diverges at

the critical concentration. The calculated critical concentration is approximately 2 nM,

comparable to the result found experimentally [23].

Previous work has established the Extremal Current Principle to determine motor-density
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profiles in the limit that binding and unbinding can be neglected (conserved particle num-

ber) at domain walls [10, 30, 49, 50]. The ECP allows identification of phase boundaries

between the low-density, high-density, and maximum-current phases of the overlap model

(see Supplementary material). This analysis shows that a steady-state overlap length oc-

curs only in the low-density phase and for a restricted range of possible MT growth speeds.

Since steady-state overlaps occur for the IN phase, the domain wall is near the end of the

overlap. This implies that the length between the two domain walls (one at each end) is

approximately equal to the overlap length, which makes the length predicted in equation

(8) nearly equal to the overlap length. In the case of the purely density-controlled model

(with no effects of the site adjacent to the end), u is independent of motor concentration and

therefore ρ is independent of the bulk motor concentration. However, a motor-dependent u

will alter the scaling of ρ with the bulk motor concentration. Dependence on the occupancy

of the site adjacent to the MT end as we propose is one way this could occur.

In this article, we studied the length regulation of MT antiparallel overlaps in a model

with motor motion and steric exclusion (TASEP), binding kinetics (LK), and switching

between filaments. We used both mean-field continuum equations and kinetic Monte Carlo

simulations to solve the model. Extension of the model to include plus-end-specific binding

kinetics and processive depolymerization allows both the simulation and mean-field solutions

agree with the experimental results [23] (fig. 4).
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