5 Washington Place, Office 612 NYU Department of Philosophy New York, NY 10003 zee.perry@nyu.edu (215)-262-3126 www.zrperry.com

Zee R. Perry

Employment

2016–Present Andrew W. Mellon Foundation Postdoctoral Associate Department of Philosophy, Rutgers University, New Brunswick

EDUCATION

2009 - 2016	Ph.D. in Philosophy, New York University.
	Dissertation: Physical Quantities: Mereology and Dynamics
	Committee: Tim Maudlin (chair), Cian Dorr, Hartry Field, Shamik Dasgupta (ex-
	ternal, Princeton)
2007 - 2009	B.A. in Philosophy, Rutgers University Summa Cum Laude.
2005 - 2007	Moravian College

Areas of Specialization

Metaphysics, Philosophy of Physics

Areas of Competence

Philosophy of Science, Philosophy of Art, Logic

Fellowships and Awards

2015 - 2016	Mellon Dissertation Fellowship, NYU
2015	Student Senator's Council Conference Funding Travel Award, NYU
2015	Outstanding Teaching Award, NYU
2014	Graduate School of Arts and Sciences Dean's Student Travel Grant, NYU
2009 - 2014	MacCracken Fellowship, NYU

PUBLICATIONS

Forthcoming "What the Humean Should Say about Entanglement" (with Harjit Bhogal). Noûs 49, (3) (Forthcoming) http://philpapers.org/rec/BHOWTH
 2015 "Properly Extensive Quantities". Philosophy of Science. University of Chicago Press. Vol. 82, No. 5. Chicago, Il. (2015). http://philpapers.org/rec/PERPEQ

UNDER REVIEW OR IN PROGRESS

"Problems for a Dynamic Theory of Quantities" "Mereology and Metricality" "Additivity and Dynamics"

PRESENTATIONS AND COMMENTARIES ('I'=INVITED)

Dec 2015	"How to be a Substantivalist Without Getting all Shifty About it" Causation and
	Modality Workshop. University College London. (I)
Dec 2015	"How to be a Substantivalist Without Getting all Shifty About it" Conference on
	Fundamentality. City University of New York (CUNY) Graduate Center. (I)
July 2015	"Substantivalism Without the Shiftiness" Metaphysics of Science Summer School at
	Helsinki University.
Fall 2014	"Intensive and Extensive Quantities" Biennial Meeting of the Philosophy of Science
	Association. Chicago, IL.
July 2014	"Intensive and Extensive Quantities" British Society for the Philosophy of Science.
	Cambridge, UK.
$May\ 2015$	"Additivity and Dynamics" The Metaphysics of Quantity Conference. New York
	University. (I)
Spring 2014	"Quantities, Measurement, and Mereology" Yale MAP (Minorities and Philosophy)
	Speaker Series. (I)
Fall 2013	Comment on: "Fundamental Properties of Fundamental Properties" by Maya Eddon
	at NYSWIP Tribute to Ruth Barcan Marcus. (I)
Spring 2013	Comment on: "Quantum Entanglement, Bohmian Mechanics, and Humean Superve-
	nience" by Elizabeth Miller at NYU-Columbia Graduate Student Conference. (I)
Spring 2013	"Concatenating Intensive Quantities" New York Metaphysics Bootcamp. Fall 2012. (I)
	& NYU Dissertation Seminar. (I)
Spring 2012	"The Counterfactual Account of Interactive Art" NYU Washington Square Circle. (I)

TEACHING

as Instructor

$\operatorname{Fall} 2016$	Introduction to Symbolic Logic, Rutgers
Summer 2013	Metaphysics, NYU
Summer 2012	Aesthetics, NYU

as Preceptor (Teaching Assistant)

Spring 2015	Philosophy of Physics (with Tim Maudlin)
Spring 2013	Ancient Philosophy (with Johnny Cottrell)
Fall 2012	Central Problems In Philosophy (with Helen Yetter Chappel)
Spring 2012	Central Problems In Philosophy (with Katie Elliot)
Fall 2011	Philosophy of Biology (with Laura Franklin-Hall)

PROFESSIONAL SERVICE

May 1–3
Co-Organizer (with Erica Shumener), New York Metaphysics of Quantity Conference, NYU/New York Institute of Philosophy. quantitiesconference.wordpress.com
2013–Present
PhilPapers.org "Quantities" category editor, 2013-Present
2013–2014
Rutgers Cosmology Project, Graduate Assistant Organizer and Co-moderator of Cosmology Project blog: http://philocosmology.com/
2011–2013
New York "Metaphysics Bootcamp" Workshop, Co-Founder and Organizer. Reading Groups Organized or Co-Organized: Metaphysics (Causation), Metaphysics of Quantity, Philosophy of Science (Space and Time), Philosophy of Science (General), Aesthetics

DEPARTMENTAL SERVICE

2013 - 2015	Diversity, Inclusivity, and Climate Committee, NYU
2013 - 2014	Colloquium Committee, NYU
2012 - 2013	Curriculum Committee, NYU
2014	NYU Prospective Student Visit, Co-organizer
2010	NYU-Columbia Graduate Student Conference, Co-organizer
2010 - 2014	NYU-Columbia Graduate Student Conference, Referee

GRADUATE COURSES

Associated Writing (Logic, Ontology and Mathematics) – Hartry Field, NYU Hyperintensional Metaphysics – Shamik Dasgupta, Princeton. Aesthetic Psychology – Jesse Prinz, CUNY. Associated Writing (Quantities) – Ted Sider, NYU Topics in Metaphysics (Fundamentality) – Karen Bennett, NYU. Kant's Critique of Judgement – Beatrice Longuenesse, NYU. Topics in Philosophy of Physics – Tim Maudlin, Rutgers. Classical and Non-Classical Logics – Hartry Field, NYU. Advanced Introduction to Philosophy of Language – Imogen Dickie, NYU. Philosophy of the High Level Sciences – Michael Strevens, NYU. Proseminar – Instructors: (Fall) Ted Sider and Hartry Field; (Spring) Paul Horwich and Beatrice Longuenesse, NYU.

Classics in Aesthetics – Peter Kivy, Rutgers.

References

Please contact Anupum Mehrotra (am3565@nyu.edu) to request references.

Tim Maudlin Professor of Philosophy New York University twm3@nyu.edu Cian Dorr Professor of Philosophy New York University cian.dorr@nyu.edu Béatrice Longuenesse (teaching) Silver Professor of Philosophy New York University bl41@nyu.edu

Hartry Field University Professor and Silver Professor of Philosophy New York University hf18@nyu.edu Shamik Dasgupta Assistant Professor of Philosophy Princeton University shamik@shamik.net

Dissertation Summary

Title: Physical Quantities: Mereology and Dynamics

Zee R. Perry

Physical quantities—things like length, mass, charge, and volume—are commonly represented in science and everyday practice with mathematical entities, like numbers and vectors. We explain why I cannot reach the iced coffee 3ft away from me on the table by citing the fact that my arm is 2.5ft long and 2.5 < 3. However, we don't think that the '<' relation between the numbers 2.5 and 3 is directly explaining anything about my arm and the coffee. Rather, this mathematical fact explains indirectly by representing some directly explanatory *physical* feature of the system *itself*. A satisfactory account of the physical world should give us an understanding of the underlying physical structure in virtue of which these mathematical representations are successful. In my dissertation, I defend a two-pronged account of quantity that analyzes this structure in terms of how that quantity traffics with the rest of the physical world. In the first half (Chapters 1 and 2), I argue that, for some quantities—which I call "properly extensive"—this structure is grounded in their relationship to the *parthood*. The second half (Chapters 3 and 4) concerns the relation between physical quantities and dynamics, and argues that all *other* quantities have their structure only derivatively, in virtue of their dynamical connections to properly extensive quantities according to the physical laws.

There is a commonly accepted distinction between *intensive* quantities (like density or temperature), for which the temperature, say, of a whole is, in general, not the "sum" of the temperatures of its parts, and *extensive* quantities which *are* additive in this way. In Chapter 1, I argue that there are more ways a quantity can impact what parts an object can have, or what those parts must be like, than what's captured by the intensive/extensive distinction, and introduce the notion of a *properly extensive* quantity. Quantities like mass and charge are extensive but not *properly* so, since they are "additive" but not "subtractive": If an object can be divided into massive parts, then its mass must be the "sum" of the masses of those parts. However, the converse is not necessarily true: A muon, for instance, has a greater mass than an electron but has *no* part as massive as that electron (since they are both fundamental particles). In contrast, length is *properly extensive*: A line's length is the "sum" of l_{α} and l_{β} if and only if it is divisible into two parts of length l_{α} and l_{β} respectively. Quantities like length, volume, and temporal duration are, I argue, properly extensive.

Chapter 2 defends an account of these quantities according to which predicates like "shorter than" and "(not as long as, but) as long as a part of" are not just necessarily coextensive (as established in Chapter 1), they're expressions of the *same relation*. I call this the Mereological-Reductive (M-R) account of properly extensive quantities, and present the M-R account of volume in formal detail. The account defines the relations that constitute volume's quantitative structure in terms of mereological relations and the sharing of intrinsic volume properties. I give mereological definitions for volume ordering and summation relations as well as a schema for the many volume *ratio relations*, like "*n*-times the volume of". I show that this definition schema extends to capture even *irrational* volume ratios, like " π -times the volume of". The M-R account's definitions necessarily satisfy all the formal features needed to justify representation with real numbers, and they do justice to the intuition that volume ordering, summation, and ratio relations are *intrinsic* to their relata. In contrast, I argue that competing theories of quantitative structure, like those defended by Field (1984) and Mundy (1987), cannot give a fully general account of volume metric relations without giving up intrinsicality.

Chapters 3 and 4 concern quantities which are not properly extensive, like mass, charge, temperature, density, etc. We cannot ground these quantities' structure in the physical makeup of their instances (as the M-R account in Chapter 2 does for properly extensive ones) because their quantitative structure is not reflected in the parthood structure of their instances: e.g., two massive point particles may stand in the " π -times as massive as", or the "twice as massive as" or any of countless other mass metric relations, despite both having no proper parts.

Chapter 3 considers a theory of mass—defended by Mundy (1987), Eddon (2013), and others—which grounds mass's metric structure in the distribution of primitive ordering and summation relations between mass *properties*. The Mundy-Eddon view guarantees enough structure to distinguish the mass ratio relations, since the ordering and summation relations hold between necessary existents (viz. the mass properties) and obey necessary axioms. I argue that this view solves the problem at the cost of detaching the metaphysics of mass's quantitative structure from its role in the physical world. For instance, the account can explain why a massive composite *instantiates* the property 5g, and it (plus some dynamical laws) can explain why it *behaves* roughly like how the dynamical laws predict a 5g simple would. But these two explanations have almost *no* overlap. This, I argue, means the view cannot explain why certain facts about mass's primitive, second-order quantitative structure so closely track the actual dynamics of massive bodies.

Chapter 4 argues that the best chance for a viable account of non-properly extensive quantities ('non-' takes wide scope) requires a hierarchical picture—i.e. one where we define one quantity's structure in terms of some *other* quantity, whose structure is taken as given. Specifically, I defend an account which grounds the structure of non-properly extensive quantities in their dynamical connections to the properly extensive ones, as established by the physical laws. Here the difference between cases where, e.g., a pair of point particles stand in " π -times as massive as" and one where they stand in "twice as massive as" is determined by the degree of difference in the accelerations to arguments like those of McKinsey, Sugar, and Suppes (1953) which purport to show that classical mass cannot be defined in terms of the other primitives of Newtonian mechanics without ruling out or conflating distinct physical possibilities.

WORKS CITED IN SUMMARY

- [1] Eddon, Maya (2013). "Fundamental Properties of Fundamental Properties". In Karen Bennett Dean Zimmerman (ed.), Oxford Studies in Metaphysics, Volume 8. 78–104.
- [2] Field, Hartry (1984). "Can We Dispense with Space-Time?" PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1984: 33 - 90.
- [3] J. C. C. McKinsey, A. C. Sugar, and Suppes, Patrick (1953). "Axiomatic Foundations of Classical Particle Mechanics". *Journal of Rational Mechanics and Analysis* Vol. 2, No. 2, 1953
- [4] Mundy, Brent (1987). "The Metaphysics of Quantity". Philosophical Studies 51 (1): 29 54. 1987