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Development and use of validated assessments in physics provide insight into student un-

derstanding of physics concepts and can be utilized to track student learning across time and

instructional strategies. These tools can be used to gauge the efficacy of interventions designed to

support students and persistence, and allow instructors to make data-based decisions about how

they structure their classrooms to support student learning. Unfortunately, gaps in performance

based on demographic groups can often appear in physics assessments. However, some statistical

approaches can allow for identification of bias in assessment items, allowing for potential to reduce

these “performance gaps.” Additionally, studying how student identity influences their experiences

can inform how these gaps are understood if they remain after bias within items has been addressed.

This dissertation reports two distinct but complementary studies. The first study discusses

development of a novel upper-division thermal physics assessment composed of coupled, multiple-

response items. This study includes assessment item development and refinement; assessment

implementation; and assessment validation, with an explicit focus on differential item functioning

and item response theory in addition to classical test theory approaches. The second, qualitative

study focuses on how students’ experiences in STEM vary based on race and gender. This includes

investigations of perceptions of professor care and instruction styles; sense of belonging; and student

perceptions of how race and gender impact those pursuing STEM. These studies in combination can

inform practices intended to support students of all backgrounds in pursuing STEM and physics

degrees.
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Chapter 1

Introduction

Validated assessments provide useful insight into student understanding of physics concepts.

These assessments are often used to investigate the efficacy of instructional strategies, which

can inform instructional changes, interventions, and curriculum development to improve students

learning. Several introductory physics assessments exist, such as the Force Concept Inventory

(FCI) [1] and the Force and Motion Conceptual Evaluation (FMCE) [2]. Upper-division assess-

ments, such as the Colorado Upper Division Electrostatics Diagnostic - Coupled Multiple Response

(CUE-CMR) [3], are becoming increasingly popular. Despite thorough validation processes for the

majority of available physics assessments [4], performance differences (or “gaps”) between men and

women have been detected on several, including the FCI [5, 6]. Use of various techniques can allow

for minimizing these gaps by identifying which items contribute most to their appearance. Comple-

mentary insight into understanding these gaps can be provided from investigating the influences of

identity (e.g., racial and gender identity) on students’ experiences while pursuing STEM degrees.

This allows for better understanding of other, non-academic factors that can influence performance.

Despite the widespread presence of assessments in the domains of forces, motion, and elec-

tromagnetism at both introductory and upper-division levels, limited assessments are available for

thermal physics at the upper-division level. In particular, to date there are no upper-division ther-

mal physics assessments, nor any assessments that address both statistical mechanics and classical

thermodynamics. Thermal physics, which includes both thermodynamics and statistical mechanics,

is a core course required for attaining a physics bachelor’s degree at most institutions. However, a
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shortage of validated assessments in the realm of upper-division thermal physics presents challenges

in measuring student understanding of this content to inform course transformations. In order to

improve course instruction and student outcomes, researchers and instructors must first have some

method of evaluating what students know and are able to do with that knowledge.

Developing an upper-division thermal physics assessment is a challenging task. One factor

influencing this is the varying nature of content-foci across different thermal physics courses. Ad-

ditionally, an ideal upper-division thermal physics assessment would capture student reasoning in

addition to knowledge of the answer to multiple-choice questions. Though free-response (FR) assess-

ments can capture rich reasoning patterns, they are harder to score in a streamlined way. One way

to bypass the need for FR items while still soliciting student reasoning is to utilize coupled, multiple-

response (CMR) items, which capture reasoning through mutliple-response questions [7]. To date,

we know of one CMR-based, upper-division, content-based physics assessment—the CUE-CMR [3].

However, CMR-based assessments to address lab skills, such as the Physics Lab Inventory of Critical

Thinking (PLIC) [8] and Modeling Assessment for Physics Laboratory Experiments (MAPLE) [9]

are also available or under development.

Most validated physics assessments are analyzed using classical test theory (CTT) approaches.

These analyses are sufficient for the format and uses of assessments thus far, but have limitations.

To address these limitations, more robust techniques such as item response theory (IRT) can be

employed. IRT approaches, particularly the one-parameter logistical (Rasch) model, offer advan-

tages over traditional CTT analyses. In particular, the mathematics of the Rasch model allow for

invariant scales for both student performance and item difficulty measures, making comparisons

across different administrations more reliable. This is due to the reliance on sample population for

CTT, which is less of a factor for Rasch analyses. This has important implications for analyses

of differential performance based on demographic groups, as most assessments are piloted in large

departments and physics is predominantly White and male [10].
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Analysis of gender- and race-based performance gaps are rarely done during the development

process of physics assessments. These types of analyses can aid in the identification of bias in

assessment items. Biased items are questions characterized by a factor other than ability (such

as gender or race) affecting how likely one is to answer a question correctly [5]. Appearance of

bias in assessment items is problematic because it can mislead one in their conclusions or weaken

inferences that can be made from their results. A common way to identify possible bias in items

is differential item functioning (DIF). Some researchers have investigated the FCI using DIF or

similar techniques [5, 6], which has resulted in identification of several items that disadvantage

women. Some work has suggested revising prompts on the FCI to include more familiar contexts

can address bias and its resulting performance differences (e.g., ref [11]). This implies bias can be

addressed or minimized during item development if it is identified early.

Even when bias in test items is addressed, performance differences across race and gender may

still appear. Analysis of course environments may be one lens to view these differences through,

as active-learning classrooms have been shown to improve student learning in STEM courses as

measured by similar assessments [12]. Improving instructional methods may be one way to address

performance differences in STEM classrooms, as some have suggested [13].

Even if performance differences remain after accounting for instructional styles, instead of

concluding some races or gender are more/less capable, one can view these differences through the

lens of identity-based experiences. In addition to evidence of performance differences on assessment,

there is also a large body of work evidencing people of different races and gender encounter different

experiences in STEM due to their demographic identities. For example, women and students of color

consistently report a lower sense of belonging in college and STEM compared to men and White

students [14, 15, 16], which has been linked to overall course performance and persistence [16, 17, 18].

Despite the large body of literature documenting racialized and gendered experiences, little work

has investigated whether students are aware of the impact of race and gender in STEM.

This dissertation presents two studies—one related to thermal physics assessment and one

related to race- and gender-based experiences in STEM. The work in the latter part of the disser-
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tation can inform the ways in which performance differences on validated assessments in physics

are interpreted. Additionally, this work emphasizes the importance of considering race and gender

during assessment development, such that bias can be addressed early on and minimize problematic

takeaways from performance differences.

Part 1 of this dissertation (Ch. 2-Ch. 5) describes the development of an upper-division ther-

mal physics assessment, and begins with a presentation of relevant background information (Ch. 2).

Assessment item development is described in detail (Ch. 3), emphasizing relatively new techniques

used, such as facilitating a wide range of input on content coverage and incorporation of race- and

gender-based analyses to identify potential bias in items early on. Preliminary validation methods

are discussed (Ch. 4), including CTT analyses along with novel Rasch analyses applied to CMR

items, an avenue of validation that has yet to be deeply explored for CMR items. Part 1 con-

cludes with a summary of presented work and discussion of future work (Ch. 5). Part 2 of this

dissertation (Ch. 6-Ch. 9) focuses on various factors contributing to retention of underrepresented

groups in STEM, particularly women and some people of color. After a presentation of background

literature (Ch. 6), analyses are presented, which include perceptions of STEM course environments

(Sec. 7.1); perceptions of professor care (Sec. 7.2); student sense of belonging in STEM (Sec. 7.3);

and perceptions of race and gender impacts in STEM (Ch. 8). Part 2 concludes with a summary of

presented work and discussion of implications (Ch. 9). The dissertation concludes with a discussion

of the two presented projects, including their connections and implications (Ch. 10).

These studies in combination inform the ways in which assessments are developed and how

their results can be interpreted, even if performance differences do appear between groups. These

studies inform best practices for developing and validating upper-division CMR-based assessments,

and add to the body of literature regarding influences of race and gender on STEM experiences.

Work presented in Ch. 3 was published in Physical Review PER [19]. Work presented in Ch. 7 and

Ch. 8 was published in the International Journal of STEM Education [20, 21, 22].



Chapter 2

Background: Upper-Division Thermal Physics Assessment

Part 1 of this dissertation describes the process of developing an upper-division thermal

physics assessment, presenting the process of item development for the assessment (Ch. 3) as well

as validation of the assessment (Ch. 4). In this chapter, relevant background from the literature is

presented, including motivation for development of the assessment (Sec. 2.1); literature regarding

thermal physics content understanding of students (Sec. 2.2.1); and the current status of thermal

physics assessment (Sec. 2.2.2). Additionally, this chapter includes an introduction to coupled,

multiple-response items (Sec. 2.3) and a summary of validation approaches used for this study

(Sec. 2.4). A portion of the work presented in Part 1 was published in Physical Review PER [19].

2.1 Motivation

To date, there currently exists no upper-division thermal physics assessment, and filling this

gap is no easy task. Creating an assessment that can provide data to guide instructors is a challenge

for upper-division thermal physics because, anecdotally, the material covered in upper-division

thermal physics courses often varies between instructors and across institutions. For example,

some instructors teach thermodynamics, others teach statistical mechanics, and still others teach

a combination of both (which will be referred to as “thermal physics” here). Additionally, some

topical areas may not be prioritized by every instructor teaching thermal physics (e.g., diffusion or

temperature-entropy diagrams). This content variability, in addition to notational differences across

thermal physics texts, poses a significant challenge in the development of standardized thermal
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physics assessments and teaching tools that can be utilized by a wide range of instructors. Therefore,

an essential first step in creating a thermal physics assessment was to determine what thermal

physics content is taught at most institutions, as discussed in Sec. 3.1. This process informed

the development of items, as did current knowledge of student content understanding in thermal

physics, which is discussed in the next section.

The process taken for development of the assessment discussed in Part 1 is unique in 3 ways.

First, it has taken into account the diverse perspectives of over seventy instructors (at various types

of institutions) with respect to content priorities in their upper-division thermodynamics and/or

statistical mechanics courses. Second, it involves novel efforts to create coupled, multiple-response

items [7] for upper-division thermal physics. Third, the assessment development process described

will lay the foundation for an eventual flexible assessment that addresses both content and scientific

practices [23], and also allows for customization of included content and practices. This flexible

assessment will be developed as part of future work.

2.2 Literature Review

Assessments that address students’ conceptual understanding of physics play an important

role for both physics educators and physics education researchers. They can be used by educators

to measure the impact of instructional approaches or curricular changes. For example, the Force

Concept Inventory (FCI) [1] has been used for multiple introductory physics investigations since its

initial development [24]. In physics education research (PER), assessments such as these are often

an outcome of investigations into student reasoning and used to investigate student understanding

of physics concepts.

Education research studies on thermal physics content, in the realms of biology, chemistry,

engineering, and physics, are becoming increasingly present in the literature [25, 26]. These studies

have utilized isolated thermal physics problems, small quizzes, and larger-scale assessments to

investigate student conceptual understanding of primarily introductory thermal physics topics.

Investigations of upper-division thermal physics content are comparatively less common than work
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at the introductory-level. Additionally, there is currently no upper-division physics assessment that

includes both thermodynamics and statistical mechanics. Existing thermal physics assessments

instead focus on classical thermodynamics topics, such as heat, temperature, and thermodynamic

laws [27, 28, 29, 30, 31]. At the time of this writing, searches have not resulted in evidence of any

statistical mechanics assessments. A lack of a fully-encompassing, upper-division thermal physics

assessment leaves a gap in the ability of professors and researchers to test upper-division students’

understanding of higher-level thermal physics concepts (e.g., statistical mechanics) and facilitate

further investigations of student understanding at the upper-division level. This section presents a

brief review of research on student difficulties in thermal physics and the status of assessment in

physics, highlighting thermal physics assessment.

2.2.1 Student Understanding of Thermal Physics Content

Many studies regarding thermal physics have focused on student understanding of thermo-

dynamics content in physics, biology, and chemistry [25]. Most studies related to content under-

standing focus on concepts such as application of the ideal gas law; distinguishing between heat

and temperature; heat, work, and the first law of thermodynamics; and entropy and the second

law of thermodynamics.

Thermodynamics phenomena are often focused on gas systems. Studies revolving around

student understanding and application of the ideal gas law in various contexts are common (e.g.,

refs. [32, 33]), while problem-solving with non-ideal gas systems is relatively less frequent in the

literature.1 On the other hand, student alternate conceptions2 of heat and temperature is a very

common theme throughout thermal physics literature and emerges at all levels, from K-12 through

college-level courses [35, 36, 37]. One source of confusion in relation to heat and temperature is

the colloquial use of the two terms, which are often used interchangeably [36, 38]. Students often

1 A search for studies on student problem-solving with non-ideal gas systems yielded limited results in the field of
physics education research.

2 The term “alternate conceptions” is used in lieu of “misconceptions” or “misunderstandings” to align with recent
literature and to avoid deficit language. Recent work has suggested use of the term “misconception” is at odds with
the way students learn [34].
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consider heat as a property of a system [37], like temperature, as opposed to a process quantity [38].

Much like heat, work is also commonly thought of by students as a state function as opposed

to a process-dependent quantity [38, 39]. These conceptions can cause particular challenges when

reasoning about net work and net heat for cycles; the view of work and heat as state functions leads

to students reasoning that each of these quantities are zero for cyclic processes [40]. Additionally,

it has also been found that many students tend to not recognize the utility of the first law of

thermodynamics when considering heat, work, and changes in internal energy for processes [41].

Investigations of student conceptions revolving around heat and cycles have also addressed

entropy [42], a core concept for thermal physics that is often unfamiliar to students entering ther-

mal physics classes [43, 44]. Entropy can be viewed in terms of both classical thermodynamics

and statistical mechanics, and it can sometimes be challenging for students to bridge these two

frameworks. For example, students may make different predictions about entropy changes when

applying microscopic and macroscopic views of entropy to similar phenomena [45]. Entropy has

historically been a challenging topic for thermal physics students, often being considered as a con-

served quantity [44, 46] or a measure of chaos or disorder3 [47, 48]. Misapplication of the second

law of thermodynamics is also very common, including assertions that entropy must increase in all

contexts [44] or confusions about whether to apply the second law to the system or the universe [43].

Most studies in the realm of thermal physics content understanding have investigated student

conceptual understanding in the realm of introductory thermodynamics content, mainly at the high

school and introductory-college level [25]. Upper-division investigations are comparatively less

common. One study by Meltzer compared student use of diagrammatic representation (i.e., PV-

diagrams), notation, and mathematical equations, as well as verbal explanations, and found several

alternate conceptions students leave introductory thermal physics with continue with them to when

3 There are several well-founded critiques of presenting entropy as disorder to students, citing an unclear definition
of what is meant by “disorder” (e.g., chaos, randomness, etc.) [47], as well as concerns about students’ use of the
term without provision of their own definition of what is meant by disorder [48]. Loverude et al. have also found
that some students struggle to reconcile the idea of entropy as disorder when reasoning about phenomena such as
approaching thermal equilibrium, a process by which entropy increases but the system reaches a more natural, and
thus what they see as more ordered, state [46]. Several have suggested moving away from presentation of entropy as
disorder [47, 49, 50].
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they start more advanced thermal physics courses, and sometimes persist after instruction [51].

Compared to thermodynamics, statistical mechanics studies are relatively rare. Some studies

include investigations about student reasoning surrounding the Boltzmann factor [52] and Taylor

expansions in statistical mechanics [53], while some have looked into students’ bridging of concep-

tions of the macroscopic and microscopic to study consistency between explanations of entropy

changes based in statistical mechanics and classical thermodynamics [45]. Others have considered

instructional strategies, such as using statistical approaches to teach entropy [54].

Content understanding and student reasoning investigations are often conducted through

interviews, reviews of student coursework, or conceptual assessments, while others have utilized

tutorials. In particular, Smith et al. created tutorials to investigate student reasoning using the

Boltzmann factor to compare relative probabilities of states [52] and to address students’ concep-

tions of entropy when approaching Carnot cycles [42]. A subset of questions from these tutorials

was used to inform item development for the assessment, as described in Ch. 3.

2.2.2 Assessment in Physics

Though some lower-division thermal physics assessments exist, there is still a need for

a standardized upper-division thermal physics assessment that includes both thermodynamics

and statistical mechanics concepts. Currently, there are six assessments categorized as “ther-

mal/statistical” assessments on PhysPort, an online repository of PER-based resources for physics

faculty.4 However, all of these assessments are categorized as being for “intro college” or “interme-

diate” levels (i.e., not upper-division) and, based on the four assessments that are readily available

online [27, 29, 30, 31], none cover statistical mechanics concepts. It is of note that only five of these

six thermal physics assessments were finalized and the sixth was recommended to not be used by

the assessment developer. A request to the developer to view one of the five assessments did not

recieve a response and thus it could not be accessed.

4 A link to PhysPort is not presented, as it is susceptible to change. PhysPort can be found via an online search
engine. The full webpage title is “PhysPort: Supporting physics teaching with research-based resources.”
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A literature search also resulted in another thermal physics assessment – the Thermody-

namic Diagnostic Test (TDT) – which addresses student understanding of “three fundamental laws

of thermodynamics” (the zeroth, first, and second laws of thermodynamics) [55]. The TDT is

not available on PhysPort, but its questions are available in ref. [55]. The TDT is a two-tiered

test (composed of coupled, multiple-choice questions) designed using the Thermal Concept Survey

(TCS) as a baseline to start from.

All four assessments accessible through PhysPort5 were developed based on research on stu-

dent thinking, were studied and implemented at multiple institutions, and resulted in peer-reviewed

journal articles and a dissertation [27, 28, 29, 30, 31]. Development of the TDT also utilized student

interviews to construct distractors [55].

The development cycle of the assessments available on PhysPort is not discussed in most

publications associated with them. However, Brown’s dissertation [31], as well as ref. [56], outline

the development of the most recent thermal physics assessment on PhysPort – the Survey of Ther-

modynamic Processes and First and Second Laws (STPFaSL), an assessment that was referenced

during the item development process of the assessment presented in this dissertation. The pro-

cess the STPFaSL developers took aligns with the historical approach taken for developing other

assessments, included identifying focus topics (via course learning goals) and iterative question

development and refinement based upon expert feedback, student interviews, and classroom test-

ing [57]. This method closely matches the approach taken in developing the assessment focused on

in this dissertation.

Most PER-based assessments, including existing thermal physics assessments, have intention-

ally narrow scopes and hone in on a very specific subset of topics within a particular sub-discipline

of physics. Some of the very first conceptual physics assessments, such as the FCI [1], have done

this, and other assessments have followed suit. The narrow scopes of these assessments makes them

more useful for a broad range of practitioners who need to identify specific conceptual difficulties to

5 The accessible assessments are the Heat and Temperature Conceptual Evaluation (HTCE), the Survey of Ther-
modynamic Processes and First and Second Laws (STPFaSL), the Thermal Concept Evaluation (TCE), and the
Thermodynamic Concept Survey (TCS).
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inspire pedagogical changes. Additionally, narrow scopes can be motivated by assessment validation

restrictions, as discussed in Sec. 2.4. The scope of existing thermal physics assessments includes

concepts such as specific thermodynamic laws and processes [31, 55], as well as basic thermody-

namic concepts such as heat and temperature [27, 28, 29], phase transformations [29], and thermal

properties of materials [29, 30]. The scopes of currently accessible thermal physics assessments do

not include statistical mechanics concepts.

2.3 Coupled, Multiple-Response Items

Most assessments utilized in PER are multiple-choice (MC) or free-response formats (see

PhysPort). One multiple-choice thermal physics assessment, the TDT [55], is a two-tiered test

with each item being composed of two coupled MC questions—one prompting a response to a

question and the other prompting reasoning used to achieve the first answer. The final version

of the assessment discussed in Part 1 takes on a different format than these more traditional

assessments, though it does have some commonalities with the two-tiered nature of the TDT.

The assessment discussed here is largely composed of coupled, multiple-response (CMR) items

in addition to (relatively few) MC items. CMR items are composed of an MC question followed

with a multiple-response prompt asking students to select one or more reasoning elements utilized

to find the first answer [7]. Unlike two-tier and traditional MC questions, CMR formats allow for

scoring based on both consistency and accuracy of responses, and allow for partial credit as opposed

to being solely dichotomous in their scoring.

CMR formats are ideal for this assessment because they provide insight into student reasoning

(much like free-response items) while also allowing for online administration, more streamlined

scoring that can be automated, and partial credit. Some of the items in the assessment discussed

in Part 1 are composed of a series of CMR questions. For brevity, Part 1 refers to MC and CMR

items collectively as multiple-response (MR) items when appropriate.
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2.4 Validation Methods

From the beginning of the assessment development process, multiple possible validation ap-

proaches for the assessment were considered. The two considered approaches—classical test theory

and item response theory (IRT)—are discussed here and in more depth in Ch. 4. One of these

(IRT) can provide more rigorous analyses to identify bias within assessment items, which results

in differential performance between individuals of the same ability but different backgrounds (e.g.,

gender or race) [58].

With an eye towards reducing bias in the assessment, the development process began with

taking diverse perspectives into account early on. For example, faculty perspectives were solicited

from a diverse range of institutions and departments, many of which may often be excluded from

large-scale assessment studies (see Sec. 3.1). This is due to the fact that these studies typically

require large student populations and thus target large research institutions, which tend to be

predominately White. Inclusion of multiple faculty perspectives allows expansion of the scope of

the assessment while still making it broadly applicable for many institutions and instructors.

2.4.1 Classical Test Theory

As mentioned in Sec. 2.2.2, narrow content scopes within assessments can provide more

pinpointed insights into student difficulties in a specific content area. However, the need for specific

content areas to target in pedagogical reform is not the only motivation for these limited scopes. The

narrow scopes within assessments can also be attributed to content variability across institutions

(especially at the upper-division level) and the restrictions of many classical test theory (CTT)

validation requirements, such as unidimensionality—the idea that an assessment’s scope must focus

on one construct (e.g., focusing on “forces” or “motion,” as opposed to “introductory physics”).

CTT is a commonly used approach for validation of conceptual assessments in education, and

was utilized for validation of the assessment presented here to align with the methods of similar

assessments in physics. One advantage of CTT that has made it so commonly used is its theoretical
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assumptions, which make it easily applicable to different testing situations. Despite its advantages,

CTT also has some drawbacks. The CTT requirement of unidimensionality limits the scope of

content that can be included on an assessment. Thermal physics spans a large space ranging

from classical thermodynamics to statistical mechanics, and thus a thermal physics assessment

that captures both of these areas may not be unidimensional enough, as it would test more than

one core topic or idea. In addition to unidimensionality, there is a more fundamental issue at the

heart of CTT that has led to problematic outcomes in scores between different groups of students.

This issue comes from fundamental assumptions of CTT: the validation statistics, and therefore the

reliability and validity, are dependent on the group of students whose results were used in the initial

validation [59]. This population-dependence of validation statistics makes it difficult to compare

assessment performance between different groups of students.

Results of some CTT-validated assessments have found “achievement gaps,” particularly

between women and men [13, 60, 61, 62]. In these studies, men tend to perform better on these

assessments than women. This could lead an unwary reader to conclude that men are more capable

of performing well in physics than women. However, due to the demographic composition of physics

majors, which is predominately male (and White) [10], it is likely that these assessments were

implemented in predominately White and male departments. This means that the group-dependent

statistics resulting from CTT use are normalized to a group of mostly White men. It may well be

that the explanation for these “achievement gaps” is not the result of inherent differences between

genders (such as one gender being more capable of doing physics than another), but instead are a

result of the population-dependent nature of the approach used for validation or bias in the items.

2.4.2 Item Response Theory

CTT-based differential item functioning (DIF) can help address differential performance and

bias. However, to address potential bias and better address variations of scores across different

demographic groups, researchers can also invoke different validation methods, such as item re-

sponse theory (IRT). Note a historically used term in IRT literature is the term “student ability,”
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which refers to the underlying latent trait the statistical models are attempting to quantify. Fun-

damentally, however, it is a measure of performance as opposed to innate ability of individuals.

This historically utilized term is used throughout Part 1 for consistency with the existing literature.

However, it worth acknowledging the potentially problematic nature of this term, particularly when

it comes to the appearance and intepretation of performance gaps between subgroups of students

(e.g., men and women).

The primary IRT model used in this study is the one-parameter logistical model, also known

as the Rasch model. The mathematics of the Rasch model separate parameters describing student

ability from the difficulty of items. The Rasch model assumes student performance on an assessment

item is based solely on their ability and the item difficulty [63]. This is a mathematical outcome

of assuming equal discriminations for each item (i.e., each item is equally good at distinguishing

between high- and low-achievers). A result of this model is that these parameters, to an extent,6

are not dependent on the population used to validate the assessment, so long as the validation pool

is reasonably broad within the targeted group (i.e., upper-division physics students). This makes

comparisons across institutions susceptible to less ambiguity.

The Rasch model was initially created for analysis of dichotomously scored items (i.e., items

scored as either correct or incorrect). Thus, this model cannot be directly applied to items in which

partial credit is possible, such as for CMR items. To analyze items such as these, an additional

IRT method is considered here: the partial credit model (PCM). Equal discriminations can also

be assumed with the PCM, thus resulting in similar benefits to Rasch in reducing potential bias in

items. The PCM produces similar, but also distinctly different, outputs as the Rasch model; the

main difference being the difficulty parameters, as discussed in more detail in Sec. 4.7.4.

Ch. 4 presents initial exploration of the Rasch model and PCM for validation statistics.

More robust statistical analyses with the PCM method will require a larger set of students than was

available for this study (N≈100 is not sufficient). Analyses will also require a diverse (and larger) set

6 Note the parameters are in some ways still dependent on population (e.g., only upper-division thermal physics
students are included in the sample).
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of students in order to make claims about performance differences across different populations and

try to reduce test bias. Neither of these requirements were met during the initial validation process

for the assessment.7 However, preliminary PCM analyses are presented to propose a potential

method for applying the PCM to CMR items, something that has yet to be done.

2.5 Developing the Assessment: An Overview

The remainder of Part 1 of this dissertation describes the process of developing (Ch. 3) and

validating (Ch. 4) an upper-division thermal physics assessment, concluding with a summary and

discussion of future work (Ch. 5). Ch. 3 begins by describing the construction and distribution

of a survey to physics faculty, at both large and small departments as well as minority-serving

institutions and women’s colleges, to probe content priorities in upper-division thermal physics

courses. Results of this survey were used for developing assessment items, as described in Sec. 3.2.

Ch. 4 describes validation of the assessment, including CTT and preliminary IRT analyses and

more in-depth discussions about these methods and their outputs.

7 PCM analyses were not initially a goal of the validation process. However, if future pilot tests allow for larger
datasets to be collected, more robust analyses could be possible.



Chapter 3

Developing an Upper-Division Thermal Physics Assessment: The U-STEP

With potential validation methods in mind, the process of developing the assessment began

by first probing the physics community about content priorities in upper-division thermal physics

courses, followed by developing items informed by collected information. This chapter presents the

development process of the Upper-level Statistical Mechanics and Thermodynamics Evaluation for

Physics (U-STEP), including development and distribution of a faculty content survey (Sec. 3.1);

development of assessment objectives (Sec. 3.2.1); and development of items (Sec. 3.2.2). The

chapter concludes with presentation of the cycle for developing two assessment items—one focusing

on classical thermodynamics (Sec. 3.3.1) and the other on statistical mechanics (Sec. 3.3.2). A

majority of the work presented in in this chapter was published in a first-author paper in Physical

Review PER [19].

3.1 The Faculty Content Survey

It is commonly suggested that content coverage in upper-division courses can vary signifi-

cantly between different physics departments and even different instructors within the same depart-

ment. This poses a significant challenge in developing an assessment that will be useful for a broad

range of instructors and courses. For example, if an assessment contains even a single question

related to content not covered in an instructor’s course, the assessment will likely be less useful for

that instructor or not be used by that instructor at all. There are two strategies for addressing this

issue. One is to create an assessment that can be customized to different courses, allowing topics
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present on the assessment to be tailored for specific courses. The other is to create an assessment

that only touches on topics covered by the majority of instructors. Development of the U-STEP

began with attempting the latter, with the aim of working toward a customizable assessment in

the future.

In an effort to inform content foci for assessment development, a content survey to be com-

pleted by physics faculty familiar with teaching upper-division thermal physics was developed. The

survey was distributed to a diverse range of institutions and designed to solicit key information

about thermal physics courses, such as content covered, general course structure and emphasis

(thermodynamics, statistical mechanics, or both), and needs or interest in an upper-division ther-

mal physics assessment. This section describes methods for developing and distributing the survey

with an emphasis on creating a format that was accessible and relatively short in duration, while

still soliciting sufficient information (Sec. 3.1.1), and presents results from the survey, including

texts utilized and content foci in upper-division thermal physics courses (Sec. 3.1.3).

3.1.1 Survey Development

Prior to constructing the faculty survey, a focus group was conducted with four experts,

all with experience teaching thermal physics and/or researching student difficulties in thermal

physics. The focus group solicited expert perspectives surrounding upper-division thermal physics,

including textbooks, content coverage, learning goals, and existing thermodynamics assessments.

Outcomes from the focus group informed several questions included on the faculty survey. For

example, participants discussed notational conventions as one major challenge for a thermal physics

assessment (e.g., the sign convention of work). To address this concern, one question on the survey

solicited specific notational issues worth considering in development of a thermal physics assessment.

Additionally, textbooks brought up during the focus group comprised the list of textbook options

provided on the survey.

To facilitate ease of responses, the faculty survey was a primarily multiple-response format

with only a select set of questions being free-response. Thus, one of the first steps in survey
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development was determining which options to provide for various multiple-response questions.

This began with an investigation of the scope of thermal physics in texts; six thermal physics texts

brought up during the focus group [64, 65, 66, 67, 68, 69] were analyzed for key content coverage.

This process involved reviewing each text and identifying topical areas for each based on chapter

titles, section headings, and emphasized key terms. Based on the frequency of topics appearing

across the different texts, topical areas were classified into core topics and supporting topics. To put

these into an accessible form for use in the survey, topics were sorted and condensed into 29 core

topics, most with roughly 4 supporting topics (see Table 3.1 and Appendix A). For example, the

core topic of “thermodynamic laws” had four supporting topics: 0th law, 1st law, 2nd law, 3rd law.

Some core topics had no supporting topics (e.g., semiconductors) while some had as many as seven

(e.g., energy and thermodynamic potentials); the one exception to this was statistical mechanics,

which had 14 supporting topics.

In addition to focusing on concepts, the survey also solicited information on the scientific

practices valued by respondents in their thermal physics courses.1 The list of scientific practices

provided on the survey was pulled from the Next Generation Science Standards (NGSS) list of

science and engineering practices [23]. This list was developed in collaboration with a team of

practicing scientists in a variety of STEM disciplines [70]. Though the list of practices was developed

for K-12 purposes, one can argue they are still applicable at the upper-division level because they

are meant to encapsulate practices that scientists engage in while doing authentic science. In

the NGSS list of scientific practices, similar practices are combined together (e.g., developing and

using models); however, in upper-division courses, it is less clear that all paired practices would

be targeted together. Thus, to collect more specific data about individual practices, paired NGSS

practices were split into separate categories. For example, “developing and using models” was split

into “developing models” and “using models” for the survey.

1 Scientific practices are gaining more focus in PER college-level assessment and will be integrated into a future
iteration of the assessment presented here.
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The survey was administered online2 and divided into 4 major sections: (1) general course

information; (2) content coverage; (3) scientific practices; and (4) interest in, and concerns about,

an upper-division thermal physics assessment. In addition to providing general course information

in Section 1, respondents also had the option to identify their institution and submit their course

syllabus. Finally, gender and racial identity information were collected at the end of the survey,

after Section 4.

After initial construction of the survey, feedback was solicited from physics faculty at the

University of Colorado Boulder who were familiar with teaching upper-division thermal physics.

Based on these discussions, and informed by the frequency of topical areas appearing across the

six different analyzed texts, we grouped the core topics into two categories: assumed core topics

and other core topics. Assumed core topics are topics that one might expect are covered in every

thermal physics course. In alphabetical order, the assumed core topics were:

• Energy and Thermodynamic Potentials

• Engines and Refrigerators

• Entropy

• Equilibrium

• Monatomic Gases

• Heat

• Temperature

• Thermodynamic Laws

• Work

The survey presented these assumed core topics at the beginning of Section 2 of the survey,

with their supporting topics shown on the same page. A free-response textbox followed these

assumptions to allow respondents to indicate disagreement with the assumptions made. All other

core topics were provided on the following page of the survey without their supporting topics

2 The survey was administered through the survey platform Qualtrics and hosted by the University of Colorado
Boulder (CU).
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displayed. After selecting from the list of other core topics, associated supporting topics for each

of the selected core topics were displayed on the following page (while all other supporting topics

associated with core topics not selected were not displayed). This conditional formatting was

motivated by the desire to reduce respondent fatigue due to survey length.

3.1.2 Survey Distribution

To ensure the course data was reflective of a broad range of institutions, contact information

collected for survey distribution included a large variety of physics degree-granting institutions,

inclusive of minority serving institutions (MSIs) and women’s colleges. Institutions were identified

using the American Physical Society’s “Top Educators” lists [71], each of which identifies 16-20 in-

stitutions with the highest average number of physics bachelors’ degrees awarded by the institution

per year, sorted by highest physics degree offered at each institution. We utilized the overall and

underrepresented minority (URM) lists for PhD-granting, MS-granting, and BS-granting institu-

tions. Beyond that, the American Physical Society’s MSIs list [72] was used to identify all other

physics-degree-granting MSIs not on the “Top Educators” lists; the MSI list included institutions

with both large and small physics departments. This list identifies Historically Black Colleges

and Universities, Black-serving institutions, Hispanic-serving institutions, and institutions serving

Asian Americans and Native American Pacific Islanders that offer degrees in physics. Women’s

colleges were identified with the “Women in Physics” report produced by the American Institute

of Physics [73].

After identifying institutions, contact information of department chairs was obtained from

physics department websites. The survey solicitation was then sent to the department chairs,

with a specific request for the email to be forwarded to all faculty within their department who

were currently teaching or had previously taught upper-division thermal physics. In addition to

department chairs, the research team solicited the help of their professional contacts at different

institutions to take the survey or forward it to faculty in their department.

After initial solicitations were sent and data were collected, a large geographic region had not
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been captured by the data. This prompted a process of identifying institutions in geographic areas

within the United States that were not captured by the Top Educators, MSI, or women’s colleges

lists using the PhysNet directory of US Physics Institutions [74]. The survey was re-opened and

a second round of emailed solicitations were sent to newly identified departments. In this second

round of solicitations, 18 new responses were collected, largely from states that were not represented

initially.

3.1.3 Survey Results

The survey was open for response collection for three and a half months, then opened again

a few months later for an additional month and a half. During these time windows, 73 respondents

fully completed the survey while 2 completed all of the survey except questions regarding scientific

practices (Section 3 of the survey) and interest in assessment (Section 4). Only responses that

completed the sections with core topics and supporting topics (Section 2) or beyond were used for

analysis. Response rate for the survey is not reported, as it is unclear how many people received

the solicitation forwarded from their department chairs. An estimated 200-250 emailed solicitations

were sent.

Figure 3.1: Number of survey responses per state. Darker gray states had no respondents. One
additional response was received from an international location not displayed on the map.
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Figure 3.1 shows locations of responding institutions; many geographic regions across the

United States are represented in the sample, with the exception of the north central region. Overall,

63 unique institutions were identified from the survey, 32 of which were MSIs and/or women’s

colleges; 2 institutions could not be identified. Figure 3.2 presents institution type by highest physics

degree offered and MSI/women’s college classification. In a few cases, (N=7) institutions were

represented by 2-3 responses; it was evident from submitted syllabi and individual item responses

that these were submitted by different people.

Racial demographics of respondents included Asian (14%, N=10), Black/African American

(1%, N=1), Caucasian (76%, N=55), and Hispanic (4%, N=3); no other racial identities were indi-

cated and 6% (N=4) preferred not to answer. Additionally, 85% (N=61) of respondents were men

and 13% (N=9) were women (no other gender identities were indicated); 3% (N=2) preferred not to

provide their gender. Three additional respondents did not provide any demographic information.

Institutional information, including selectivity, research activity, student population, and

highest physics degree offered was collected via the Carnegie Classifications [75] and institutions’

physics department websites. From the Carnegie Classifications, 73% (N=45) of identifiable insti-

Figure 3.2: Highest physics degree offered by institution classification. Minority-Serving Institu-
tions (MSIs) or Women’s Colleges are indicated in striped boxes and other institutions are presented
in solid colors. Institutions granting Bachelor’s degrees (BS), Master’s degrees (MS), and PhDs are
indicated.
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tutions are considered being selective or more selective with regards to admissions practices, while

27% (N=17) are considered “inclusive” institutions. Additionally, 54 schools are classified as having

high or very high research activity.3

3.1.3.1 Course Information

The survey asked respondents if their course focused on thermodynamics, statistical me-

chanics, or both (thermal physics); 95% (N=71) selected thermal physics and the remaining 5%

(N=4) of responses were split evenly between thermodynamics and statistical mechanics. Most

institutions reported offering one semester of thermal physics (80%, N=59); some reported two

quarters (7%, N=5) or two semesters (8%, N=6), while a small minority reported one quarter (4%,

N=3). Respondents reported that their courses were composed of mostly juniors (N=56) and se-

niors (N=49), though some (N=12) reported sophomores in the course as well. Respondents could

choose multiple student populations for this portion of the survey.

The majority of respondents (69%, N=52) reported using An Introduction to Thermal Physics

by Daniel V. Schroeder [68]. Thermal Physics by Charles Kittel and Herbert Kroemer [66] was

the second most frequently cited text (15%, N=11). All other texts appeared at a frequency of

7% or below. Figure 3.3 shows frequencies of most common textbooks; 5% reported using no

textbook and 27% reported using other texts not provided on the survey, though none of these

other texts appeared at frequencies over 5%. Many of the instructors (40%, N=30) indicated

they teach with the assumption that their students have no prior exposure to thermal physics

content. Some expected familiarity with topics such as energy, heat, the first and second laws of

thermodynamics, and the ideal gas law. A few (N=11) said they expect thermal physics exposure

from the introductory physics sequence, though several noted that thermal physics is only covered

for a few weeks, and sometimes not at all, in that sequence.

Overall, these data show most institutions require one semester of thermal physics, most

instructors use Schroeder’s text [68], and many instructors assume their students have no prior

3 Note one institution was not in the Carnegie Classification database, as it was not an institution in the US.
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Figure 3.3: Most common textbooks reported being used in upper-division thermal physics courses
[68, 66, 65, 76, 64]. Respondents could select multiple textbooks on the survey or indicate using
another textbook not on the provided list or none at all. Thus the percentages do not sum to 100%.

exposure to thermal physics content. This assumption about lack of exposure to thermal physics

may be particularly relevant for concepts such as entropy and statistical mechanics, which are

concepts unique to thermal physics and rarely included in other physics courses. These results sug-

gest two implications for physics education research: (1) development of Schroeder-based thermal

physics assessments and materials could serve many instructors and institutions, though would still

exclude the sizable population of instructors and institutions who do not use that text; and (2)

pretest administration of upper-division thermal physics assessments may not produce meaningful

measurements of student understanding of thermal physics content prior to taking the course due

to unfamiliarity with content and/or jargon. Based on implication (2), we chose to create the

U-STEP with the intention of it not being administered in a pretest format.

3.1.3.2 Key Topical Areas

Table 3.1 shows frequency of assumed core topics, assumed core topics’ supporting topics

and, other core topics. Most assumed core topics (see Sec. 3.1.1) appeared at a frequency of 100%.

In two responses, no supporting topics were selected under one of the nine assumed core topics.
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However, in neither of these instances was it indicated in the provided textbox that the respondent

disagreed with the assumption that they cover that topic. The one assumed core topic that did not

appear at 100% frequency (engines and refrigerators) was selected by only 95% of respondents.

Table 3.1 shows the frequency of supporting topics relative to the number of times the cor-

responding core topic was selected, and the frequency of core topics relative to the total number of

valid responses (i.e., responses completed through Section 2 of the survey). Frequencies of all other

core topics is also presented. See Appendix A for presentation of the 56 other supporting topics

and frequencies.

All 9 of the assumed core topics, as well as statistical mechanics, were found to be covered

by at least 95% of respondents in their upper-division thermal physics courses. These results are

relevant for all researchers interested in materials and assessment development in upper-division

thermal physics. For the purpose of developing the U-STEP, these results were used to prioritize

content-foci for assessment item development. Using these results as a baseline helps in creating

an assessment that can serve a wide range of instructors and institutions.

3.1.3.3 Scientific Practices

Of the 16 practices presented on the survey, three appeared at a frequency of over 85%:

using mathematical thinking (99%, N=72), asking questions (97%, N=71), and using models (89%,

N=65). Review of syllabi indicates the practice of “asking questions” may have been misinterpreted

by survey respondents; the NGSS practice refers to asking scientific questions (namely for scientific

investigations), but the research team suspects many respondents may have interpreted this practice

as referring to asking questions about content during class or office hours. The next most frequently

appearing practice was constructing explanations (71%, N=52), while the remaining 12 practices

appeared at a frequency of 64% or less, as can be seen in Table 3.2.

These results highlight four scientific practices that stand out as valued by a large majority

thermal physics instructors in this sample: using mathematical thinking, asking questions, using

models, and constructing explanations. The data demonstrate many other scientific practices are
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Table 3.2: Frequencies of scientific practices valued by physics faculty in upper-division thermal
physics. Frequencies were determined using the number of respondents who completed through
Section 3 of the faculty content survey (N=73). The practices were taken from the NGSS list of
science and engineering practices [70].

Scientific Practice % Scientific Practice % Scientific Practice %

Using Mathematical Thinking 99 Interpreting Data 59 Developing Models 45
Asking Questions 97 Defining Problems 58 Obtaining Information 40
Using Models 89 Using Computational

Thinking
58 Designing Solutions 38

Constructing Explanations 71 Analyzing Data 51 Carrying Out
Investigations

12

Communicating Information 64 Engaging in Argument 47 Planning Investigations 10
Evaluating Information 62 from Evidence

less of a universal focus for thermal physics courses at the upper-division level. This has implicia-

tions for others who may want to integrate scientific practices into development of materials (e.g.,

assessments or tutorials) for upper-division thermal physics courses.

3.1.3.4 Assessment Concerns & Interest

Beyond collecting information about upper-division thermal physics courses, the survey also

included questions directly related to the assessment. In particular, we asked about potential

notational issues they could see as worthy of consideration in the assessment design and faculty

interest in the assessment, including how they would use it and if they would be interested in

piloting the multiple-response assessment in their upper-division thermal physics courses.

Notational Concerns. Of all respondents, 29 faculty provided possible notational concerns

on the survey. The survey question about notational concerns gave the sign convention of work as

an example, and 13 respondents indicated in their response to this open-ended question that the

sign of work would be a concern for assessment development; this was the most common concern

cited. Others mentioned commonly used symbols (e.g., k vs. kB); the sign of work’s impact on

the form of the first law of thermodynamics (e.g., ∆U=Q+W vs. ∆U=Q–W); the sign convention

of heat for certain applications (e.g., engines); and units (e.g., some texts use unitless quantities
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whereas others do not). Informed by these notational concerns, and knowing which texts are used

the most frequently, notation used in the U-STEP was largely based on notation used in Schroeder’s

text [68]; when possible, use of notation was avoided completely when developing assessment items.

Additionally, all symbols are defined directly within assessment items or at the beginning of the

assessment. Potential confusion about the sign of work and heat was avoided by asking which

direction work made energy flow or which direction heat flowed (i.e., into or out of the system).

Additionally, when applicable, the magnitude of work was solicited when looking for symbolic or

numeric responses related to work.

Faculty Interest in Assessment. The survey included one question regarding faculty

interest in the assessment, specifically asking if and how faculty would use the assessment once

completed. The most common use cited by respondents was using the assessment to measure

student learning in their course (N=13), often with pre-post administration (N=11). Others said

they’d be interested in using it to inform their teaching strategies (N=12) and compare student

learning in their course with other courses (N=11). A few (N=4), said they would use the assess-

ment to inform content or tracking student progress. Of the 43 respondents who answered this

question, none indicated they did not see obvious value in the assessment. However, in interpreting

respondents’ sense of value, it is important to note this group was composed of a self-selected set

of faculty that chose to complete the survey.

3.1.3.5 Response Consistency

As a verification of the survey data, survey responses and submitted syllabi were checked for

consistency for the 51 responses that provided a syllabus. Key topics on each syllabi were compared

with the associated survey response to ensure topics appearing on the syllabus also appeared on

the survey response. Here, “discrepancies” refers to a mismatch between topics on the syllabus and

those selected on the survey (e.g., topics appear on syllabus but were not selected on the survey).

The topic of diffusion was listed by five respondents in their syllabus and not their survey responses.

No other core or supporting topics had more than 3 discrepancies when comparing between survey
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responses and the syllabus.

Discrepancies could be due to the amount of focus placed on those topics in the course. For

example, Bose-Einstein condensates may appear on the syllabus but may not be seen as a major

content focus for the instructor when completing the survey, resulting in a discrepancy between their

syllabus and response. Some topics, such as interacting systems (N=12), ensembles (N=13), large

systems (N=16), and Boltzmann and/or quantum statistics (N=17), appeared in syllabi but did not

appear as explicitly named core or supporting topics on the survey. However, those who included

topics such as these on their syllabus selected other topics on the survey that encompass or require

the same idea, such as multiplicity, thermal equilibrium, and specific statistical distributions. This

comparison shows that the survey reliably captured the scope of content coverage for most survey

responses without large discrepancies.

3.1.3.6 Content Variability

To investigate the claim of content variation across upper-division thermal physics courses,

survey responses were examined to see how many topics were selected by all instructors. In par-

ticular, the focus was on the three groups of topics laid out in Table 3.1: assumed core topics,

assumed core topics’ supporting topics, and other core topics.

Analysis showed that 9/9 (100%) of assumed core topics, 11/32 (34%) of assumed supporting

topics, and 2/20 (10%) of other core topics were selected by at least 90% of respondents. When

looking at the 100% threshold, we found that 8/9 (89%) of assumed core topics, 4/32 (13%) of

assumed supporting topics, and 0/20 (0%) of other core topics were selected by all respondents.

These results suggests that there is little alignment (outside of the assumed core topics) across

instructors and institutions. This lack of alignment holds true even within an institution, though

to a lesser extent: at institutions with multiple survey respondents, an average of 73% of assumed

supporting topics and 54% of other core topics were chosen by all respondents at that institution.

These results support the anecdotal claim that upper-division thermal physics content cov-

erage varies both across institutions and between instructors at the same institution. It also makes
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the case, however, that there are some topics, namely our assumed core topics, that all or most

instructors prioritize in their upper-division thermal physics courses.

3.2 Item Development: The Process

Evidence of content variability motivates the need for a flexible-format assessment in which

instructors are able to customize assessment content for their particular class, a focus area for

future work. A first step in this process is to create a core set of items that could act as a baseline

assessment for every upper-division thermal physics course. After analysis of survey results, items

were developed to target key topics identified on the survey, focusing on 10 topical areas chosen by

most instructors; this allows for the items to serve a wide range of upper-division thermal physics

courses.

Initial item development took place in two broad stages: (1) developing assessment objectives

for each of the 10 identified topical areas (as described in Sec. 3.2.1);and (2) writing and refining

assessment items based on those objectives (Sec. 3.2.2). The full development process is summarized

in Figure 3.4 and aligns with processes used for developing similar upper-division assessments [57].

The free-response items were piloted once and the multiple-response items were piloted twice, with

the intention of a third pilot before finalization.

3.2.1 Assessment Objectives

To guide the writing of our assessment items, assessment objectives were developed. These

are intentionally called assessment objectives (AOs), as opposed to learning objectives, because

they were specifically designed to guide development of assessment items. It is not intended for the

written objectives to span the full scope of objectives that may appear in upper-division thermody-

namics, statistical mechanics, or thermal physics courses. Instead, they span the space of feasible,

testable outcomes for the specific assessment developed.

Two criteria were set for these AOs: (1) they must collectively span the space of content areas

identified as important based on faculty responses on the survey; and (2) they must be directly
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Figure 3.4: The full development process of the U-STEP. After the content survey, key content areas
are identified. Free-response (FR) items are then written, revised iteratively, then piloted. Using
results of the FR pilot administration, multiple-response (MR), composed of both multiple-choice
(MC) and coupled, multiple-response (CMR), items are developed. MR items are then tested for
face validity in student interviews. After interviews, MR items are revised, and then piloted. After
initial MR piloting, preliminary validation statistics are completed, including classical test theory
(CTT) and item response theory (IRT). Then, MR item development is revisited, involving student
interviews and revision. Items are then piloted again. This iterative process concinutes until the
assessment is finalized.

assessable in a MR format. When developing the objectives, we began by identifying concepts

and turned these into actionable statements that could be assessed. For example, a concept would

be something like “probability” or “Boltzmann factor,” whereas an AO would be “students can

determine probabilities for thermodynamic systems using the Boltzmann factor.” Here, the AO

meets both criteria by expressing an assessable action students should be able to do with their

content knowledge.

First, AOs were developed for core topics and supporting topics appearing with frequencies

above 90% on the faculty content survey. Some topics that were similar but appeared in different

areas on the survey, such as the 2nd law and entropy, were combined into a single topical area.

In the end, we focused on developing AOs for the following topical areas (in alphabetical order):

energy, engines and refrigerators, entropy and the 2nd law, equilibrium, the 1st law, gases, heat,

statistical mechanics, temperature, and work.
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We identified high-frequency supporting topics for each of the topical areas from the survey.

We then identified concepts within each category, based upon these supporting topics. For example,

a concept for the supporting topic of equipartition for the core topic of energy was degrees of

freedom. From these topical areas, we created initial AOs. These initial drafts of objectives were

iterated and refined. After satisfaction with the AO drafts was reached, the AOs were distributed

to external reviewers. We received feedback on the AOs from by two of these external reviewers

and then finalized the AOs based on reviewer comments. For example, a finalized AO that targeted

equipartition and degrees of freedom was: “Students can articulate that the internal energy of an

ideal gas is determined by the number of degrees of freedom available to atoms/molecules comprising

the gas system.”

Overall, 57 AOs were drafted across the 10 identified topical areas, some of which had sup-

porting objectives as well. Statistical mechanics had the most AOs (eleven). Some AOs overlapped

across topical areas, but remained in the topical area that it more closely addressed. For example,

some 1st law AOs contained both work and heat but stayed within the “1st law” topical area be-

cause they addressed heat and work only within the context of 1st law, as opposed to in isolation.

Crossover such as this was documented for future reference. All finalized AOs can be found in

Appendix B.

3.2.2 Assessment Items

AOs were used to directly inform assessment item drafting. All AOs were addressed by at

least one, and often more than one, drafted assessment item. In total, 86 potential assessment

items were drafted. Many items were inspired by problems from Schroeder’s text [68], research-

based tutorials (e.g., ref. [52]), and common questions asked of student in the upper-division thermal

physics course taught at the University of Colorado Boulder. All initial items were free-response or

multiple-choice with a prompt to explain reasoning. This was motivated by the need for attractive

distractors to be included on the finalized MR assessment.

After drafting potential assessment items, the focus was narrowed on a subset of items that
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addressed the widest range of AOs while resulting in a feasible number of items that we could

commit to revising. The most essential AOs from the pool of 57 written objectives were identified,

ensuring the shortlist spanned the 10 key topical areas. We then identified 24 items that addressed

the majority of these objectives. The next step was to pilot these items so they could be turned

into MR items for the final assessment.

In developing pilot assessments for these 24 items, a balance was found between collecting

enough information about individual items to adequately inform developing them into MR items

and having the piloted assessment be short enough to complete in the given time period (50 min-

utes). The assessment items were split into four groups of six items; two “anchor sets” and two

“secondary sets.” Anchor questions were questions that were likely to be on the finalized assess-

ment, while questions composing the secondary sets were questions with more uncertainty related

to their inclusion in the finalized assessment (e.g., they may prove to be too easy or too difficult to

include in the final version, or be difficult to transform into a MR format).

Four beta-assessment versions were developed, each containing one anchor set followed by

one secondary set, making each beta-assessment 12 items long. For two of the beta-assessment

versions, the order of questions in the secondary sets were reversed so that, if students answered

questions in order but ran out of time, a sufficient number of responses to every item would still

be collected. Each group of six questions was included on two versions of the beta-assessment

(outlined in Table 3.3).

The beta-assessments were piloted as free response (FR), ungraded4 post-tests in an upper-

4 Students received participation credit for completion of the beta-assessment.

Table 3.3: Number of items for each version of the free response thermal physics beta-assessment.

Anchor Questions Secondary Set 1 Secondary Set 2

Version A 6 (set i) 6 -
Version B 6 (set ii) - 6
Version C 6 (set i) 6 (reversed) -
Version D 6 (set ii) - 6 (reversed)
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Figure 3.5: Information about each pilot administration of the U-STEP. The free-response (FR)
items were piloted in 4 version in Fall 2019. Two mutliple-response (MR) versions were piloted
in Spring 2020, and 1 MR version was piloted in Fall 2020. An additional MR administration is
planned for Spring 2021, with an estimated 150-250 responses, dependent on response rate and
number of participating institutions. Note all MR pilot semesters were during the COVID-19
pandemic and many institutions across North America were requiring online or remote instruction
instead of allowing in-person teaching.

division thermal physics course in a large physics department in Fall 2019. Figure 3.5 presents a

timeline for all pilot administrations of the assessment. The FR beta-assessments were administered

in-class during a 50 minute period. Responses from 61 students were received (out of 67), the

majority of whom self-identified as White (77%), men (70%), and seniors (87%). The completion

times for students ranged between 18 and 50 minutes, taking an average of 31 minutes overall.

After piloting, student responses were analyzed and coded based on what directly emerged

from what students wrote [77]. For example, in response to a question regarding the difference

between heat and temperature, responses such as “heat is a measure of how much energy is trans-

ferred to or from a system” and “heat only exists as a transfer of energy” were both coded as “heat

as energy transfer.” This example code resulted in MR selections such as “heat is a flow of thermal

energy” and “heat is a quantity exchanged between systems” for CMR items related to heat. For

all FR items, responses and corresponding codes were used to inform the rewriting and revising of

items to convert them into MC or CMR formats.

Once we reached MC and CMR formats, we conducted five think-aloud interviews with

students to verify the items were being interpreted in the way they were intended to [78, 79, 80].

Small revisions were made based on the outcomes of interviews. For example, one question related

to the equipartition theorem asked: When does the equipartition theorem hold? For the question,
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students would select any situation that the equipartition theorem holds for (e.g., selecting “when

the system is a solid” because the equipartition theorem does apply for Einstein solids) instead of

requirements that must hold for the equipartition theorem to be applied, as the question originally

intended. Thus, the prompt was changed to: Which of the following must be true in order for the

equipartition theorem to be used for a given system? 5

These MR items were piloted in two versions for the first time at 14 physics departments in

an online format in Spring 2020, with approximately 248 students total being asked to complete

the assessment by their instructor. After piloting, classical test theory (CTT) validation statistics

were run, including estimations of item difficulty and discrimination, and we conducted detailed

analyses of response patterns. Response patterns were analyzed for each item to see if any correct

selections were not selected frequently, if any distractors were selected very frequently, or if strange

response patterns appeared.

Additionally, CTT differential item functioning (DIF) analyses were conducted to identify any

performance differences on items between different genders and races. This is an essential aspect

of item and assessment development, and has been relatively absent in the development of other

physics assessments. The importance of DIF analyses come from their facilitation of identifying

performance differences on items between students of different populations with similar abilities,

which could be the result of bias within items. Identification of these performance differences allow

the potential to curb bias in items and the assessment while it is being constructed. Any items in our

pool that displayed problematic performance differences were investigated further when developing

the assessment.

Using the results from the various analyses discussed above, some items prompts and MR

options were revised while others were dropped. An additional four think-aloud interviews were

conducted with students with the newly revised set of items. From here, the MR assessment

was piloted in one version at 10 physics departments, with approximately 227 students being

asked to complete the assessment by their instructor. After the Fall 2020 pilot administration,

5 After response analyses and CTT investigations, it was decided to not include this item in the final U-STEP.
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similar analyses as done for the Spring 2020 pilot were conducted, resulting in a small number of

revisions. Revised items were tested in 3 think-aloud interviews. No revisions were made after

those interviews.

3.3 Item Development: Two Examples

This section outlines the full item development process, from AOs to the finalized CMR

version, for two assessment items—one addressing classical thermodynamics (Sec. 3.3.1) and one

addressing statistical mechanics (Sec. 3.3.2).

3.3.1 An Example in Classical Thermodynamics

As discussed in Sec. 2.2.1, confusion surrounding heat and temperature is quite common

for thermal physics students at all levels [35, 36, 37]. The final item presented in this section was

designed to address common alternate conceptions about heat and temperature. The item was

constructed from two different items addressing similar themes, and was eventually combined into

a single item after analysis.

3.3.1.1 Developing the Assessment Objectives

The items described here addressed two key content areas identified from the faculty content

survey—heat and temperature. Despite common connections between these content areas, heat and

temperature were kept as distinct categories due to unique AOs applicable to only one of the two.

For example, the AO “students can articulate that objects in thermal equilibrium have the same

temperature” was unique to temperature and not applicable to heat. The heat AO addressed in

the items discussed here is:

(1) Students can articulate that heat is a flow of energy, caused by a temperature difference.

(a) Students can articulate why heat has no meaning at a single state.

(i) Students can articulate that since heat flow between two states depends on the
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path between those states, it is not a state variable.

This AO and its supporting AOs address the definition of heat as well as the important

characteristic of heat as not being a state function, a common confusion for students [38]. The

temperature AO addressed in the items discussed here is:

(1) Students can articulate differences between heat and temperature.

(a) Students can articulate that temperature is a property of a system and heat is not.

This AO and its supporting AO address the common alternate conception of heat being a

property of a system [37]. One can see commonalities, but also distinctions, between these heat and

temperature AOs. These similarities contributed to the combination of the two distinct items into

the single finalized CMR item after initial piloting and analyses. To begin to address these AOs

separately, two distinct items—one for heat and one for temperature—were developed, as described

in the following section.

3.3.1.2 Developing the Beta-Assessment Items

After developing the AOs for heat and temperature presented above, two free-response (FR)

items were developed. The heat prompt was: “Heat is a property of a system, like temperature,

pressure, and volume.” The temperature prompt was: “Any object at a given temperature contains

a certain amount of heat.” Both items asked students to decide if the statement was true or false,

which was then followed by an open-response prompt asking for reasoning.

3.3.1.3 Piloting the Beta-Assessment Items

One of the items discussed in Sec. 3.3.1.2 was included in each beta-assessment version (heat:

Versions A and D; temperature: Versions B and C), both within secondary item sets (see Table 3.3).

Table 3.4 summarizes responses to the items, including percent responding “false” (the correct

choice for each) and the percent answering “false” with appropriate reasoning. Reasoning justifying

“false” for each item was similar, and most responses were along the lines of heat being a form of
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Table 3.4: Percent of correct responses to the FR items adressing heat and temperature included
in the Fall 2019 beta-assessment. A “correct” response refers to an answer of “false” for each item,
and the “appropriate reasoning” refers to fully correct responses.

Target Concept % Correct % Appropriate Reasoning

Heat 93% 72%
Temperature 86% 52%

energy that flows, transfers, or is exchanged between systems.

3.3.1.4 Refining the Items: Coupled, Multiple-Response

After analyzing student responses to the FR items presented in Sec. 3.3.1.2, the items were

transformed into CMR formats [7]. Student explanations for their true/false choice for each FR item

were used to create reasoning elements for the CMR versions. Reasoning elements are provided to

students in the CMR item as choices to support their answer to the MC prompt. The expectation

for the CMR items is for students to select one response for the MC question (true or false), then

select as many reasoning elements as needed in the follow-up question to support their choice. The

research team also created additional reasoning elements to capture possible reasoning not expressed

in students FR responses. This was done to ensure every possible MC response had associated

reasoning elements, in part to decrease the possibility of students concluding the correct response

through test-taking strategies and process of elimination. An “other” option was provided on these

versions as well to solicit other students reasoning elements that do not appear in the provided

list of options inspired by FR explanations during the initial beta-assessment pilot. This was done

in part to offset the limitation of piloting the FR version at only one institution. The selected

reasoning elements give insight into particular student alternate conceptions or understandings.

Figure 3.6 presents the CMR versions of these items, which were both piloted in Spring 2020. The

temperature item was piloted in both assessment versions, while the heat item appeared in only

one. Both items underwent 5 students interviews in the Spring 2020 semester.
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Figure 3.6: CMR versions of the items addressing heat (left) and temperature (right), developed
from responses to the FR versions.

3.3.1.5 Finalizing the Item: Coupled, Multiple-Response

DIF analyses based on gender and race yielded no significant results for the heat-targeted

item, but some performance differences did appear for the temperature-related item. Due to this,

in addition to similar reasoning elements in each item and similar response patterns across the two,

the decision was made to combine the two items into a single CMR item. This was also motivated

by the desire to avoid redundancy in items within the finalized assessment and because the AOs

were similar enough that they could both be addressed within the same item.

The finalized CMR item addressing both heat and temperature is presented in Figure 3.7.

The prompts from both initial CMR items were combined, such that the new prompt addressed

both the idea of heat as a property of a system and distinguishing between heat and temperature

(i.e., temperature is a property of a system and heat is not). A few changes were made to reasoning

elements when initial items were combined. For example, both initial CMR items had a reasoning

element of “heat is not a state function.” During several interviews (out of 7), students aritculated
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Figure 3.7: Finalized CMR version of a single item addressing heat and temperature, developed
after piltoing individual CMR items addressing each content area in Spring 2020.

that they did not remember what the term state function meant, causing them to not select that

option. This was determined to be problematic because (1) it is a correct response, and (2) the

goal of the assessment is not to assess recall of terminology. Thus, in the final CMR version,

this selection was changed to “heat is not a state function (i.e., heat is not process independent).”

Presenting a definition of “state function” within the reasoning element eliminates the reliance on

recall in order to answer the question correctly. The choice was made to add the definition of state

function to each item in which it appeared for the finalized U-STEP.

3.3.2 An Example in Statistical Mechanics

A total of seven statistical mechanics questions were piloted across the four beta-assessment

versions, with 3-4 statistical mechanics items appearing on each version. This section focuses on

one of these items to demonstrate the full cycle of item development, from AOs to its finalized CMR

version. It focuses on student understanding of Boltzmann factors and the partition function, and
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was informed by a tutorial developed by Smith et al. [52].

3.3.2.1 Developing the Assessment Objectives

From the content survey, we identified several content goals for statistical mechanics. The

example highlighted here covers the following content goals, which were prioritized based on re-

sponses to the faculty content survey: probability, counting, the Boltzmann factor, and the partition

function. From these content goals, the following initial AOs were developed:

(1) Students can determine probabilities.

(a) Students can determine probabilities for simple systems using counting.

(b) Students can determine probabilities for thermodynamic systems using the Boltzmann

or Gibbs factor.

(2) Students can deduce state probability from a partition function.

(3) Students can compare probabilities of states.

(a) Students can compare probabilities for simple systems using counting.

(b) Students can determine and compare probabilities for a system after an energy shift

using the partition function.

These AOs all have action words (e.g., determine, deduce, and compare), much like those for

heat and temperature (i.e., articulate), and could be directly assessed with a well-written assessment

item. After these were finalized, they underwent review from two experts familiar with teaching

and researching upper-division thermal physics. With reviewer feedback in mind, the AOs from

above were modified and combined into the following singular AO:

(1) Students can determine and compare probabilities of states.

(a) Students can determine and compare probabilities of simple systems using counting.
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(b) Students can determine and compare probabilities for a thermodynamic system using

the Boltzmann factor.

(c) Students can determine and compare probabilities for a thermodynamic system after

an energy shift using the Boltzmann factor.

These assessment objectives still address the specific ideas they were intended to (i.e., the

content goals) and contain actions the assessment could actually measure (i.e., determine and

compare), but in a more straightforward and less redundant way.

3.3.2.2 Developing the Beta-Assessment Item

After articulating this AO, an item was drafted inspired by a problem developed for a Boltz-

mann factor tutorial [52], as shown in Figure 3.8. The item asks students about changes in the

partition function and state probabilities after an atomic system undergoes an energy shift of ∆E

Figure 3.8: A statistical mechanics free-response (FR) item piloted in the Fall 2019 beta-assessment.
The item is considered to be FR despite its inclusion of multiple-choice options because of the
prompt to explain reasoning.
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that takes the system from system A to system B.6 This item was designed to directly address parts

(b) and (c) of the finalized AO discussed in the previous section.

3.3.2.3 Piloting the Beta-Assessment Item

The item shown in Figure 3.8 was included in Versions A and D of the beta-assessment (see

Table 3.3) and 29 student responses were collected. Table 3.5 summarizes responses to the MC

portions of the item presented in Figure 3.8. For (i), incorrect responses were split somewhat

evenly between increase, remains the same, and a written “I don’t know” (indicated in Table 3.5

as “unsure/no answer”). For (ii), decrease was a popular incorrect answer, provided by 31%

of respondents. Justifications for decrease were often related the the negative exponent in the

Boltzmann factor that appears in the numerator of the probability function. Here, students did

not identify the identical change in the partition function due to the energy shift, which appears

in the denominator. Most students answered (iii) correctly, but there was a variety of reasoning

used to justify their responses. Some utilized similar reasoning from (i) and (ii), saying that

everything changed by the same factor, whereas others relied on physical reasoning without invoking

mathematics (e.g., there is the same spacing between the energy levels in both systems).

6 As described in a later section, the wording of the problem was changed to ask “what happens when the system
goes from configuration A to configuration B” to address potential confusion about the number of systems discussed
in the problem (i.e., there is only one system, but it could be interpreted as two separate systems).

Table 3.5: Response frequency for the multiple-choice portion of the assessment item presented in
Fig. 3.8. Bolded responses indicate the correct response.

increase decrease remains the same unsure/no answer
(i) 21% 45% 17% 17%
(ii) 14% 31% 38% 17%

less than greater than equal to unsure/no answer
(iii) 0% 17% 72% 10%
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3.3.2.4 Refining the Item: Coupled, Multiple-Response

After analyzing student responses to the free-response (FR) item presented in Figure 3.8,

the item was transformed into a CMR format [7]. One change was made to the prompt after the

analysis: “system A” and “system B” were changed to “configuration A” and “configuration B.”

This was done to mitigate any confusion that may arise for students. Configuration B is the same

system as configuration A, just after an energy shift; with the original wording, the two diagrams

could potentially be interpreted by students as two independent systems.

Much like the thermodynamics item discussed in Sec. 3.3.1, student responses to the “explain

your reasoning” prompts for each portion of the FR item were used to create reasoning elements

for the CMR version of the statistical mechanics item. The research team also created additional

reasoning elements to capture possible reasoning not expressed in students FR responses.

3.3.2.5 Finalizing the Item: Coupled, Multiple-Response

Figure 3.9 shows the finalized CMR version of the item presented in Figure 3.8. The expecta-

tion for the CMR item would be for students to select one response for the MC question (increase,

decrease, or remains the same), then select reasoning elements in the follow-up question that re-

flect reasoning they used to determine their answer. It is worth noting that the lists of reasoning

elements provided in the item presented in Fig. 3.9 are relatively long and one may hypothesize

the length of these lists exhaust students or influence response patterns. However, research shows

that long lists of reasoning elements in CMR items do not significantly change response patterns or

validation statistics when comparing CMR items to the FR versions used for development of those

items [7, 81].

As an example of possible insight provided from reasoning elements, if a student incorrectly

said the probability decreased and selected “the Boltzmann factor decreased due to the energy

shift” but did not select anything related to the partition function or the relationship between

the partition function and Boltzmann factor in determining probability, this would indicate the
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Figure 3.9: A finalized statistical mechanics coupled, multiple-response item developed based on re-
sponses to the FR version of the same item piloted in the Fall 2019 beta-assessment (see Figure 3.8).
Initial CMR versions were piloted twice (Spring and Fall 2020) before finalization.
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student likely does know that probability is directly proportional to the Boltzmann factor, but

didn’t consider the partition function’s contribution to the probability as well. Each possible MC

option has some combination of reasoning elements provided in the follow-up that could support

the MC selection, and students are able to form their own reasoning from the provided reasoning

elements. An “other” option was provided on initial CMR versions as well, but is not included on

the final version. After developing the CMR item, it was piloted in 13 think-aloud interviews before

finalization to verify it was being interpreted as intended. This particular item did not change after

interviews. No students indicated in the interviews that the lists of reasoning elements were too

long for them to comprehend effectively. The CMR version was piloted in the Spring and Fall 2020

semesters. No changes were made to the item based on the CTT and DIF analyses, as no issues

appeared in these analyses.

3.4 Item Development: Summary

The previous section presented illustrations of the item development process for two items

included in the finalized U-STEP, which consisted of developing assessment objects from results of

the faculty content survey; drafting and piloting of free-response items; and creating and finalizing

coupled, multiple-response (CMR) items. In between each CMR pilot administration, validation

analyses using classical test theory and interviews were performed to inform selection of items to

be included in the final U-STEP and item revisions. These analyses, as well as preliminary item

response theory analysis, is presented in detail in the following chapter.



Chapter 4

Preliminary Validation Strategies for the U-STEP

Item development and assessment validation were not separate processes. Instead, item

development was interspersed with interviews and statistical tests to establish both qualitative

and statistical validity. Additionally, approaches for establishing face validity began early in the

development process. These aspects of item development are lightly touched on in Ch. 3, and are

discussed in more depth in this chapter.

Items were piloted in several iterations throughout the development process, both at many

institutions and through interviews, as described in Sec. 4.1 and Sec. 4.3. Between each CMR

pilot, validation statistics via classical test theory were performed (Sec. 4.6), including an explicit

focus on differential item functioning (Sec. 4.6.2). Results from these analyses informed revisions,

refinement, and elimination of items for inclusion in the finalized U-STEP. Additionally, exploratory

item response theory analyses were conducted (Sec. 4.7), to set a baseline for analysis of future

iterations of the U-STEP and analyses of similarly structured CMR assessments to be developed in

the future. The U-STEP is not yet finalized. An additional pilot administration of the assessment

will be done in Spring 2021, which will allow for a higher-N sample for more robust validation

analyses. This chapter presents preliminary work regarding validation analyses, particularly using

the statistical approaches discussed in Sec. 4.6 and Sec. 4.7, and has yet to be published. This work

will inform which validation approaches will be most appropriate when finalizing the U-STEP.
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4.1 Pilot Administrations of the U-STEP

As mentioned in Sec. 3.2.2, the U-STEP was piloted in a free-response (FR) beta-assessment

version in Fall 2019 and twice in a coupled, multiple-response (CMR) format in Spring 2020 and Fall

2020. The FR pilot was conducted in person at one institution. Piloting at only a single institution

is a limitation, but we did not have access to more institutions for that administration and asking

instructors to dedicate a full class period to the assessment is a lot more to ask than administering

a CMR assessment outside of class time. Each CMR version was piloted in an online format. It is

worth noting that both the Spring 2020 and Fall 2020 semesters were taught during the COVID-19

pandemic and thus many courses were taught remotely or online during those semesters. This had

little impact on piloting the assessment, as the intention for the U-STEP was always for it to be

administered in an online format. The remote-nature of courses used for piloting may have impacts

on the use and interpretation of the U-STEP for in-person classes, but these types of impacts can

be revisited and investigated once in-person instruction resumes.

Key piloting information is summarized in Table 4.1. The Spring 2020 assessment was piloted

in two versions, each composed of 13 items. The first 6 items were identical on both versions, with

the last 7 items differing for each. Due to the varying class sizes at our piloting sites, the number of

institutions receiving each version is not equal. Instead, we distributed each version to a different

number of insitutions such that the number of students receiving each version was roughly equal.

Table 4.1: Information about the Fall 2019, Spring 2020, and Fall 2020 pilot administrations of the
U-STEP. The Fall 2019 assessment versions were free-response, while the Spring 2020 and Fall 2020
versions were multiple-response. The most popular text was An Introduction to Thermal Physics
by Daniel V. Schroeder [68]. Note the average response rate does not include classes with 0%
response rate (N=1 for Spring and Fall 2020).

Nstudents per class Nstudents Response Rate Most
Ninstitutions avg. min. max. total overall avg. Common Text

Fall 2019 1 N/A 67 91% N/A Schroeder (N=1)
Spring 2020 14 18 2 90 248 73% 78% Schroeder (N=12)
Fall 2020 10 23 8 86 227 75% 73% Schroeder (N=7)
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Thus, 5 distributions of one version were made (with N=125 students) and 9 distributions of the

other version were made (with N=123 students). Unequal response rates for each institution lead

to the first version receiving more responses than the second.1

The Fall 2020 assessment was piloted in one version and composed of 15 items; it was the

first composition of items that will be included in the final U-STEP. Of the 10 piloting institutions,

9 received responses, contributing to a total of 170 responses on the piloted U-STEP. At the end

of each piloted assessment and student interview, students were asked to provide demographic

information.2 This was used primarily for the analyses discussed in Sec. 4.6.2. Demographics for

each pilot administration can be found in Appendix C.

4.2 Content Validity

Validity refers to a measure of whether a test or assessment measures what is says it does,

in addition to the interpretations that can be inferred from produced scores [59]. Content validity

refers to how well the assessment covers the targeted content domain [59]. Content validity is

typically established early in the development process, while other types (see Sec. 4.3 and Sec. 4.5),

are established after the assessment has been administered in some way. Content validity can be

addressed by several routes, including expert input and review. The first route taken for establishing

content validity for the U-STEP was to solicit faculty input from the beginning of item development,

as established by the faculty content survey (see Sec. 3.1). This process ensured that the topics

within the U-STEP would address key topics within the domain of thermal physics. Results from

the survey were used to inform writing of assessment objectives (AOs), which were then used to

guide item development. After completing a finalized draft of preliminary AOs, we provided our list

to 7 independent reviewers with experience teaching and studying upper-division thermal physics

prior to item development. We received responses from 2 reviewers, who provided feedback that

1 Instructors are encouraged to give credit for participation; however sometimes the incentive isn’t enough to get
students to participate. COVID-19 and remote learning likely caused some burnout for students, contributing to low
response rates. (Note Spring 2020 was the semester when the COVID-19 pandemic hit and many institutions had to
switch to remote/online instruction styles mid-semester.)

2 Students were given a “prefer not to answer” option for demographics questions.
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aided in revisions and finalization of the AOs used to develop items.

4.3 Construct Validity

Construct validity is associated with the characteristics being measured by the assessments

as well as interpretations of the results [59]. To establish construct validity, throughout item

development and revision, student interviews were conducted (N=13). After CMR items were

drafted, prior to being piloted in Spring 2020, 5 interviews were conducted in a pencil-and-paper

format, 2 and 3 for each version.3 Additionally, prior to the Fall 2020 pilot, 5 remote interviews

were conducted via Zoom using a single CMR version. To facilitate these interviews, we utilized the

online platform used for distributing the pilot assessment (i.e., Qualtrics) and Zoom screen-sharing.

After the Fall 2020 pilot, 3 additional remote validation interviews were conducted. Thus, each

item underwent 12-13 validation interviews before finalization.4 Most interviews were conducted

with men (N=10) and White students (N=10).5 Interviewed students came from four different

institutions, with 10 students from one institution and 1 student from each of the remaining three.

Through these interviews, it was verified that most item prompts and response options were

interpreted as intended; when this was not the case, the items were revised to address students’

comments made during the interviews. For example, one reasoning element in a question addressing

engines (item 14) read: “the first law of thermodynamics.” The intended meaning of this option

was unclear for several students, prompting it to be changed to “the first law of thermodynamics

relates W and Q to ∆U ” (where all variables were defined in the preceeding prompt). Additionally,

interviews were analyzed to ensure students’ selections aligned with their ariticulated reasoning. In

only a few instances6 did students’ choices not align with reasoning. Often this was due to reading

3 Interviews happened the week before CU closed campus due to COVID-19. Thus, fewer interviews were conducted
than originally intended.

4 Two items (both focused on entropy) underwent an additional 4 interviews in a FR format, and are not included
in this interview count. These items were initially developed as part of a class assignment for a graduate-level
assessment development course.

5 All interviewed students provided demographic information. Note that though 10 men and 10 White students
completed interviews, these groups didn’t fully overlap, and thus fewer than 10 White men were interviewed.

6 “A few instances” refers to 1-2 errors per interview, with the number of these occurences only appearing in a
small number of interviews.



51

the response options too quickly or not remembering the definition of a term (e.g., state function)

or entity (e.g., the Boltzmann factor). A small number of revisions were made to items after the

interviews; these revisions happened between each set of interviews (as opposed to after all 13 were

conducted).

4.4 Scoring

Careful consideration was taken when developing the scoring scheme for the U-STEP. A key

consideration was how many points to assign the multiple-choice (one correct response) questions

and mutliple response (partial-credit possible, related to reasoning) questions. The research team

collectively decided to assign up to 3 points for multiple-response (MR) prompts, and investigated

the impacts of changing the weighting of the multiple-choice (MC) prompt (i.e., 2 points vs. 3

points). This ultimately was meant to address the question of whether MC response and reasoning

should be of equal worth, or if reasoning should be weighted more heavily. Since reasoning is a key

aspect of CMR items, we did not consider weighting the MC response more than that of the MR

reasoning questions.

Weighting for MC responses was explored using data from the two versions of the assessment

piloted in Spring 2020. Overall, weighting the MC portion more heavily did increase overall aver-

ages and item difficulties, namely because students tended to do better on the MC question than

responding to reasoning prompts. However, we also observed the magnitude of performance gaps

based on race and gender increased for some items when MC answers were weighted more heavily.

Due to this reason, and the desire to value reasoning more heavily, the choice was made to weight

MC questions as worth 2 points and reasoning worth 3 points.

With weighting decided, the scoring schemes for items could be finalized. Scoring was based

on both correctness and consistency. It was possible on some items to answer the MC prompt

incorrectly and still get some credit if reasoning was consistent with their incorrect response. For

example, item 11 on the U-STEP relied on recall of the Boltzmann factor; students could receive

partial credit if their reasoning was consistent with a response corresponding to assumption of an
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incorrect sign in the exponent of the Boltzmann factor. Most MC prompts, with the exception of

two,7 were scored dichotomously (i.e., either fully correct or fully incorrect, with students receiving

either 0 or 2 points).

Scoring for MR prompts were more complex, as they had to account both for accuracy and

consistency with the MC selection. Each MR selection was assigned a certain number of points,

which could either add or subtract from their score for reasoning. For example, some reasoning

elements were worth +0.5 points, +1 points, +2 points, etc. while others were worth -0.5 points,

-1 points, etc. (all scoring allowed for only half-integer and integer point values). If a reasoning

element was a correct statement, but irrelevant in determining the correct response, that reasoning

element was assigned a score of 0 points. Some reasoning selections were assigned a score such that

if that reasoning element was selected, the entire reasoning score would be cancelled to zero. In

some instances, reasoning elements had to be selected in conjunction for either to count towards the

score. For reasoning, a code was created in a spreadsheet such that total scores would remain within

the bounds of 0 points and 3 points.8 An example scoring scheme and its application is presented

in Figure 4.1. Note Student 2 in Figure 4.1 received partial credit for consistency despite selecting

an incorrect answer for the MC prompt. The scoring schemes used for each item is presented in

depth in Appendix E.

Scoring schemes were discussed and finalized with a team of three researchers, and thus there

is some level of subjectivity in the judgements made regarding how many points each selection was

worth. It is worth acknowledging the idea that, if others were conducting this work, they may

have potentially developed different scoring schemes than the researcher-generated ones presented

in this dissertation. However, it is unlikely any large differences would appear in deciding which

selections are definitively correct or incorrect.

After analysis of both interviews and validation statistics, some scoring schemes were modified

7 These two prompts were part of the same item and had the same response options (see item 14 in Appendix D).
A partially-correct response would receive 0.5 points out of 2 points.

8 It is possible for students to select a series of reasoning elements that summed to less than zero. The minimum
score was set to zero such that reasoning selections could not subtract from their MC or overall score.
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Figure 4.1: Scoring scheme for Item 1 of the U-STEP (left) and example responses with corre-
sponding scores (right). Multiple choice (MC) options (A-D) are in the top row, while the left-most
column lists multiple-response (MR, reasoning) options. Students select one MC answer and as
many MR options as they desire in order to support their response. All other entries within the
table are scores assigned to each response. Note for this example, a & c must be selected together
with B to receive credit for either. The * indicates the correct MC response. See Appendix D to
see this item and Appendix E to see scoring schemes for all items.

before finalization. This was often done because the initial scoring seemed too harsh causing a

decrease in scores for many students or students from particular demographic groups. Sometimes

it was realized by the research team that some elements docked points because it was not a line of

reasoning that would directly support the MC response despite being a true statement, and thus

scoring for these statements were changed such that the selection would neither add nor subtract

from the score (i.e., assigned 0 pts.).

Due to these scoring schemes, some items were worth up to 15 pts. (if composed of multiple

CMR pairs, such as the item in Figure 3.9) while others were worth only 2 pts. (i.e., pure MC). To

avoid some items dominating the scoring of the assessment due to their allotment of more possible

points, the research team decided to weight each item equally for overall test scoring. After assigning
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point values for each item, each maximum item score was normalized to 1 using the total number of

possible points for each item. For example, for the item presented in Figure 4.1, each score would

be divided by 5; this would mean Student 1 received a score of 1, Student 2 received a score of 0.1,

and Sudent 3 received a score of 0.4. Normalized scores were all added together then divided by

15 (the maximum score possible for the normalized assessment) to determine the overall score for

each student. Note that though the normalized scoring scheme was used, the unnormalized scoring

scheme did not produce large differences in the statistical measures of validity of the assessment.

4.5 Criterion Validity

Another route for establishing validity beyond content and construct validty, is to perform

criterion validity analyses, comparing assessment performance to other relevant measures [59].

These analyses must be conducted after MR piloting and scoring. For this study, overall assessment

averages were compared to students’ average exam scores and final course grade for a subset of

respondents at a single institution (N=76).9 We found inconclusive evidence regarding criterion

validity. Correlations between students’ average exam scores and achieved assessment score was

0.431, while the correlation between students’ final course grade and assessment score was 0.357.

Some consider the range of 0.4-0.7 to be an acceptable range for validity correlations, while others

have argued coefficients within that range are too low to account for a sufficient amount of variance

between scores [82].

There are several factors that could affect the data used for the above correlation coefficients.

The semester these data were collected was during a remotely-taught course, in which course

expectations were different from the norms of the in-person course. For example, exams in the

course were take-home and open-book, while students were asked to not access any resources while

taking the assessment. Additionally, for all exams with exception of the final, students were able

to do test corrections to improve their exam scores. Exams were also weighted less heavily than

normally done for the considered course. These course modifications may change the nature of

9 We only had access to these measures at one institution.
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what exams are testing and therefore may not represent an appropriate comparison for criterion

validity analysis. Additionally, it is worth highlighting that this analysis could not be done for all

respondents in the pilot because course performance data was only available from one institution.

4.6 Classical Test Theory Analysis

Classical test theory (CTT) is based on the assumption that a student’s score on an assess-

ment is composed of two scores: a true score and a score due to random error (which could be

due to measurement error, testing conditions, etc.). It is assumed that the true score would be

a measure of student ability and the error score accounts for fluctuations from the true score as

measured by the assessment. A key assertion is that the error is random, and thus true scores of a

population in aggregate can be accurately measured via averaging.

Another assumption of CTT is that the population tested is representative; this must be

the case for the outcomes and measures of the assessment to hold for any population. However,

populations are rarely fully representative of all sub-populations, especially in physics, which is

predominately White and male [10]. Thus, outputs of the model, and therefore the test statistics

themselves, are population dependent and are likely to change when a different populaton is tested.

To align with traditional PER assessment development, CTT analyses were done for the

U-STEP. This was done, in part, to identify items that needed to be revised or removed when

creating the final U-STEP. These analyses include calculations of item difficulty and discrimination,

as well as overall assessment discrimination (i.e, Ferguson’s delta) and a coefficient related to

internal consistency (i.e., Cronbach’s Alpha), as discussed in Sec. 4.6.1. Additionally, they included

a differential item functioning analysis of performance differences between demographic groups in

attempt to curb bias in the assessment (Sec. 4.6.2), an important aspect of assessment development.

4.6.1 CTT Validation Statistics

As mentioned above, the key CTT outputs discussed here are item difficulty, item discrimina-

tion, Ferguson’s delta, and Cronbach’s Alpha. Item difficulty is a measure of how difficult an item
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is to answer correctly, and is reported as the average score on the item [83]. This means that higher

difficulty values actually respresent easier questions, whereas low difficulty values represent more

challenging questions. Discrimination refers to the extent to which an item or test can distinguish

between high- and low-performing students [59, 83]. Higher discrimination values indicate better

differentiation between high- and low-achievers.

Table 4.2 presents difficulty (b) and discrimination (a) measures for the Spring 2020 and

Table 4.2: CTT validation results—difficulties (b) and discriminations (a)—for Spring and Fall
2020 pilot administrations of the U-STEP items. N-values for the Spring administration change
due to the different versions of the assessment piloted and varied number of institutions receiving
each version. (Each version was composed of a set of 6 anchor items and 7 secondary items, which
differed based on items.) N-values for the Fall pilot remain the same due to only a single version
being piloted. ANote: The discrimination from anchor items for the Spring 2020 pilot are presented
as averages across the two versions.

Spring 2020 Pilot Fall 2020 Pilot
Item Topical Area Focal Topic N b a N b a

1 work PV diagram 99 0.28 0.14 164 0.25 0.21
2 first law PV diagram 169 0.47 0.23A 164 0.52 0.49
3 heat See Fig. 3.7 70 0.51 0.51 164 0.45 0.40
4 stat. mech. micro/macrostates, probability 169 0.54 0.35A 164 0.51 0.27
5 stat. mech. multiplicity 99 0.75 0.40 164 0.76 0.24
6 equilibrium thermal, mechanical, diffusive 99 0.72 0.41 164 0.63 0.53
7 entropy mixing gases 70 0.58 0.45 164 0.66 0.32
8 entropy Carnot engine & entropy 99 0.51 0.38 164 0.51 0.46
9 entropy heat flow between solids 70 0.49 0.43 164 0.51 0.46
10 energy degrees of freedom 70 0.60 0.48 164 0.57 0.30
11 stat. mech. See Fig. 3.9 169 0.47 0.44A 164 0.42 0.56
12 stat. mech. entropy & Z† for single state 99 0.61 0.42 164 0.51 0.49
13 engines heat and work 99 0.40 0.22 164 0.46 0.40
14 engines entropy-temperature diagram 70 0.23 0.26 164 0.31 0.36
15 temperature isotherm of ideal gas 70 0.59 0.36 164 0.68 0.31

16 temperature See Fig. 3.6 169 0.65 0.30A N/A N/A N/A
17 stat. mech. fundamental assumption [68] 169 0.52 0.13A N/A N/A N/A
18 heat PV diagram 169 0.40 0.30A N/A N/A N/A
19 energy equipartition 99 0.19 0.33 N/A N/A N/A
20 stat. mech. probability 70 0.14 0.20 N/A N/A N/A
21 heat See Fig. 3.6 70 0.51 0.51 N/A N/A N/A

†Partition function
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Fall 2020 pilot administrations of the preliminary and final U-STEP items.10 Difficulty is typically

defined by the proportion of correct responses with respect to the total number of responses;

however, this definition only makes sense in the context of dichotomous data. Here, difficulties

were found by averaging all scores achieved by individuals for each item; CTT difficulties values

can only range from 0 to 1. For the Spring 2020 pilot, items difficulties ranged from 0.14-0.72.

For the Fall 2020 pilot (which contains the final set of items to be included in the U-STEP) item

difficulties ranged from 0.25-0.76. The literature suggests ideal difficulties lie with the range of

0.30-0.90 [83], and only one item piloted in Fall 2020 fell outside this range. Overall difficulties for

the two assessment versions piloted in Spring 2020 were 0.52 and 0.44. For the single version of the

U-STEP piloted in Fall 2020, the overall difficulty was 0.52.

Discrimination values for items were determined using a Spearman correlation between item

scores and average score on the rest of the assessment [84]. For the Spring 2020 pilot, item dis-

crimination values ranged from 0.14-0.51. For the Fall 2020 pilot, item discriminations ranged from

0.21-0.56. The literature suggests these values should lie above 0.30 [83]. Seven items from the

Spring 2020 pilot (items 1, 2, 13, 14, 17, 20, and 21), three of which were dropped for the Fall 2020

administration, fell below this threshold. Three items in the Fall 2020 pilot fell below this threshold,

with a=0.21 (item 1), a=0.27 (item 4), and a=0.24 (item 5). Overall assessment discriminations,

as measured by Ferguson’s delta, were 0.99 and 0.98 for the two Spring 2020 versions and 0.99 for

the Fall 2020 version.11 These meet the desired requirement of δ≥0.9 [83]. Cronbach’s Alpha is

a measure of internal consistency and it is recommended this coefficient has a value of α≥0.7 to

be considered acceptable for group comparisons [85]. The two Spring 2020 versions yeilded values

of α=0.71 and α=0.69, while the value for the Fall 2020 pilot was α=0.78. This indicates the

instrument is reliable at the level of group measurement as needed for this type of assessment.

10 Note these analyses used the normalized scoring scheme discussed in Sec. 4.4.
11 Note the unnormalized scoring scheme was used to determine Ferguson’s delta.
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4.6.2 Differential Item Functioning with CTT

Differential item functioning (DIF) involves statistical comparisons of subgroups within a

population to investigate the extent to which items may be measuring different abilities for students

with similar scores on the assessment overall. This can be one route to identify bias within items—

if students in different subgroups (e.g., men and women) score similarly on the assessment, but

score vastly differently on a particular item, that may indicate issues with the item that need to

be addressed.

Often differences in performance based on gender and/or race are compared using averages of

all students within each considered population. DIF differs from this route by separating students

by ability as measured by the overall assessment and then comparing averages on individual items

between subgroups in ability categories. The CTT approach to DIF used for the U-STEP involved

looking at average scores on items for the top and bottom 25th percentiles based on demographic

group (i.e., gender or race) and identifying items that had significant differences between subgroups.

Students were sorted into ability levels by first ranking students by overall assessment score,

from highest scores to lowest. Then, the bottom and top 25th percentiles (i.e., the 25% of students

with the lowest overall scores and 25% with the highest overall scores) were identified. These two

groups were then split by gender or race for the analyses. Since the percentile grouping depended

only on rankings of overall scores, N-values for each demographic group within these percentiles

are not equal. For example, on one version of the assessment piloted in Spring 2020, the top and

bottom 25th percentiles were each composed of 25 students. In the top 25th percentile, 4 were

women, whereas 18 were men.12 N-values for all DIF analyses can be found in Appendix F.

The purpose of splitting students into percentile groups was to allow for comparison of stu-

dents of similar abilities. By focusing solely on averages for all students in a particular demographic

group, possible issues of bias may be suspected when there may not actually be any. For exam-

ple, if a particular group scores lower on certain items, it may just be that the students in that

12 Others in the 25th percentile were non-binary or did not report demographic information.
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group, for one reason or another, overall have lower ability.13 Often performance differences, or

“gaps,” are analyzed in terms of overall group performance on items, as opposed to by specifc

ability level as measured by the assessment. Comparing group differences in terms of all students

within a particular group can imply bias in the assessment where it may actually be absent. This

can become problematic when considering analysis and interpretations of the gaps, which often

inform construction of various interventions or assessment revisions. Some DIF analyses of physics

assessments, which compare students of similar abilities, have been conducted (e.g., ref. [6]), but

these are typically done after the assessment has been formalized.

DIF analyses involving students of similar abilities are important because if gaps on average

item scores appear between similar-ability students from different groups, this may indicate issues

with an item. This is because one would expect students of similar abilities to achieve similar

scores on each item. If this is not the case for a particular item, that indicates potential issues with

the item—such as bias—that may exist, warranting a closer investigation into the structure of the

item.

The analyses presented here focus on two genders—men and women—and three racial categories—

Asian, White, and underrepresented minority (URM).14 These groupings were largely informed by

demographic representation in STEM [10]. Men are overrepresented compared to women in STEM.

Similarly, Asian and White students are overrepresented in STEM compared to URM students.

Asian and White are split into separate categories due to their distinct racial categories. This is

an important distinction due to the way race influences the experiences students encounter when

pursuing STEM degrees (as discussed in more detailed in Ch. 6-Ch. 9).

For the Spring 2020 pilot, only one item (item 16 in Table 4.2) resulted in statistically

significant (p<0.05) differences of average scores between racial groups (White and Asian students,

and White and URM students) of similar abilities as determined by a Mann-Whitney analysis [86];

13 Note the term “student ability” is a measure of performance as opposed to innate ability of individuals. See
Sec. 2.4.2.

14 Students were asked to provide demographic information at the end of the assessment. Students who selected
“prefer not to answer” are not included in the DIF analyses, though may have been in the upper or lower 25th
percentiles. Similarly, non-binary students are not included in the gender analysis due to low N, though non-binary
students may have been in the upper or lower 25th percentiles.
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no statistically significant differences between men and women or Asian and URM students were

detected. No changes were made to this item based on this analysis, as the item was eventually

combined with item 21 to produce a single CMR item (see Fig. 3.7).

Results from the CTT DIF analyses for the Fall 2020 pilot administration are presented in

Appendix F.15 One item (item 13 in Table 4.2) was found to have differences in the mean score

of men and women for both the upper and lower 25th percentiles that are statistically significant

at the 0.01 level. No significant differences were found with this item for race. Item 13 relies on

recall of the term adiabatic.16 Analyses of response patterns to the item found similar frequencies

of selection of the distractor requiring knowledge of this term (an average of 6.5% for men and 10%

for women). No changes to this item were made based on this analysis. Though the definition of

“adiabatic” could be provided in the prompt or response options, much like what was done with

“state function” in Sec. 3.3.1.5, provision of this definition would make the problem trivial (as can

be seen with considering the prompts in the item, presented in Appendix D). However, moving

forward, this item will be re-evaluated for inclusion in the finalized U-STEP pending results from

the final pilot administration in Spring 2021.

4.7 Item Response Theory Analysis

Item response theory (IRT) can facilitate differential item functioning, and came about to

rectify some shortcomings of CTT [59]. Though CTT assumes a representative sample, this is not

actually the case in most instances, leading to statistics dependent on the population with which the

assessment was piloted (i.e., CTT statistics vary when the population changes). This becomes par-

ticularly problematic when it comes to fairness in testing. That is, if assessments are mainly piloted

at predominantly White and male departments (which describes most large physics departments),

the validation statistics are based on that population, as opposed to other populations composed

of students of color and women. This can lead to the test favoring students of the sampled popu-

15 Scoring was revised for one item during the period analysis was conducted. DIF analyses before and after this
revision did not result in statistically significant gender or race performance differences.

16 Adiabatic refers to processes in which heat neither enters nor leaves the system.
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lation (because the test statistics were determined with that group), leaving students from other

groups to receive different (historically lower) scores. Some scholars have discussed a hyper-focus

on “achievement gaps” in assessments [87]. Utilization of only CTT validation approaches could be

a factor in the appearance of these gaps due to the population-dependent nature of the approach

and the fact that the populations typically used are predominantly composed of only certain de-

mographic groups. IRT, on the other hand, allows for determination of test statistics that do not

vary wildly when testing population changes, provided the initial validation pool is broad.

The two-parameter logistical (2PL) IRT model is composed of two main variables: item

discrimination (a) and item difficulty (b). The three-parameter (3PL) model incorporates a third

parameter accounting for guessing, but is not considered here due to the low likelihood of students

guessing the correct response pattern for CMR items. According to the 2PL model, the probability

of a student of ability θ scoring correctly on an item (i) is given by:

P (θi) =
1

1 + e−ai(θ−bi)
(4.1)

Unlike CTT, the item difficulty and discrimination parameters need not range from 0 and

1, and can instead take on any value (including negative values), though they typically take on

values between -3 and 3. In general, each item has its own difficulty and discrimination values.

Higher, more positive difficulty values indicate more challenging items,17 while more negative values

indicate the item is easier. Discrimination is typically positive, unless an item is not behaving as

intended, and indicates how well an item distinguishes (i.e., discriminates) between high- and low-

ability students; higher values indicate better discriminatory power. Ability18 (θ) is defined such

that higher (positive) values indicate higher ability, and more negative values indicate lower ability.

Each student has a particular ability value θ.

Equation 4.1 can be used to plot Item Characteristic Curves (ICCs) for each item. ICCs

allow one to interpret various properties of an item, namely difficulty and discrimination. Difficulty

in IRT can also be defined as the ability level required to have a 50% chance of answering an item

17 Note: This behavior is opposite for CTT, in which higher difficulty values indicate easier items.
18 Note again “ability” is used here to align with the literature. See Sec. 2.4.2.
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Figure 4.2: Modified from ref. [88]. Item Characteristic Curves with varying difficulties (left) and
discriminations (right). The left image shows an easy (b=-2), medium (b=0), and difficult (b=2)
item, all with the same discrimination. The difficulty value is the ability level at which the prob-
ability of a correct response is 50%. The right image shows ICCs with the same difficulties and
varying discriminations, with a=2 having the most discriminatory power and a=0.3 having the
least. Steeper slopes at the 50% probability location (inflection point) indicate higher discrimina-
tion.

correctly, located at the inflection point of an ICC.19 Discrimination can be read from an ICC via

the slope at the steepest point of the graph (i.e., the inflection point). Figure 4.2, modified from

ref. [88], shows examples of ICCs with different difficulties and discriminations; each curve would

represent characteristics of a different item. Test characteristic curves look similar to ICCs, but

display information for the entire test as opposed to a single item.

4.7.1 The Rasch Model

The one-parameter IRT model, also known as the Rasch model, is a simplification of the 2PL

model. In the Rasch model, all item discriminations are assumed to be 1 [63]. As a results of this

assumption, the Rasch model reduces Equation 4.1 to:

P (θi) =
1

1 + e−(θ−bi)
(4.2)

The mathematical formalism of the Rasch model assumes the probability of a student an-

19 The definition of difficulty varies slightly for the three-parameter logistical model.
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swering an item correctly is determined by a latent trait (i.e., ability) and item difficulty. This

allows ability and item difficulty to be mapped onto the same invariant scale, leading to consis-

tency among item difficulty measures when a new population is tested. This is beneficial for DIF

analyses to identify bias. Another benefit of Rasch analyses is that they require a much smaller

sample size than those required for the 3PL and 2PL models [89]. Though model fit depends on

both sample size and test length, some have suggested a sample size of 200 respondents and 15

items (the same number of items on the U-STEP) provides sufficient fit statistics [90]. This is

promising because after the next pilot administration of the U-STEP the sample size should meet

or exceed this threshold when combined with the Fall 2020 data.

As with all IRT models, the fit of the Rasch model to the data cannot be assumed, but

instead must be evaluated. Thus, before measuring outputs of the model, such as item difficulties

and student abilities, it is important to check that the model applied fits the data sufficiently.

This is because Rasch model outputs cannot be accurately interpreted unless the model fits. One

implication of the Rasch model’s assertion of a=1 is that discrimination cannot vary to better fit

the data. Instead, this means in order to get a better fit for the model, one must adjust the items

as opposed to the model. This has implications for designing and testing items.

4.7.2 Preliminary analysis using the Rasch Model

A restriction of the original Rasch model is that it requires dichotomous data. However, data

collected from CMR items are not dichotomous, and can instead take on various values between 0

and 1. Because of this property of CMR items, and the limited number of CMR-based assessments,

there are few investigations of Rasch analyses applied to CMR items. Though polytomous Rasch

models exist (see Sec. 4.7.4 for an example), they require much larger sample sizes than dichotomous

Rasch analyses; smaller sample size restrictions are beneficial for upper-division courses, which have

a relatively small pool of students to draw respondents from.

The goal motivating the analyses presented here is to explore application of Rasch to CMR

items to see if this validation method is possible or feasible for use in finalizing the U-STEP or
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analyzing future CMR assessments. To explore the possibility of applying the dichotomous Rasch

model to the U-STEP, we investigated dichotomizing CMR item scores. Namely, we created various

score thresholds that were required to obtain a score of 1, with any score less than that threshold

being converted to a score of 0. These analyses lay a foundation for novel IRT approaches for CMR

assessment analysis.

The typical CMR item on the U-STEP is composed of one MC prompt and one MR prompt

(or a series of MC-MR pairs). Since the scoring scheme we chose assigned 2 points for the MC

portions and 3 points for the MR portions, the typical CMR item was worth 5 points (which was

then normalized to 1).20 For this exploratory analysis, we looked at a 40% threshold, 50% threshold,

and 60% threshold to determine whether a score was converted to a 0 or 1. A 40% threshold would,

in general, indicate the student answered at minimum the MC prompt of a CMR item correctly

(i.e., a score of 2 or above on a 5-point item). The 50% threshold would indicate at least some

credit for reasoning was received in addition to a correct response to the MC prompt (i.e., a score

of 2.5 or above). The 60% threshold, in general, indicates students received at least one-third of

the possible points for reasoning in addition to a correct response to the MC prompt (i.e., a score

of 3 or above). Note these general rules vary slightly by item, as not all items were worth the same

amount of raw points (which were then normalized); however, the above are the justifications used

for determining the thresholds tested.

To see how well the dichotomous score transformations aligned with the polytomous scoring

scheme, a Pearson correlation was conducted between total assessment scores from the traditionally

scored CMR items and the dichotomously scored total scores determined using the three thresh-

olds. Correlation coefficients were 0.960, 0.967, and 0.958 for the 40%, 50%, and 60% thresholds

for the overall assessment, respectively. However, it should be noted there were several students

whose scores on the traditionally-scored CMR assessment were somewhat higher or lower than their

dichotomized total score, as seen in Figure 4.3.

20 Note some items were worth more than 5 points. However, all items were normalized to 1 such that they were
weighted equally.
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Figure 4.3: Scoring for the overall assessment for all students in the Fall 2020 pilot, comparing the
original CMR scoring scheme with the dichotomously-scored schemes for the 40%, 50%, and 60%
thresholds. Threshold and original CMR scoring results are presented as percentages determined
by the total number of points received on the assessment divided by the total number of points
possible (i.e., 15 pts.)

Exploratory Rasch analysis was done only using the Fall 2020 data, utilizing the mirt package

in the computer program R [91]. We used only Fall 2020 data because the assessment piloted that

semester was a single version, allowing for a larger number of responses (N=164) for analysis

than could have been analyzed with the Spring 2020 pilots of two separate versions. Overall

model fit was tested using an M 2 statistical test. This test was proposed by Maydeu-Olivares and

Joe [92] and provides a measure of model fit for the overall assessment. This is an important step

in the analysis process because it allows one to gauge reliability of model outputs, such as item

difficulty and student ability. Large M 2 values correspond to lower p-values and more model misfit.

Additionally, root mean square error of approximation (RMSEA) and comparative fit index (CFI)

provide another measure of overall fit. Recommended cutoffs for these outputs vary across the
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Table 4.3: Overall assessment fit statistics using three thresholds for dichotomizing data. Significant
misfit is indicated by p<0.05. Root mean square error of approximation (RMSEA) less than 0.06
indicates a relatively good model fit; comparative fit index (CFI) values greater than 0.95 indicate
good model fit [93]. Results combined indicate good model fit for each threshold utilized, with
lower thresholds displaying better fit.

M 2 p RMSEA CFI

40% Threshold 117.01 0.199 0.027 0.973
50% Threshold 118.65 0.171 0.028 0.969
60% Threshold 125.90 0.080 0.035 0.951

literature and often depend on the estimation method used [93]. However, conservative discussions

suggest an RMSEA value less than 0.05 indicates a close fit [94, 95] and CIF values greater than

0.95 indicate relatively good model fit [96]. Table 4.3 presents M 2, RMSEA, and CFI values from

the overall model fit analyses. Each tested threshold—40%, 50%, and 60%—yielded acceptable

overall model fit according to the literature, with the 60% threshold being the closest to potential

misfit. This indicates the data pulled from the Rasch analyses for these thresholds, including item

difficulty and student ability measures, are reliable enough and imply these theshold methods may

present promising avenues for Rasch analysis of CMR items.

The test characteristic curve for the three threshold analyses are presented in Figure 4.4.

As one might expect, the difficulty of the assessment increased as the threshold values increased.

This trend was also true for most items. This was not the case for all items because some scoring

schemes led to identical results for different thresholds. For example, the 40% threshold and the

50% threshold difficulties and resulting ICCs were identical for items in which 5 points were possible

and reasoning only allowed for integer-values of point allotment for reasoning (i.e., one could not

receive a 50%, and thus the two thresholds were essentially identical). Trends in difficulty were

similar for these analyses and the CTT analyses with the original CMR scoring scheme. That is,

more difficult items as measured by IRT were also rated as more difficult with the CTT analysis.

IRT difficulty values are presented in Appendix G.
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Figure 4.4: Test characteristic curve for the Rasch analysis of the Fall 2020 piloted assessment
using 40%, 50%, and 60% thresholds for dichotomizing data. The expected total score ranges from
0 to 15 because there are 15 items total, each worth 1pt. The difficulty of the assessment increases
as the threshold increases, as indicated by the shift to the right with increasing threshold.

Item fit statistics were determined using a Pearson’s chi-squared test (S-X2), which has been

found to produce a better detection of model misfit than other measures [97]. Fit statistics, along

with IRT-produced difficulty values for the 15 items included in the Fall 2020 pilot can be found in

Appendix G. Higher S-X2 values indicate a higher level of “misfit” (i.e., lower S-X2 indicate better

fit). Additionally, RMSEA values less than 0.01 indicate “excellent” fit for the S-X2 statistic, while

values greater than 0.08 indicate mediocre fit [98]. Thus, item-model misfit can be deduced from

high S-X2 values, low p-values (p<0.05), and RMSEA>0.08. Misfit items (see Table 4.2 for item

descriptions) for each threshold included:

• 40% Threshold: item 14

• 50% Threshold: items 1, 7, 13, 14

• 60% Threshold: item 1, 5

Analyses for each threshold were re-ran with misfitting items removed. Appendix G presents
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Table 4.4: Item fit statistics when items are removed, determined using three thresholds for di-
chotomizing data. Significant misfit is indicated (p<0.05). Items were removed if they appeared
with statistically significant misfit for the entire assessment for each threshold. New/Remaining
misfit items are items that appeared with misfit that did not appear in the intitial analysis or items
that remained misfit before and after the associated item was removed.

40% Threshold 50% Threshold 60% Threshold

removed new/remaining removed new/remaining removed new/remaining
item (p) misfit items (p) item (p) misfit items (p) item (p) misfit items (p)

14 (0.020) 6 (0.034) 1 (0.040) 7 (0.048) 1 (0.023) 4 (0.008)
13 (0.007) 5 (0.003)

7 (0.034) 13 (0.020) 13 (0.004)
14 (0.037) 5 (0.018) N/A

13 (0.040) 1 (0.037) 1, 5 13 (0.013
10 (0.032)

14 (0.018) 3 (0.016)
13 (0.016)

1, 7, 13, 14 5 (0.006)

detailed reporting of the produced S-X2 analyses, and related p-values and RMSEA values, for these

analyses for all items. Table 4.4 summarizes specific removed items and the items that appeared as

significantly misfit when those items were removed. When removing item 14 for the 40% threshold,

a new item (item 6) appeared with signicant model mifit (p=0.034). Removal of any individual

misfit item for the 50% threshold reduced the total number of other misfit items, though never

eliminated all misifit. Item 13 remained misfit in all misfit-removal analyses for the 50% threshold,

and even emerged as misfit in the 60% threshold analyses when item 1 was removed. This indicates

this item may warrant further investigation once a larger sample size is available and more robust

analyses can be completed (i.e., after the Spring 2021 pilot). This could result in revision or removal

of the item. The 50% threshold initial analysis highlighted 4 misfit items, and even when all 4 of

these items were removed, statistically significant model misfit still appeared (emerging from new

items). This suggests that use of the 50% threshold produces the most model-data misfit and may

not be ideal for future Rasch modeling of CMR items. Notably, removal of item 5 from the 60%

threshold yielded no other item misfit. Removal of items for reanalysis did not significantly change

difficulty values output from the model for any threshold.
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Figure 4.5: Histograms of student ability measures determined with the Rasch analysis of the Fall
2020 piloted assessment using 40%, 50%, and 60% thresholds for dichotomizing data. The average
abilities across the three thresholds remains constant and centered at 0. Higher, more-positive
values indicate more ability, while more-negative values indicate lower ability.

The encouraging results from these Rasch analyses led to consideration of student ability

measures and how to report them to instructors. Ability estimates were determined with the three

thresholds used, as presented in Figure 4.5. The lower-bound of ability measure shifts to more-

positive values with increasing threshold. This is due in part to the assumptions of the model,

one of which is that the mean of the abilities is 0 with a standard deviation of 1 [63]. A major

goal of assessments like the U-STEP is to provide information to instructors about their students’

aggregate performance on the assessment to inform their instruction. Distributions of student

ability measures are one output from the analyses that could be provided to instructors as feedback

regarding their class’s performance. Histograms such as those presented in Figure 4.5 are one

possibility of reporting these abilties to instructors while still maintaining anonymity for students.

Another option is to report average performance determined by ability, though that would require
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provision of detailed descriptions of how to interpret the results, which is less necessary when

reporting averages determined by CTT. Reporting of student performance measures as determined

by IRT while maintaining anonymity is still an open question, especially when considering smaller

class sizes.

Another dichotomization method was considered in addition to the three thresholds discussed

above. The method involved dichotomizing items based on whether responses were fully correct

(score of 1) or not fully correct (score of 0). Rasch analysis of this scoring scheme could not be

conducted for all U-STEP items, as there were two items (items 9 and 13)21 in which no fully

correct responses were achieved, leaving all students to receive a score of 0 on those items.22 Rasch

analysis without these items produced statistically significant misfit for only one item (item 7).

Overall assessment fit with items 9 and 13 removed was acceptable according to M 2, RMSEA, and

CFI measures. However, one must interpret these results with caution, as the assessment had to

be dissected (i.e., split due to item removal) in order to be analyzed.

Despite the seemingly sufficient fit, CTT measures of difficulty using this scoring scheme were

very low, with only 4 items (3 of which were pure MC) falling within the accepted difficulty range of

0.30-0.90 [83]. It is also of note that CMR items are intentionally designed to award partial credit,

which can be earned through an array of reasoning patterns, and it is quite difficult to achieve a

fully correct response on CMR items. Given the analysis described above, we do not recommend

that this dichotomization method be used for future Rasch analyses of CMR items like those on the

U-STEP because (1) the intention of the items’ scoring schemes was never to have items scored as

fully correct or incorrect; (2) low CTT difficulties were produced from this dochotmization method;

and (3) the analysis could not be ran for the full assessment.

Some literature refers to populations of 500 respondents as “small sample sizes” for analyses

of model misfit with S-X2 [99]. Thus, the sample used in these analyses (N=164) may be too small

21 Item 9 addresses entropy of interacting solids, composed of 3 MC-MR pairs. Item 13 addresses heat and work
with an entropy-temperature diagram, composed of two MC questions and an MC-MR pair.

22 Rasch analyses require at least some distribution of scores for each item. If this is not the case for all items, the
analysis cannot run successfully.
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to make meaningful conclusions about the model fit. However, an additional pilot of the U-STEP

is planned for Spring 2021, prior to its finalization. Since only minor revisions have been made

since the Fall 2020 pilot, responses to the Fall 2020 and Spring 2021 administrations will be able

to be pooled, providing a larger sample to run the analysis with and putting our sample size closer

to this suggested lower-bound. This preliminary work lays the foundation for future analyses of

the assessment with larger sample sizes when they become available and suggests possible best-

practices for dichotomizing polytomously-scored data retrieved from traditional CMR items for use

of IRT for validation. The work also shows that model-fitting CMR data with a dichotomized

Rasch analysis may be a promising new route in validation of MR assessments.

4.7.3 Differential Item Functioning with IRT

IRT analysis methods also allow for differential item functioning (DIF). However, it is rec-

ommended to have a minimum of 100 respondents per group for DIF analyses with IRT [100, 101].

These restrictions to this method made it not possible to run any meaningful DIF analyses with

our preliminary dataset. For example, with this restriction, gender analyses would not be possible,

as only 32 of the 164 Fall 2020 respondents were women. Additionally, group sizes are not near 100

for any racial category considered. For these reasons, IRT-based DIF analyses were not conducted.

However, this will be a focus of future work when more responses to the U-STEP are collected.

4.7.4 The Partial Credit Model

The threshold analyses presented in the previous section were motivated by the requirement of

dichotomously-scored data for the Rasch model. Though the analysis suggests promising potential

analysis methods for CMR items, a benefit of using CMR items in assessment is the allowance

for partial credit (i.e., items that are not scored dichotomously, but polytomously) to account for

consistency and reasoning. Dichotomously-scored items and utilization of the Rasch model cannot

fully account for these aspects of CMR items. However, there is another IRT approach that could

be more applicable for these items: the partial credit model (PCM). As its name implies, the PCM
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was born from traditional IRT to can account for partial credit. The PCM in particular (as opposed

to the generalized partial credit model) is a variant of the Rasch model, and thus the discriminations

of each item are assumed to be 1.

The PCM was developed by Masters in 1982 [102]. For the PCM, one assumes the maximum

possible score can be achieved by going through steps of other score “categories” defined by the

amount of partial credit. In the example provided in his 1982 paper, there is a math problem with

3 parts (see Figure 4.6). For this item, four possible scores are achievable: 0, 1, 2, and 3. These

are score categories. From these score categories, there are 3 steps that can be taken to achieve the

maximum score: going from score 0 → 1, from score 1 → 2, and from score 2 → 3. For each step

in this progression, there is a difficulty associated with the step, which is not necessarily the same

for each step. For example, going from 0 → 1 may be easier than going from 2 → 3, resulting in

different difficulty values. Essentially, the PCM treats each “step” as a dichotomous item, which

Figure 4.6: The mathematics item provided as an example from Masters’ seminal 1982 paper [102]
illustrating the partial credit model. As can be seen, progressing through each portion of the
problem involves a steps going from one score to another, leading from lower to higher score, with
a maximum possible score of 3 in this example.
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can either be correct and progress a score to the next step (e.g., 1 → 2), or incorrect and leave a

score at the latter step (e.g., remain at score of 1). Each of these steps is then modeled using the

Rasch model (i.e., Equation 4.2), producing a difficulty value for each step. It is worth noting that

the PCM may operate on the assumption that scores are ordinal, and thus build on each other.

However, this is not the case for the U-STEP for all items, especially those composed of multiple

MC-MR pairs (e.g., item 11) or multiple MC prompts (e.g., item 12).

Despite this possible restriction, exploratory PCM analyses were conducted for the 15 U-STEP

items using the ltm package in R [103]. This analysis yeilded complicated results in many instances,

due to the many number of score categories within different items. For example, item 11, which was

composed of 3 MC-MR pairs and allowed for half-integer points for some reasoning selections, had

27 possible score categories. Thus, this item had 26 difficulty values, one for each score step. The

lowest number of score steps was 1, which appeared for items composed of a single MC prompt.

Similar to Rasch, each step for PCM produces a single characteristic curve, which describes

the probability of completing that step based on ability (described by Equation 4.2). An example

plot of PCM item response category characteristic curves for the item presented in Figure 3.7 is

shown in Figure 4.7. This particular example had 5 steps due to its 6 possible score categories: 0,

1, 2, 3, 4, and 5. Each curve respresents the probability of a student of a particular ability receiving

the associated score of 1, 2, 3, 4, or 5. Notably, the curve for achieving a score of 5 closely matches

the expected pattern described by Equation 4.2; higher-ability students have a higher probability

of receiving the highest possible score. Similarly, the curve for a score of 1 takes a similar shape

with opposite directionality; this indicates that lower-ability students have a higher probability of

making the lowest-level step (0→1). The curves representing scores of 2, 3, and 4 have peaks that

gradually shift towards higher abilities, indicating that students need higher ability levels in order

to achieve the progressively increasing scores.

The plot shown in Figure 4.7 suggests some conceptual alignment of responses to the model

based on the gradual upward progression of score peaks with increasing score. However, an analysis

of fit statistics indicates the model is not sufficient. The current scoring scheme leads to lower
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Figure 4.7: PCM item response category characteristic curves for the item presented in Figure 3.7.
Each curve is labeled with its associated score, ranging from 1 to 5, and its shape is described
by Equation 4.2. Higher-ability students had a higher probability of receiving a score of 5, with
lower-ability students being less probable to receive that score. Similarly, lower-ability students
have a higher probability of only receiving a score of 1, while higher-ability students have a lower
probability of receiving that score.

N-values in each score category, largely due to complex items with multiple possible scores. Because

of this, the fit statistics, which produced very large values of S-X2 measures appearing for the overall

assessment fit (i.e., S-X2� 0), cannot be accurately interpreted because an assumption of the model

(i.e., sufficiently large-N in each bin, as is required for traditional Rasch analyses) is being violated.

To investigate the impact of reduced number of score categories for PCM analysis, item

scoring was revisited such that possible scores for each item could take on only one of three possible

values: 0, 1, and 2. The traditional (5pt) CMR items were scored such that 1 point was awarded for

a correct MC selection and 1 point was awarded for a minimum of half-correct reasoning (i.e., if a

student received at least 1.5 out of 3pts.). Pure MC items were scored as 0 or 1. Scoring for paired

CMR items was more nuanced and varied by item. For example, if the MC prompts within a single

item tested similar ideas (e.g., heat flow in vs. out) and associated reasoning for each prompt was

similar, MC responses combined were scored as worth either 0 or 1 and combined reasoning was

scored as either 0 or 1 (determined by a set threshold, depending on the item). Analysis of model
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fit produced a high S-X2 value, but was much lower than the output from the initial PCM analysis

(which had more score categories). This suggests better fit, though it is likely still insufficient due

to low-N in the sample. Literature suggests that use of the PCM model requires very large sample

sizes (e.g., close to 1,000 respondents) [104].

Present results imply use of the PCM as explored here is not yet feasible for validation of

the U-STEP, as our dataset is not large enough for a robust analysis using the methods employed

thus far. PCM analysis with the original scoring scheme results in too many score categories,

especially for complex items with multiple parts, making it impossible to produce valid fit statistics.

Additionally, it is questionable if the reduced-category scoring approach (i.e., limiting each item to

a maximum of three score categories – 0, 1, 2) is something we would want to pursue in the future.

However, these analyses were helpful in narrowing down the possible IRT validation methods that

could be applied to the U-STEP before it is finalized (dichotomized Rasch as determined by a

threshold will likely be the final approach).

4.8 Assessment Validation: Summary

This chapter presented the overaching validation process for the Upper-level Statistical Me-

chanics and Thermodynamics Evaluation for Physics (U-STEP). A cornerstone of this process was

pilot administrations of the CMR U-STEP in classes and interviews, which helped establish con-

tent and construct validity. Routes to establish statistical validity were discussed, including an

inconclusive invetigation of criterion validity. Additionally, preliminary item response theory anal-

yses using the Rasch model and partical credit model were presented. Though it is unclear as of

now how precisely these methods will be utilized in completing the finalized U-STEP, they provide

promising possibilities for validation of future CMR-based assessments.



Chapter 5

Discussion: Upper-Division Thermal Physics Assessment

Despite many available thermal physics assessments, only the assessment discussed here—

the Upper-level Statistical Mechanics and Thermodynamics Evaluation for Physics (U-STEP)—

addresses statistical mechanics in addition to classical thermodynamics. Though existing assess-

ments have served as useful in identifying student alternate conceptions of thermal physics concepts,

the U-STEP fills a gap that can allow instructors to gauge student understanding of statistical me-

chanics concepts in in additional to solely classical thermodynamics. Additionally, to the research

team’s current knowledge, the U-STEP is also the first upper-division thermal physics assessment.

The U-STEP is the first thermal physics assessment to be composed of coupled, multiple-

response (CMR) items [7], though at least one two-tiered multiple-choice assessment exists [55].

Additionally, though the development process of the U-STEP aligned with traditional development

routes, it also incorporated relatively rare techniques for PER assessment development such as

utilization of differential item functioning during the development stage. In addition to this, the

U-STEP is the first physics assessment that has explored Rasch validation for CMR items during

the development phase.

5.1 Development and Validation

The process for item development and validation aligned with common techniques used for

PER assessment validation [57], including classical test theory (CTT) analyses. However, the

analyses also involved investigating gender- and race-based performance differences during the
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development and validation process, which has traditionally only been conducted in PER after

assessments have been finalized (ref. [6] provides an example of this). The validation process also

adopted more novel approaches for analyzing physics assessments, such as Rasch analysis, during

the development stage as opposed to post-hoc. Additionally, the U-STEP is the first CMR-based

physics assessment to use Rasch approaches at any stage, during development or after finalization.

The following sections summarize the item development and validation routes undertaken for the

U-STEP and discuss implications for the presented work.

5.1.1 Item Development

The item development process for the U-STEP began by soliciting faculty input through a

content survey, which was distributed to over 200 institutions. We received over 70 responses from

across the United States, which were then used to inform the content included on the assessment.

Utilizing results from this survey allowed for identification of key topical areas and texts that could

lay the foundation for construction of the U-STEP. This was essential in the development process,

as it allowed for many instructors’ input into the content covered and notation used within the

assessment. Additionally, this makes the assessment more likely to be useful for a broad range of

instructors while remaining in a singular form. Results from the content survey can also be useful

for other researchers and curriculum developers in the field of upper-division thermal physics.

After identifying key topical areas from the survey, assessment objectives that spanned the

space of assessable content were developed to guide item development (see Appendix B). Items were

written and iteratively revised based on results from student interviews, pilot administrations, and

statistical analyses. Student interviews helped in establishing both content and construct validity.

Results from the pilot administrations were used to determine item difficulty and discrimination.

Additionally, we inspected student response patterns and conducted differential item function-

ing (DIF) analyses. Items that appeared too difficult or had poor discriminatory power were

removed from the pool of possible assessment items or had multiple-response options revised. Cor-

rect multiple-response selections that were infrequently selected, or incorrect distractors that were
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frequently selected, were revised or removed as well. Additionally, DIF analyses allowed for identifi-

cation of potential bias, leading to more in-depth analyses of items that appeared to be problematic

with regards to gender- or race-based performance differences (see Appendix F).

5.1.2 Item & Assessment Validation

A key component of the validation process was recruitment of piloting sites. We intentionally

recruited piloting sites from a range of institutions, by both department size and student populations

served. This means the population used for validation may be more diverse than those traditionally

used for physics assessment analyses. Thus, the sample of students is closer to representative

of upper-division physics students nationally than is typically used for assessment validation in

PER; pilot sites are often large, predominantly-White departments due to the need for large N for

validation purposes.

Validation analyses involved classical test theory (CTT), which included a DIF analysis in

addition to traditional analysis that outputs item and test parameters. We argue DIF analyses

are essential to the development process of assessments, as it assists in identification of differential

performance on items, allowing for potential curbing of bias in the assessment. This consideration

of fairness and mitigation of bias during the development process is key in reducing performance

gaps caused by bias that could appear on the assessment in future administrations.

In addition to CTT analyses, preliminary item response theory (IRT) analyses, namely Rasch

analyses, were conducted with the data as an additional validation method to lay the groundwork

for future IRT validation once sufficient data has been aggregated. IRT analyses are beneficial

over CTT analyses due to the limited population-dependence of IRT student ability measures.

This means the item descriptive statistics are less fundamentally tied to the population used for

validation, allowing for less ambiguous comparisons between student populations, either by demo-

graphic group or institution. This is helpful for instructors who wish to compare their students’

performance to that of students at other institutions. Additionally, these comparisons become

more reliable when race and gender have been considered during the assessment development and
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validation process, especially for institutions with demographic compositions differ from the White

male norm typically used in assessment validation.

Three thresholds for dichotomozing CMR data were considered and compared to lay the

groundwork for validation of the U-STEP and future CMR assessments using IRT. Difficulty re-

sults from the Rasch analyses mapped well onto the results of CTT, such as both analyses ranking

difficulty of items similarly, implying that the model outputs are behaving as expected. Addi-

tionally, model fit statistics showed results that suggest the dichotomizing methods used could be

sufficient for modeling CMR data with the Rasch model. Due to CMR items’ nature of allowing

partial credit, an extension of the Rasch model—the partial credit model (PCM)—was explored.

Though results initially seemed promising, the fit was not sufficient likely due, in part, to low-N.

Additionally, the complexity of the PCM outputs make interpretation less straightforward, and

may be challenging to convey to instructors. Thus, PCM may not be the ideal validation approach

for the U-STEP or other CMR assessments at the upper-division level. This is especially true when

considering the promising results produced from the dichotomous Rasch analyses.

These analyses have strong implications for validation of future assessments in PER, whether

the format is CMR, multiple-response, or traditional multiple-choice. Rasch analyses, combined

with DIF analyses, could change the way assessments in PER are developed and allow for mini-

mization of performance differences due to item bias before they are implemented at large scales.

5.2 Future Work

The U-STEP has not yet been finalized, as it will require one additional pilot administration,

which will occur in the Spring 2021 semester. This pilot administration will allow for preliminary

IRT-based DIF analyses in addition to more robust CTT-based DIF methods. Approximately 18

piloting site have been recruited for this pilot administration, with a pool of over 200 students who

may take the assessment. Since minimal changes have been between the Fall 2020 and Spring 2021

semesters, we will be able to pool data from both for analyses, allowing for more robust validation

statistics using both CTT and Rasch analyses. Results from these analyses will be distributed
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broadly. In addition to continuing the CTT and Rasch analyses for the larger data set, exploratory

factor analysis will be conducted to robustly test unidimensionality of the U-STEP.

After finalization of the U-STEP, best methods for distributing the online-formatted assess-

ment and encoded scoring scheme (to allow for streamlined scoring) will be considered. Additionally,

automated methods for score reporting to instructors will be determined and implemented. After

automation is finalized, the assessment will be widely publicized to instructors on PhysPort.

The U-STEP development lays the groundwork for another assessment that will address

both upper-division thermal physics content in addition to scientific practices (the Thermal and

Statistical Physics Assessment, TaSPA). The faculty content survey will inform content-coverage

as well as focal scientific practices for this new assessment. The TaSPA will be constructed from

complex CMR items [105] and provide descriptive feedback for instructors to inform pedaogical

and curricular changes. This differs from the U-STEP in that the TaSPA will provide actionable

feedback, as opposed to just items scores, and will explicitly focus on scientific practices, such

as those defined by the Next Generation Science Standards [23]. The preliminary Rasch analysis

presented here will be used to inform validation of the TaSPA once its CMR items are piloted.

Additionally, the utilization of Rasch analysis for the TaSPA will allow avenues for creating a

variable-content-coverage format, in which instructors will be able to select content and practices

to include on the assessment administered in their class. This will make the TaSPA broadly

applicable and useful for a variety of upper-division thermal physics courses and instructors.

5.3 Conclusions: Upper-Division Thermal Physics Assessment

The U-STEP is the first assessment of its kind, evaluating both upper-division thermody-

namics and statistical mechanics content understanding with CMR items. The development and

validation cycle contributes to newer approaches in PER for assessment construction, including DIF

and Rasch analyses for validation. Implementing these strategies in assessment development can

help curb bias and minimize performance gaps during future implementations of the assessment,

facilitating fairness in testing and allowing for more reliable comparisons between institutions. The
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U-STEP will set up the groundwork for construction of similar assessments in the future and could

inform transformation of assessment development techniques for future work in PER.



Chapter 6

Background: Impacts of Race & Gender on Student Experiences in STEM

Part 2 of this dissertation describes a secondary project complementary to the work focused on

thermal physics assessment. Results can be used to inform interpretation of performance differences

on assessments despite attempts to address bias. This study focuses on various factors contributing

to experiences and retention of underrepresented groups in STEM, particularly women and people

of color.1 Part 2 presents results from five core analyses: perceptions of STEM course environments

(Sec. 7.1); perceptions of professor care (Sec. 7.2); student sense of belonging in STEM (Sec. 7.3);

the intersections of course environments, professor care, and belonging (Sec. 7.4); and perceptions

of race and gender impacts in STEM (Ch. 8). This work is meant to contribute to the large body

of work that has investigated issues of underrepresentation in STEM fields, and was published in

the International Journal of STEM Education [20, 21, 22].

6.1 Motivation

Women and people of color have been largely underrepresented in, and historically excluded

from, most STEM fields, though recent trends are showing improvement [106, 107, 108, 10, 109].

This poses issues for meeting the growing needs in the STEM job sector, but also more general issues

regarding access, inclusion, and equity. Reasons suggested for both race and gender underrepresen-

tation span a range of factors including cultural norms, organizational structures, differential access

1 The phrase “women and people of color” is used frequently throughout Part 2. This language has potential to
exclude women of color, who belong to both groups. It is worth highlighting here that “women and people of color”
is meant to encompass White women, women of color, and men of color. This phrase is used for simplicity.
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to appropriate secondary school preparation, discrimination and harassment, and characteristics of

individuals themselves. The goal of the study presented here is to investigate and understand some

of the many factors contributing to underrepresentation of women and people of color in STEM

fields. In the following section, key portions of prior research relevant to this work are presented.

6.2 Literature Review

There is a vast body of research on the differential experiences of women and students of

color in STEM. Studies investigate a wide range of avenues for explaining and categorizing under-

representation in STEM. Here, a subset of this body of literature is presented, focusing on work

directly related to, and built upon, for this study.

6.2.1 Impact of Interactive Teaching on Learning and Persistence in STEM

In addition to factors mentioned above, many researchers have turned their attention to

possible contributions of contemporary STEM pedagogy and curricula to the problem of under-

representation in STEM. Poor-quality teaching has been found to be a concern of students who

persist in or leave STEM majors [110], suggesting focusing on quality of teaching and instructional

approaches has value in improving student outcomes. Additionally, there is robust body of research

indicating that interactive teaching methods can improve the learning of all students regardless of

gender or ethnicity (see, for example refs. [111, 112]), though the efficacy of these practices does

depend on implementation [113, 114]. Attempts to uncover research on the differential impacts of

interactive teaching approaches on women and underrepresented people of color, done as part of

this study, yielded few studies.

The most extensive effort at addressing the impact of interactive vs. lecture-based teaching

on underrepresented groups was undertaken by Madsen et al. [115]. They report on a meta-analysis

of 26 published studies on the gender gap on concept inventories in physics. They found mixed

results regarding impact of teaching style, with interactive methods having positive, negative, or

neutral impacts on the gender gap depending on the study. Their results are consistent with the
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sparse results in other fields; namely, many studies support multiple conclusions. Madsen et al. did

not attempt to analyze the type of classroom beyond the self-reported status given by the authors

of each study, as it was not possible due to the nature of the study (i.e., it was a review of literature

and thus they did not have access to those data). It may be that the wide variation in type of

teaching associated with the ideas about “interactive,” “reformed,” “research-based,” or “student-

centered” contributes to the mixed results.2 In other words, there is a range of how “interactive”

teaching is implemented and the specifics of the implementation impact the results. Their findings

indicate that interactive teaching can improve learning outcomes for women but those results likely

depend on the nature of the implementation.

One of the most robust studies of an implementation of a research-based, highly interactive

pedagogy is reported by Beichner et al. [116]. They report results from a comparison of highly

interactive studio-style classrooms to traditional lecture-based classrooms involving 15,000 students.

They found all student demographic groups were more likely to pass the class in the studio style

classrooms than in the lecture-based classrooms. Notably, they also found passing rates for women

and underrepresented people of color were improved more than those of men and White students.

While not directly considering persistence, increased passing rates imply a likelihood of increased

persistence.

These results leave open the question of if and how research-based teaching styles may differ-

entially impact students of different genders and races (including the portions of these populations

that overlap; i.e., women of color). The analysis in Sec. 7.2 addresses this open question.

6.2.2 Impact of Professor Care on Students’ Experiences in STEM

A relatively under-investigated area in the STEM literature is the impact of professor care

on students. “Care” has a somewhat ambiguous definition across existing literature, but has ties

to faculty qualities such as being approachable [117, 118], showing interest in and concern for

2 In line with prior research in the field and this study’s broad investigation of variations in teaching styles, in
Sec. 7.2 the term “interactive” is used to refer to all of these pedagogical approaches.
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students [118, 119], and being understanding and fair [120]. Though many university and college

administrators report their faculty tend to care about students [118, 121], care is a difficult construct

to measure.

Despite the difficulty in measuring and gauging professor care, general college-level studies

have found that positive interpersonal relationships between faculty and students hold impor-

tance [122]; these studies have found associations between a students’ sense of professor care with

success measures such as grades, confidence, additional course enrollment in a discipline, and re-

tention [117, 118, 122, 123]. The latter of these factors can be of particular interest for studies

investigating representation of different groups of students, such as women and people of color,

who tend to leave STEM at higher rates than men and White students [16]. However, there is a

dearth of investigations into sense of professor care in STEM specifically, though some work has

suggested feeling valued and cared for within a department has positive influences on STEM suc-

cess [124]. The work presented in Sec. 7.2 investigates student perceptions of professor care within

their department while pursuing a STEM degree.

6.2.3 Impact of Sense of Belonging in STEM

Students’ sense of belonging in college, and STEM more specifically, span a vast body of

literature and has been found to have significant impacts. Sense of belonging refers to “students’

sense of being accepted, valued, included, and encouraged by others (teachers and peers) in the

academic classroom setting and of feeling oneself to be an important part of the life and activity of

the class” [125] (p. 80). Previous work indicates that sense of belonging in STEM has a significant

impact on educational success and persistence, especially for women and students of color.

As Strayhorn summarized in his extensive review of research [15], sense of belonging is as-

sociated with academic achievement, retention, and persistence in college, and these impacts are

frequently more pronounced for women and students of color. Recent studies have continued to

confirm these findings [14, 17, 18]. Within STEM, both women and students of color, who are

often stigmatized in STEM, have consistently reported less sense of belonging than men and White
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students [14, 126, 127]. Socially stigmatized groups have been found to be more susceptible to be-

longing uncertainty [128], which arises when people feel unsure of their ability to “fit in” [14]. Such

feelings may cause those students, especially women, to experience competing belonging from non-

STEM fields, pulling them out of STEM [17]. Fear of confirming negative stereotypes of a group

one belongs to (gender, race, etc.) can undermine performance and contribute to a lack of sense of

belonging as well. This can give rise to feelings that people like them do not belong there. Addi-

tionally, external cues, such as low representation of one’s group, can influence sense of belonging,

particularly for women in male-dominated fields, such as most STEM disciplines [129, 130].

6.2.3.1 Factors Contributing to Sense of Belonging.

Peer interactions and interpersonal relationships have significant impacts on sense of be-

longing and are often seen as the most critical factor for overall sense of belonging [127]; these

impacts are influenced by the quality and types of interactions students have within their STEM

discipline [130]. For example, engagement in peer discussions outside of the classroom was shown

to increase the likelihood of women persisting in STEM [131]. Women of color in particular are

highly influenced by the presence of peer relationships and peer support overall [131, 132]. Even

for high-achievers, minority students without such connections to faculty and peers tend to leave

STEM [16].

Participating in social interactions has been linked to students’ identity development as well,

specifically in STEM [133]. Part of this science identity development for students involves building

relationships not only with their peers, but also with their specific STEM discipline [134, 135].

Science identity is rooted in both private and public identification as someone being a “science

person,” e.g., whether students see themselves, and others see them, as this “kind of person” [136].

Science identity can be a predictor for higher grades and persistence in STEM fields, and this

identity can be mediated by belonging in the field [137, 138]. Some argue that science identity is

particularly important for minority students who contend with uncertainty in whether or not they

belong in STEM, and that it can bolster this sense of belonging and persistence [16, 137, 139].
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Students’ perception of and confidence in their own understanding of STEM content and

ability to succeed in the field has been associated with belonging as well. One could consider this

in terms of self-efficacy, which refers to beliefs about one’s ability to perform in their field and the

extent to which they have control over what happens in their future and success [140, 141]. Studies

show women tend to have lower sense of self-efficacy beliefs about themselves in STEM [142, 143],

aligning with women’s commonly lower senses of belonging in STEM fields [141, 144].

6.2.4 Impact of Race & Gender on Students’ Experiences in STEM

As part of the study presented here, we asked students if the experience of being a STEM

major varies for different races and genders. A vast body of research suggests the answer to this

question is “yes.” Students are significantly impacted by both their race and gender as they pursue

STEM. For example, in addition to lower sense of belonging and performance “gaps” compared to

men and White students, research indicates that both women and people of color are more likely

to report discrimination, microaggressions, and harassment in STEM [145, 146]. These experiences

have been found to affect the physical and mental health of women and people of color, their ability

to thrive in STEM fields, and their willingness and ability to continue in STEM [145, 147, 148].

It is important to note that the question asked to students in the interviews (presented in

Ch. 8) is not about their opinion on these matters but their perceived experiences with racialized

or gendered issues in STEM. By the time students are seniors in college, they are highly likely to

have had the opportunity to experience and or witness impacts of both race and gender is STEM.

Thus, the presented analysis seeks to answer the question: to what extent are students aware of

these impacts and how does awareness differ by demographic characteristics of the interviewee?

6.2.4.1 Differential Race- & Gender-Based Experiences

Though much is known about race- and gender-based issues in STEM experiences, less is

known about perceptions of both dominant and underrepresented groups regarding race and gender

in STEM. This section provides information supplemental to the literature presented thus far to
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describe what is known about general trends regarding perceptions of race and gender in the broader

context of the United States. Little literature exists regarding perceptions of the race- and gender-

based differences in experiences in STEM, especially in college settings. The presented findings

are used as a grounding for the investigation of perceptions of race and gender in STEM-specific

domains presented in Ch. 8.

Generally, studies of perceptions of the impacts of race and gender in STEM report on

the perceptions of a marginalized group only (i.e., women’s perceptions of gender discrimination

in STEM or students of color’s experiences in STEM that are impacted by their race). Studies

comparing the perceptions of the same environment across multiple genders and races are relatively

rare, and it is difficult to find studies regardings students’ perceptions in the academic literature,

especially regarding the perceptions of students from dominant groups in STEM. Studies regarding

students’ own experiences in STEM are more prevalent, but there are limited studies regarding

students’ awareness of the experiences of others that are not in their same demographic group.

The Pew Research Center has conducted polls regarding perceptions of race- and gender-

based differences in the United States [149]. These polls consistently show White people perceiving

fewer race impacts than people of color and men perceiving fewer gender impacts than women.

For example, a recent poll of STEM professionals about their workplace environment [149] reports

consistent gaps between the perceptions of discrimination between women and men. The researchers

found that 38% of women in male-dominated STEM fields felt women are usually treated fairly

in their workplace in opportunities for promotion and advancement compared to 78% of men.

Likewise, they report a gap among races. In response to a question about fairness in promotion

and advancement for Black people, 37% of Black people reported fairness compared to 75% of

White people. The same poll also found that reports of discrimination in STEM are higher than

in non-STEM fields. Women in male-dominated STEM fields reported experiencing discrimination

at work more than women in non-STEM jobs (50% vs. 41%) and Black people in STEM fields

reported experiences of workplace discrimination due to race more than Black people in non-STEM

jobs (62% vs. 50%).
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As described here, there is a pattern of evidence that more privileged groups fail to recognize

their own privilege. There are also indications that, despite evidence to the contrary, privileged

groups may believe they themselves are the disadvantaged group. This is presumably in reaction

to policies and practices like affirmative action that acknowledge and attempt to explicitly address

inequity. For example, a recent study demonstrated that on average White people in the US

believe anti-White bias is more prevalent today than anti-Black bias [150]. That same study

offered evidence that White people believe reverse-racism has increased over time. In general, these

perceptions may be the result of a lack of contact with members of other groups or a result of

White people feeling threatened by diverse contexts or wishing to protect their position of privilege

[151]. Perceived threats may also be psychological, including the suggestion that their position has

not been the result of their own merit or that they are part of a group that has unfair advantages.

While research consistently finds that members of marginalized groups are more likely to

recognize the impacts of their demographic status on life chances than those of the privileged

group, studies such as the Pew Research Center poll described above [149] also find a significant

proportion of the marginalized group that does not report an experience with discrimination. This

discrepancy has been noted and theorized by researchers across varying fields.

One explanation for the disconnect between perception and experiences is the denial of per-

sonal disadvantage. In Crosby’s foundational paper on the denial of personal disadvantage [152],

she identifies the discrepancy between women’s acknowledgment of discrimination in general but

denial that they are personally discriminated against, despite evidence to the contrary. Crosby

proposes two barriers preventing women from acknowledging their own disadvantage. First, she

suggests the cognitive bias associated with analysis of large numbers vs. individual cases obscures

discrimination of an individual. Secondly, she suggests the emotional discomfort people experience

when confronting their own victimization as a barrier for acknowledging disadvantage.

Another notable explanation for marginalized groups not recognizing their disadvantage is

system justification theory. Jost et. al. review system justification theory [153], which offers

insights into why people justify the status quo even when it is against their own self-interest. They
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suggest people have a tendency to support and defend existing social structures due to a need to

view themselves and their group positively. They argue members of marginalized groups engage

in system-justifying behavior because such engagement serves a palliative function to minimize the

harm they encounter in circumstances they cannot change.

6.2.5 Missing from Current Literature

The study presented in Part 2 aims to fill gaps in the current literature regarding race-

and gender-based experiences in STEM. Specifically, it aims to contribute more to the literature by

analyzing different aspects of STEM experiences, including an intersectional approach that includes

women of color, men of color, White women, and White men as separate groups. The study includes

investigating student perceptions of instructional methods; perceptions of professor care in STEM

contexts; sense of belonging in STEM; and perceptions of race- and gender-based differences in

STEM experiences. Though literature exists in some of these domains, few studies address these

areas in the same way this study does, as the presented study focuses on student experiences while

explicitly analyzing by intersectional race and gender cohorts.

As an example of this phenomenon, many studies regarding gender differences in belonging

do not investigate racial identity in conjunction, as many studies are done at predominately-White

institutions and people of color are notoriously underrepresented across STEM disciplines. Thus,

often studies produce data about “women” that is only true for White women, leaving the experi-

ences of women of color in STEM classrooms largely unexamined. There are a few studies that look

at the experiences of women of color regarding belonging, i.e., [127, 154], but this body of literature

remains largely underdeveloped. Other studies about belonging in STEM fields that discuss racial

identity often omit a gender analysis, additionally excluding women of color from the literature.

There exist other intersectional works that investigate women of color’s experiences, e.g. [155], but

it is difficult to find literature that focuses on women of color’s sense of belonging in STEM. A look

into current literature resulted in little-to-no studies taking on an intersectional analysis approach

when investigating instruction style and professor care.
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In addition to the lack of intersectional analyses along the lines of race and gender, studies

often investigate instruction style and race/gender differences through the lens of researchers and

practitioners, as opposed to soliciting student views and perspectives of their experiences. Further,

when looking into the current literature, no studies investigating profesor care in STEM were found.

The work presented in Part 2 of this dissertation fills a space in the literature that is currently

lacking.

6.3 Key Terms

Throughout Part 2, several terms not commonly invoked in traditional STEM literature

and/or that have differing meanings in colloquial language are used. To avoid confusion about

these terms and their uses, specific definitions for them are presented below.

Students of Color and Underrepresented Minority Students. Throughout Part 2,

two similar, but different, terms used enough that they deserve explicit discussion here: students of

color and underrepresented minority (URM) students. Students of color refers to students of any

race that is not White, including Asian, Black, Hispanic, Native American, and multiracial. On

the other hand, the National Science Foundation defines URM races as minority groups underrep-

resented in STEM, including Black, Hispanic, and Native American (Asian is excluded from this

categorization) [10]. In the presented study, multiracial is also included in the URM category. It is

worthy of note that the term “URM” has been critiqued in recent years, largely due to the impli-

cations of combining multiple races into a single category, such as erasing the unique experiences

of certain races [156]. This can be viewed as a racist tool of oppression, as it places Whiteness as

a norm to be compared to (e.g., use of “minority” in comparison to numbers of White people, as

opposed to referring to individual racial categories on their own) [156].

Due to low-N in the study sample across different racial groups, and emergent commonalities

within multple racial categories, URM and students of color are included as singular, distinct groups

throughout Part 2. The terms “students of color” and “URM” are not perfect terms, and critiques

of their use are well-founded. Unfortunately, there are limited alternatives to these terms’ use in
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the literature that can encompass students of many different races who are observed to encounter

similar experiences. The use of the term URM does lead to limitations of the presented work, and

conclusions should be interpreted with caution—the intent is not to say that all students within

the URM and students of color categories have the same experiences or are a homogeneous group;

readers should be cognizant of this when reading and cautious in their takeaways.

Intersectionality. A major aspect of this study is an intersectional approach to data anal-

ysis. Intersectionality refers to the idea that aspects of one’s identity (e.g. race, gender, class,

sexual orientation) are not unitary and mutually exclusive, but instead interact to construct one’s

identity and the way one experiences oppression [157, 158]. Here, “intersectionality” is used to refer

to the intersections of identities and investigate how those complex identities influence students’

experiences in STEM. Considering race and gender as single axes of identity without analysis of

the intersections of those groups can lead to the erasure of some identities, such as for women of

color [157, 159]. In the study presented in Part 2, two axes of identity—race and gender—and

the intersections of these identities are considered: women of color, men of color, White women,

and White men. Though there are other axes that could be considered, these are the only axes of

identity recorded for the study, which is a limitation. However, the intersectional approach taken

here will avoid the erasure of some students’ complex identities (e.g., those of women of color).

Privilege, Power, Prejudice, Sexism, and Racism. Privilege refers to a set of unearned

advantages, such as access to resources or social power, available only to certain people because

of their membership in a social group [160]. Privilege can exist among many dimensions (race,

gender, religion, age, sexual orientation, etc.) and varies between societies and cultures. Having

privilege does not mean someone did not have to work for their success or never experienced

adversity, nor does it mean someone is intentionally oppressing people belonging to other groups.

Instead, it refers to unintended systemic advantages certain groups experience that simultaneously

disadvantage others without these ascribed characteristics. People with privilege do not necessarily

have things easier because of their race or gender, but instead do not experience additional hurdles

or oppression due to their race or gender.
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Those who have privilege are considered to hold more power in society. Power typically

manifests from social hierachies, and the amount of power people hold can vary depending on

context. For example, a female faculty member in physics may be in a position of less power

within her department compared to male faculty, but holds more power compared to students in

the context of a classroom in which she is the instructor. However, it should be acknowledged

that complex power dynamics can come into play when a female faculty member (who holds more

institutional power) interacts with a male student (who may be considered to hold more power in

society outside of academia).

Prejudice is the conscious or unconscious thoughts, beliefs, assumptions, and cultural stereo-

types of individuals about the superiority or inferiority of certain groups that underlie discrimination

for or against people in those groups. Under this definition, prejudice is an individual’s set of beliefs

about people who share characteristics of the “other” group (or their own favored group), and may

be the basis of discriminatory behaviors. Sexism and racism, on the other hand, refer to systems

of disadvantage based on gender and race. In Part 2 of this dissertation, racism and sexism are

based on a prejudice plus power definition. References to sexism and racism are different from

prejudice in that they go beyond simple bias by individuals and instead are embedded in the power

structures of society. It is worth emphasizing that one can uphold sexist and racist norms and

values unintentionally; it is possible to perpetuate racist and sexist ideologies without holding any

personal beliefs about the inferiority of other races or genders, i.e., without being prejudiced. For

an in-depth discussion about this phenomenon with regards to race, see ref. [161].

Consider the following examples that illustrate these terms. An individual man holding the

belief that women are less mathematically able than men is prejudice. Utilizing standardized tests

constructed with items that overestimate the mathematical ability of men while underestimating

the mathematical ability of women to determine admission to college or graduate school is an

example systemic or institutional sexism. This thereby confers privilege onto men as they are more

likely to gain admission with less merit. For an example of this phenomenon, see ref. [162].
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Marginalization. Marginalization is tied to structures of privilege and power. The concept

refers to the relegation of people from certain groups to the margins of a society’s organizations,

institutions, and cultural system by denying them an active voice, identity, or place within the

given social context [163]. People from these excluded groups can be described as marginalized in

these contexts. For example, women and people of color can be considered marginalized in STEM,

due to their underrepresentation and relative lack of power in the fields compared to White men.

6.4 The Roots of STEM Success Project

Part 2 of this dissertation reports findings from interviews collected as part of a larger mixed

method study, the Roots of STEM Success Project (https://clas-pages.uncc.edu/rootsofstem/).

Other analyses using the same dataset may be found in refs. [154, 164, 165].

The Roots of STEM Success Project was designed to study experiences in STEM of students

who are traditionally not represented in STEM fields, namely women and students of color. The

Roots of STEM Success Project includes a large quantitative dataset with administrative data from

middle school through college graduation of students who graduated from North Carolina high

schools in 2004 and matriculated to one of the 16 campuses of the University of North Carolina

(UNC) system. Many of these data are related to STEM success. In addition to the quantitative

data, in 2013 the Roots of STEM Success Project conducted more than 300 interviews with college

seniors who were asked to reflect upon their family, community, secondary school, and college

experiences related to their decisions in choosing their college majors.

Prospective interviewees were identified by distributing an email recruitment survey to se-

niors at all 16 UNC campuses in January 2013. On these surveys, students could designate up

to three major fields of study. Based on student responses, 201 respondents were catergorized as

STEM majors (those currently majoring in STEM) or STEM leavers (those who began college in

a STEM major but later elected to switch to a non-STEM major). The remainder of interviewed

students were considered STEM avoiders, who expressed interest in STEM in college but never

pursued it. STEM major are defined using the National Science Foundation Advance Program cat-

https://clas-pages.uncc.edu/rootsofstem/
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egorization (http://www.nsf.gov/crssprgm/advance/index.jsp) where majors such as engineering,

physical sciences, earth, atmospheric or ocean sciences, mathematical and computer sciences, and

biological and agricultural sciences are considered to be within the STEM category. A student was

considered a “major” if their current major, at the time of the interview, fell within these STEM

fields. Social sciences were excluded from the definition of STEM fields because of the study’s focus

on underrepresentation of women.

The sample was restricted to students who attended public school (K-12) in North Carolina

and who were younger than 30 years of age. These selection criteria were designed to align the

interview sample with the quantitative data in the larger project. Students were asked to identify

their racial/ethnic group, as well as their gender, on the survey. Once the potential interviewees

were identified, researchers on the project reached out to them via email to set up an interview

(either by Skype, phone, or in person). They attempted to match interviewers with interviewees

according to gender and race, although that was not always possible. The interviews lasted between

30 minutes and 1 hour and were recorded for transcription purposes. Students were paid US$25

for participation in the interview.

6.4.1 Interview Sample

In this study, students underrepresented in STEM were oversampled, and thus the sample

is not representative of STEM students in either race or gender. However, racial demographics

of the interviewed sample closely mirror the demographics of the geographic region in which the

interviews took place. (Note the UNC system is composed of approximately 40% students of color.)

Of all students interviewed, 66% identified as female and 34% identified as male.3 Additionally,

48% of the students identified as White and 52% identified as students of color: 31% Black, 8%

Asian, 7% Hispanic, 2% multiracial, and 1% Native American. Self-identified race is used when

presenting findings of this study.4 All participants were seniors about to graduate with a degree.

3 Gender is referred to here as male and female. Gender identity of students was indicated as male or female on
the survey; “male” and “female” are used as genders in this study to respect the identities that students self-reported.

4 Demographic information was collected for the Roots of STEM Success Project in 2013.

http://www.nsf.gov/crssprgm/advance/index.jsp
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6.4.1.1 A Note on N-Values in Various Analyses

Given the interest in intersectionality and how it helps to better understand STEM outcomes,

samples are disaggregated by race, gender, and status (major vs. leavers) in some analyses. This

resulted in some categories with very small numbers (e.g., the sample includes only four Hispanic

women who were majors). Therefore, in many instances categories were collapsed in order to

report findings in meaningful ways. When looking at responses across different racial and ethnic

groups, similar patterns emerged across different groups. For instance, in Sec. 7.2 the responses

of Hispanic students and Black students looked more similar compared to the responses of White

students, and thus Hispanic and Black students were included in the same group (i.e., “students

of color”). Additionally, the unique position of Asian students, who are both students of color and

well-represented in STEM was carefully considered. Asian students’ placement in analysis groups

was done such that they were placed in the group their responses most closely matched.

Due to low numbers when parsing out by certain identities, not all analyses presented in the

following chapters are intersectional in the same manner. These analyses are included because the

partial-intersectional approach helps avoid the erasure of some students’ complex identities, such as

those of women of color, by allowing the reader to see both gender and race analyses. Though there

are other axes beyond race and gender that could be considered, these are the only axes of identity

recorded for this study. Additionally, due to variations in individual interviews, some questions

were not asked in all interviews or received uncodable responses. Thus, the N-values presented are

not the same for each analysis.

6.4.2 Interview Protocol

The interview protocol was developed specifically for the Roots of STEM Success Project.

Questions were designed to elicit a recounting of the participants’ history with STEM and factors

that influenced their decision to major in STEM. Interviewees were asked about family and peer

influences, childhood informal educational experiences, secondary school and college experiences in
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and out of the classroom, beliefs about the self, attitudes toward STEM, and the students’ reasons

for pursuing or not pursuing a STEM major. The analyses presented in the following chapters

are based on a subset of questions asked in the interviews. The presentation of those questions is

reserved for their corresponding sections.

6.4.3 Interview Analysis

Conventional procedures were used for analyzing the qualitative data captured in the inter-

views. Using a partial-grounded theory approach to qualitative data analysis [166], two researchers

independently read the responses and coded under broad categories, some of which were determined

a priori and others that emerged from the data. The researchers then compared their independently

created codes. Through discussion, the codes were reorganized, collapsed, and expanded in an it-

erative process until a coding scheme for each set of interview questions was developed. Using the

final coding schemes all interviews were coded again by two researchers and compared; discrep-

ancies were aligned through discussion. Analysis and interpretation was done primarily by White

women, with social and physical science backgrounds.

Due to the qualitative nature of the data, as well as the number of comparison groups (often

with low-N), statistical analyses for significance are not presented for these studies. Statistical

analyses were only performed for some of the presented studies (i.e., data from Ch. 7), and these

analyses are not presented for the purpose of consistency of presented results. The interested

reader can find statistical analyses for a subset of the presented work in ref. [21]. Due to the lack of

statistical analyses, results should be interpreted with caution, as they may be true of the sampled

population but not necessarily generalizable to all genders or races.



Chapter 7

Instruction Style, Professor Care, and Sense of Belonging in STEM

This chapter presents analyses of three sets of questions in the Roots of STEM Success

Project interviews. These analyses focus on: (1) perceived and preferred instruction style (Sec. 7.1);

(2) perceptions of professor care (Sec. 7.2); and (3) student sense of belonging in STEM (Sec. 7.3).

An analysis of the intersections of these factors is also presented (Sec. 7.4). This work was published

in first-author manuscripts in the International Journal of STEM Education [20, 21].

7.1 STEM Course Environments

Interview analysis investigated students’ perceptions and preferences of instructional styles in

their STEM courses. Findings regarding instructional style of STEM courses are based on responses

to two questions from the interview protocol:

(1) To what extent did your math and science teachers lecture vs. use more active approaches

such as, encouraging student discussion, cooperative learning, and hands on activities?

(2) Would you have preferred a different emphasis?

Due to low-N for intersectional race-gender cohorts, results are presented for underrepresented

minority (URM)1 leavers and majors; White leavers and majors; female leavers; and male leavers.

Due to their complex identities as students of color who are well-represented in STEM (e.g., neither

1 See Sec. 6.3 for discussion on use of this term.
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White nor URM), and relatively low numbers in our sample, Asian students are not included in

the analysis presented in this section.

Responses to these questions were coded based on the interviewees’ reported instruction style

of their STEM professors and students’ stated preference for instruction style in their STEM courses.

Student responses were coded in three ways: (1) interactive instructional style, (2) lecture-based

instructional style, and (3) mixed instructional style. Responses indicating a mixed instructional

style meant that some interactive methods were reported, but lecture was also highly present in the

course. For the most part, when a student was coded for having mixed experiences they reported

that the main class was lecture-based but there was a lab component that was interactive. For

example, one student stated,

“You have the class and then you have the lab. The lab is the place for you to work
hands-on with your classmates or whatever and then class is just lecture.”
– Black female leaver

Sometimes a student reported different experiences in different courses. For example, one

student described her chemistry class:

“In the entry level chemistry courses where you have a larger class, most of the
time the teacher ends up lecturing. But, once you get into the junior and senior
level courses it’s no longer so much concentrated on lecturing as it is on, ‘here’s
some problems, this is the basic outline and how you should be thinking about these
problems, now work together or work alone and help each other figure out these
problems.’” – White female major

In this situation her response was coded as both interactive and lecture-based, due to her

describing two separate courses with different instruction styles.

Students’ preferences of instruction styles were coded the same as above, noting whether

students desired a different emphasis or were comfortable with the reported approach to instruction.

It is worth noting that all responses are based on student perceptions of interactivity and may not

align with the instruction style professors thought they employed or with the perceptions of other

students in the same course.
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Figure 7.1: Preferred and perceived instruction styles by race, gender, and major status. Mixed
instruction styles refer to instruction styles implementing combinations of both active learning and
lecture-based approaches. N-values for each groups are as follows for preference and perception,
respectively: URM Leavers (16, 17), White Leavers (22, 23), URM Majors (37, 41), White Majors
(63, 64), Female Leavers (23, 24), Male Leavers (15, 16), Female Majors (63, 67), and Male Majors
(37, 38).

7.1.1 Perceived vs. Preferred Instruction Style

Results for perceptions and preferences of instruction style for both gender and race are

shown in Figure 7.1. Interactive instruction was the least frequently reported instruction style for

all groups. Female leavers reported the lowest levels of interactive instruction. In contrast, female

leavers reported lecture at higher rates than other groups. Male leavers and female majors reported

similar instruction styles. Notably, male majors reported encountering mixed instruction styles

more frequently than lecture-based instruction, whereas female majors did not have a significant

difference in frequency of mixed or lecture-based instruction.

As can be seen in Figure 7.1, interactive instruction was the least frequently reported in-

struction style encountered for all racial groups. URM leavers reported encountering interactive

instruction at lower rates than other groups. In contrast, the number of students reporting lecture-

based instruction was much larger than that of interactive teaching. The responses of leavers

diverge substantially from those of majors for both mixed and lecture-based instruction. URM

leavers were more likely than other groups to encounter lecture-based instruction, though White
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and URM leavers reported lecture at comparable rates.

Of note, students generally report preferring more interactive-based teaching than they report

encountering. Women leavers stand out among those with the greatest preference for interactive

methods compared to other groups, despite reporting encountering that method in their STEM

courses the least. As seen in Figure 7.1, White and URM majors had similar preferences for

instruction style. Leavers, however, did not. Notably, URM leavers report the greatest preference

for interactive teaching compared to other groups, whereas White leavers had the greatest preference

for lecture-based instruction. Interactive approaches to instruction are the most popular while

lecture-based instruction is the least favored approach among all students.

7.1.2 Summary of Instruction Style

The presented data shows a large discrepancy between preferred instruction style and reported

instruction style. In particular, preferences for instruction style lean towards more interactive

approaches. It is worth noting this preference for more interactive teaching is present across all

demographic groups. Female leavers and URM leavers were the most likely to prefer interactive

instruction styles but were the least likely to report experiencing it. This finding suggests that

students from underrepresented groups who are leaving may have been affected by a mismatch in

their preferred instruction style and the instruction styles they perceived in STEM courses.

Because these data are qualitative, direct correlation between instruction style and persis-

tence cannot be concluded. However, another study in STEM relating perceived instruction style

to persistence, which looked at calculus students, concluded that those who do not persist are more

likely to perceive their classrooms to be less interactive than students in the same classroom who

persisted [167]. An additional study investigating students persistence in STEM found pedagogical

approaches of STEM instructors was a factor in students’ decisions to leave STEM majors [110].

These findings are consistent with those presented here. Leavers who report lecture-based instruc-

tion may not have experienced more lectures than their counterparts who report more interactive

classrooms, but leavers perceive their classrooms to be less interactive. The data presented here
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indicate this is especially the case for underrepresented groups. Leavers from underrepresented

groups report a greater preference for interactivity than majors of all demographics, but it can-

not be concluded that, compared to other leavers or majors, they experienced different classroom

pedagogy. These findings suggest potential positive impacts on the retention of underrepresented

groups by reforming teaching so it is more interactive. This is an area of potential importance for

which more research is needed.

7.2 Perceptions of Professor Care

In the interviews, participants were asked:

(1) Do you think your {major or dropped major} instructors cared about you and your learning?

Answers were coded broadly as either “instructor cared” or “instructor did not care.” This

section simply reports on students’ perceptions of professor care and does not present sub-coding

based on reasons given. Students who reported both having professors who cared and professors

who did not care were counted twice, once for each response. For example, a math major may

report that they had a calculus instructor who cared about their learning and a linear algebra

instructor who did not care about their learning. Their responses would be counted twice, once

for each code. Findings are reported based on race and gender, as well as by the race and type of

STEM field (i.e., biological sciences versus physical sciences).2

The analysis presented in this section includes responses from 135 majors and 38 leavers.

The data show majors were more likely than leavers to report a professor who cared about their

learning, as shown in Figure 7.2.

7.2.1 Gender, Race, Representation Status, & Professor Care

Analyses based on respondents’ gender and race are presented in Figure 7.3, for both majors

and leavers. White women majoring in STEM were the most likely to report feeling cared about

2 These fields are disaggregated due to the differential representation of women in the field. In biological sciences,
women are well-represented, whereas this is not the case in most physical science fields [10]
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Figure 7.2: Perceived professor care among majors and leavers.

by their instructors while women of color (both majors and leavers) were the least likely. Notably,

women of color majoring in STEM report less care than the White women who dropped their

STEM major. Men’s responses, in contrast, did not vary significantly based on race. Nearly

identical results are seen for both White men and men of color majoring in STEM, with only

a small racial difference among male leavers. The findings indicate small variations in perceived

professor care across the gender by race cohorts. All leavers tend to perceive less care than majors

Figure 7.3: Perceived professor care by major status, race, and gender. N-values are report for
majors and leavers, respectively.
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of the same race and gender, and White female leavers reported as much care as male majors of

any race. Women of color, whether majors or leavers, report less professor care than any other

cohort.

Perceptions of professor care were also analyzed by discipline. As can be seen in Figure 7.4,

students in physical science (pSTEM) fields were less likely than those in biological science fields to

feel their professors cared about their learning. It should be noted that these students’ responses

were frequently about STEM instructors in general, and does not necessarily refer to perceptions

of care solely within the major itself.

7.2.2 Summary of Professor Care

Most students perceive that their professors care about their learning. However, across all

demographic groups, majors are more likely than leavers to report feeling their professors cared

about their learning or them personally. Among all majors, 75% reported feeling their STEM

professors cared about them and their learning. While it is not surprising that majors reported

higher levels of care than leavers, note that all of these students were seniors nearing graduation

Figure 7.4: Perceived professor care by field: biological sciences and physical sciences (pSTEM).
N-values are report for majors and leavers, respectively.
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in their field. However, nearly 25% of students about to graduate with a STEM degree reported

feeling their STEM professors did not care about their learning, which raises an issue of concern to

be investigated further. While the results for White men and men of color were nearly identical,

White women reported the most care while women of color reported the least. Only 60% of the

women of color in this sample reported feeling their professors cared about them, despite being

seniors about to receive their degrees in a STEM field.

Reasons given by women of color for not feeling their professor cared varied. A common

reason was poor or distant teaching. For example, one leaver stated:

“I felt like they were there just to teach us what we were supposed to know and if
we didn’t grasp it then it wasn’t their problem. I would get outside tutoring help
and they would try to help me out as best as I could but because my teacher wasn’t
teaching the basics it was just hard for me to grasp onto the concepts.”
– Black female leaver

Large class sizes were also a common reason students gave for feeling lack of care. One major

noted:

“I didn’t feel they [cared] because there are so many kids in the class. I think it’s
hard to really connect with your teachers.” – Multiracial female major

Unfriendly interactions with individual teachers were also frequently mentioned. For example,

one women told a long and involved story of feeling unsupported by her professor after returning

to school after a family death.

The extent to which students, particularly women of color, feel their professors care about

them and their learning may influence their persistence. This analysis is not meant to question

whether the faculty care about their students and their learning, and analyzing the literature

provided no research-based evidence that faculty do not care. However, these results suggest that

many students do not feel this care. It is notable that it is not unusual for introductory science

courses to have large enrollments where there is little opportunity for personal contact between the

professor and students, and it is likely many leavers only encountered these courses in their STEM

trajectories.
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7.3 STEM Students’ Sense of Belonging

This section presents findings focusing on responses that were coded broadly as a student

feels they “belong in STEM” or “does not belong in STEM.” These codes were applied to any part

of an interview in which a student made reference to belonging. Typically, sections coded as one

of these two codes appeared as an answer to one or more of the three interview questions asked

consecutively in the interview protocol:

(1) Do you feel like you belong/belonged in {your STEM major}?

(2) Did you ever feel out of place?

(3) Has this feeling changed over time, and if so, what led to these changes?

Note that here “{your STEM major}” is used as a placeholder—in the interviews this was

replaced with students’ current STEM major (for majors) or previous STEM major (for leavers).

Students reported either feeling they belonged or did not belong; others reported mixed feelings of

belonging.

7.3.1 Race & Gender Impacts on Students’ Sense of Belonging

This section reports student responses for sense of belonging in their STEM major by gender,

race, and representation of demographic group in their STEM major (i.e., biological sciences vs.

pSTEM). Students frequently gave multiple reasons for belonging or not belonging. Therefore

students’ overall belonging status was coded as: (1) belongs in STEM (positive belonging status,

only reported feelings of belonging); (2) does not belong in STEM (negative belonging status,

only reported feelings of not belonging); or (3) mixed (reported both feelings of belonging and not

belonging). This scheme permitted coding all students uniquely into one of the three categories.

Not all students who reported their belonging status gave explanations for their sense of

belonging while some gave multiple reasons. Because of this pattern, there is a discrepancy between

the total number reported for belonging statuses and number of belonging explanations.
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7.3.1.1 Effects of Race on Belonging

Results of the race analysis for both majors and leavers are shown in Figure 7.5. As mentioned

in Sec. 6.4.3, there was a need to consolidate racial categories due to small numbers when dividing

among many different groups. Here, three racial groups are considered: White students, Asian

students, and URM students. We report Asian students separately because while they are an

ethnic minority, like URM students, they are generally overrepresented in STEM in proportion to

their share of the population, like White students [10].

Among majors, there were responses from 70 White students, 11 Asian students, and 50

URM students. Figure 7.5 shows that students of color (i.e., both Asian and URM students) who

major in STEM are less likely to report a sense of belonging than White majors. As can be seen

from responses of the 24 White students, 5 Asian students, and 33 URM students who were leavers,

a large fraction of leavers, regardless of demographic group, reported they did not have a sense of

belonging in their STEM major.

7.3.1.2 Effects of Gender on Belonging

Results of the gender analysis for both majors and leavers are shown in Figure 7.6. A total

of 131 analyzable responses from majors were coded (51 men and 80 women). It can be seen in

Figure 7.5: Student sense of belonging in STEM by race and major status.
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Figure 7.6: Student sense of belonging in STEM by gender and major status.

Figure 7.6 that female majors were less likely than male majors to report they felt they belonged in

STEM. A total of 62 analyzable responses from leavers were coded (22 men and 40 women). Similar

results are seen between male and female leavers. Perhaps unsurprisingly, leavers were more likely

to report they did not feel they belonged in the STEM field they left.

7.3.1.3 Effects of Race and Gender on Belonging.

Figure 7.7 presents the relationships between belonging, race, and gender among majors. Due

to the smaller number of leavers and large frequency of a negative sense of belonging among those

respondents, only majors are focused on in this section. Not surprisingly, with women reporting

a lower sense of belonging than men, and students of color reporting a lower sense of belonging

than White students, it can be seen that women of color were the least likely to report a sense of

belonging when compared to all other students. White men were the most likely to report a sense

of belonging when compared to all other students.

These results reflect the importance of simultaneously considering the intersections of gender

and race in any analysis such as this study. While most majors feel they belong, when we consider

both gender and race together, we see that most of the STEM majors who report perceptions of not

belonging are women of color and men of color. Notably, these students persisted in their STEM
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Figure 7.7: Majors’ sense of belonging in STEM by gender and race.

majors despite not feeling as if they belonged there.

Asian Students and Belonging. While the size of the presented racial subsamples are

small, the general patterns for Asian students match those of URM students more closely than

those of White students for most analyses. This result suggests that although Asian students may

be represented in STEM, their experiences may not align with those of the other racial group that

is well-represented (i.e., White students). For the remainder of Sec. 7.3, racial groups are collapsed

into only two categories: White students and students of color. We combine Asian students with

other students of color because their responses (shown in Figure 7.5 and Figure 7.7) match closer to

those of URM students than White students and the number of Asian students in this self-selected

sample is quite low.

7.3.1.4 Sense of Belonging & Representation Status in the Major.

Sense of belonging within STEM fields was analyzed by gender and race. Biological science

(biological) and the physical sciences (pSTEM) were disaggregated because the representation of

women varies between fields of study in STEM. The data for men is not disaggregated by STEM

majors, as men are generally represented, or highly represented, in all STEM fields. Figure 7.8
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Figure 7.8: Sense of belonging in STEM field by race and gender. Women are disaggregated by
major, biological sciences (“biological”) or physical sciences (“pSTEM”), due to the differential
representation of women between those fields.

presents levels of belonging by gender, race, and major discipline (for women only). It shows that

women of color in pSTEM, where they are highly underrepresented, report belonging much less

frequently than White men.

Due to small N, comparisons between groups should be made with caution. However, note

that there is a general tendency for feelings of belonging to follow patterns of representation. As a

student’s demographic group becomes less represented, the less likely a person appears to report a

sense of belonging. It is worth noting that lack of sense of belonging was most commonly reported

by people of color, suggesting that race significantly impacts belonging, perhaps even more than

gender.

7.3.2 Explanations for Sense of Belonging

This section presents analysis of common factors cited for belonging and lack of belonging.

Factors cited by majors for their reported sense of belonging (N=70) and for a lack of a sense of

belonging (N=55) are discussed, as well as factors cited by leavers for their low sense of belonging

(N=37). Explanations for leavers who felt they belonged in STEM are excluded because very few
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leavers reported a positive sense of belonging in STEM majors. Due to low numbers for majors and

leavers, results based on race and gender are presented, but the intersections of race and gender

are not. It is noteworthy that not all interviewed students gave explanations for their belonging

status while some gave multiple reasons.

Four broad themes emerged during the coding of answers to questions regarding belonging,

which were labeled as: interpersonal relationships, science identity, personal interest, and compe-

tence. Students either had or lacked the aspects encompassed by the codes. For example, students

can attribute their positive sense of belonging to having interpersonal relationships or attribute

their negative sense of belonging to a lack of interpersonal relationships. It is worth noting that

some students’ responses were labeled with more than one theme. Table 7.1 presents all belonging

explanation codes.

Table 7.1: Summary of coding scheme used for explanations for sense of belonging in STEM. Each
code is defined for students who had or lacked the reason described.

Code Reason for belonging Reason for not belonging

Interpersonal relationships Feels socially connected with
peers and/or faculty members.
May share common interests
with peers.

Lacks a social connection with
peers. Feels socially different,
does not fit in.

Science Identity Science is a part of their iden-
tity as a person.

Lacks a personal connection to
the major or material.

Personal interest Expresses personal interest in
course subject or major.

Explicit lack of interest. May
find the material boring or
unrelated to their reason for
choosing the major.

Competence Feels like they understand
major-related material or re-
ceives good grades in major-
related courses.

Feels like they do not under-
stand major-related material
well or receives poor grades in
major-related courses.
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7.3.2.1 Interpersonal Relationships & Belonging

In his theory of undergraduate socialization, Weidman defines interpersonal interaction as

one of three processes of socialization. This includes relationships with peers or faculty as well

as the frequency of interactions and intensity of those relationships [132]. In this study, the code

interpersonal relationships (IRs) encompasses any personal relationships that students have with

other members of their associated STEM department, such as faculty or fellow students. Having

IRs means that a participant feels socially connected or similar to those around them in their STEM

major. For example, a major coded as having IRs explained,

“I can really relate to the other biology majors. Most of my friends are biology
majors. I feel like it’s where I belong.” – White female biology major

Another interviewee related IRs and belonging to knowing people in the major, as can be

seen in his response to the question about feeling out of place:

“At first I was just starting to get used to everything because I didn’t know everyone
but now I just fall right in.” – White male information technology major

These students were both coded as having IRs in STEM that contributed to their positive

sense of belonging in their major.

On the other hand, a lack of IRs indicates a lack of social connection or similarity to those

around them. Responses for a lack of IRs included differing hobbies from peers and social isolation,

among other things. For example, one leaver coded as not belonging due to “lacks interpersonal

relationships” said that, though he enjoyed the course work associated with his STEM degree, the

social environment made him uncomfortable:

“I enjoyed the classes. I just did not enjoy the atmosphere. When I looked around,
I saw all these people, all these people that I didn’t fit in with, and I didn’t feel
comfortable there.” – White male exercise science leaver

A female leaver described how sometimes the lack of belonging was related to her demographic

status:
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“[I felt out of place] especially because I was like 1 of 2 girls at the time that was a
physics major. Even that other girl that was a physics major with me, I think she
changed to a math major.” – Asian female physics leaver

7.3.2.2 Science Identity & Belonging

In contrast to connections developed through interpersonal relationships, science identity is

more focused on the individual student. Science identity as defined in this study is related to

one’s personal connection to their field, meaning science is closely connected to their sense of self.

This definition overlaps in part with Carlone and Johnson’s definition of research scientist identity,

which relates to excitement for uncovering the natural world and scientific knowledge [155]. In short,

science identity in this study encompasses one’s feeling of being a “science person.” Participants

who expressed belonging based on having a positive science identity describe their major as an

integral part of their life and who they are. When asked about whether he felt he belonged in his

field, one major responded:

“Absolutely. I feel like this is exactly where I belong, and this is the type of work
that I want to do.” – White male engineering technology major

This conveys that engineering technology is an important part of his life, as he says that is

“exactly” where he belongs and what he wants to do. Students with a science identity, like the

major quoted below, often expressed feelings of passion for the major as well:

“[I fit into my major] because I am passionate and I love what I’m doing. I would
never change my major even for a slight second.” – White female engineering major

Stating that she would “never change [her] major even for a slight second” indicates that her

major is an important aspect of her life and thus important to who she is.

Many who lacked a science identity expressed feeling like there was no connection between

the major and who they are as a person. When asked if he felt he belonged in his previous STEM

major, one leaver answered “no” and explained:
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“I didn’t feel like I was the type of person. Again, I’m not a nerdy guy. Not all
scientific people are nerds, obviously, but I’m just a person who questions things just
to understand, and that’s why I think I’m a lot better as a journalist because [what]
you need to [do is] ask questions, and they weren’t people who answered questions
well.” – White male physics leaver

Another leaver, in direct response to a question about belonging in her previous major (bi-

ology), commented that she felt out of place due to her lack of passion:

“I definitely kind of felt a little weird because everyone that was around me was so
much more excited about what we were doing than I was. And I kind of felt like
that was a problem because if it was something that I really loved then I should be
just as excited.” – White female biology leaver

7.3.2.3 Personal Interest & Belonging

While science identity is closely tied to students’ sense of self, personal interest relates to one’s

interest in major-related material or the major in general. Typical responses coded in this category

were “I enjoy it” and “the major fits my interest.” This differs from science identity because it

lacks a connection to passion and sense of self. Responses categorized as personal interest focus on

interest in the field, independent of how they view themselves as a person. Someone who was coded

as having a science identity made a personal connection between themselves and the field, whereas

someone coded as having personal interest expressed interest in a way that was not connected to

who they are as a person. For example, as a direct response to the question about belonging, one

participant said she belongs when she is interested in the material and does not feel she belongs

when she is not interested:

“When I was in the classes I care about I feel like I belonged but when I’m classes
that’s like, we’re talking about plants, vertebrate zoology, and stuff I feel like I don’t
belong there.” – Black female biology major

Here, she doesn’t express having or lacking passion, but instead a lack of interest in a par-

ticular subfield that diminishes her sense of belonging. Majors and leavers both expressed a lack

of personal interest as a factor contributing to their lack of belonging. A lack of personal interest
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expressed by majors was often attributed to an emphasis in the degree program that differed from

what they were interested in. For example, a biology major cited a lack of personal interest because

the degree program focuses on anatomy and genetics while her personal biology interests lean more

towards marine biology. One student expressed a similar perspective when asked if she felt she

belonged:

“To be quite honest, not really. . . I have learned a lot of math but realizing that I
am more applied math, the math department at [my school] on the whole is not an
applied math department. It is much more theory-based.”
– White female math major

Here, this major encountered a discrepancy between the content she is interested in and the

content she encountered; she lacked personal interest in the content emphasized in her department,

which contributed to her perception of not belonging in the major.

7.3.2.4 Competence & Belonging

In addition to interest in the subject matter, feelings of belonging or lack of belonging were

also influenced by students’ perceived competence in the subject matter. Competence in this study

refers to people’s perception of their own performance and understanding. This definition aligns

with Carlone and Johnson, who defined competence as one’s perceived grasp of scientific concepts

and material [155]. Competence is captured by grades, conceptual understanding, and ability to

communicate understanding to others. Participants frequently cited competence as a reason why

they belonged. For example, when asked if she felt she belonged in biology one major replied,

“I do now. (laughs) Because I know that I can have a good understanding of
everything I’ve been learning and it’s like I know that because I can teach others. I
can help others understand.” – Black female biology major

Numerous students cited their struggle to understand concepts as a reason why they did not

feel they belonged. When asked if she ever felt out of place, one woman said she sometimes felt

out of place or uncomfortable and gave the explanation:
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“[My classmates had] a lot of practical knowledge and ... I didn’t have all that
knowledge and I was trying to learn it... I think that was a struggle for me.”
– Hispanic female computer engineering leaver

This leaver felt that her understanding of the material didn’t measure up to that of her peers;

her feeling out of place was due to a lack of competence. Another student’s explanation for his lack

of sense of belonging echoes the previous student’s explanation:

“I feel out of place because I think some of [the other majors] know more than I do
and I wonder how because we have taken the same classes.”
– Black male information technology major

Another student described mixed feelings of belonging that varied depending upon his self-

perceived competence at the moment:

“Sometimes I do feel out of place, for example, with that group project. . . I didn’t
really know that much, but with another group project. . . I felt like I belonged
because I had good ideas and contributed to the group and people listened to me. . .
It kind of varies.” – Black male information technology major

It should be noted that students’ responses about poor grades may not align with common

expectations of what a poor grade is. For example, several female STEM leavers interviewed

considered receiving any grade less than an A in a class as a bad grade. Thus, a high-achieving

student may report low competence despite getting high grades in their STEM courses, and would

be coded as lacking competence. Our coding of competence is based on students’ perception of their

own understanding and performance; we did not have access to information regarding students’

actual grades or course performance.

Frequency of themes. In order to gauge the frequency with which these themes appeared

in the interviews, appearance of each code was counted for majors and leavers. Figure 7.9 shows

common responses for positive sense of belonging among STEM majors. Students could offer several

reasons for belonging. Interpersonal relationships were the largest factor cited for each demographic

group, aligning with the literature [15]. Competence was the second most commonly cited factor

for majors’ positive sense of belonging, and was cited at similar frequencies for all demographic
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Figure 7.9: Reasons majors cite for belonging in STEM by race and gender. N-values for respon-
dents are: Men (28), Women (34), White Students (33), Students of Color (29).

groups. Personal interest was the next most frequently cited by majors. Science identity was cited

by only a small percent of interviewees. There were no significant differences between responses of

men and women or White students and students of color.

Figure 7.10 shows common responses among majors and leavers who reported a lack of a sense

of belonging in STEM. The most frequently cited factor contributing to a lack of belonging among

majors was the absence of interpersonal relationships. This was true for all demographic groups.

Lack of competence was the second most frequently cited explanation for all majors. No majors

cited a lack of science identity as an explanation for their negative belonging status. Absence of

interpersonal relationships was the most commonly reported factor contributing to leavers’ negative

belonging status. Leavers rarely cited lack of personal interest for their lack of belonging in their

STEM major.
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Figure 7.10: Reasons majors and leavers cite for not belonging in STEM by race and gender.
N-values for respondents for majors and leavers, respectively, are: Men (8, 11), Women (32, 24),
White Students (18, 14), Students of Color (22, 21).

7.4 Intersections of Professor Care, Instruction Style, and Sense of Belonging

In this section, the ways that instructional style, perceived professor care, and sense of be-

longing intersect for majors and leavers is considered. Because not all interviews could be coded

for all questions, the number of responses for the intersections analyses are often lower than others

presented in this chapter. Figure 7.11 presents results for all analyses including intersections of

(a) instruction styles and professor care; (b) instruction style and belonging; and (c) professor care

and belonging.

Interactive Teaching May be Associated with Greater Feelings of Professor Care.

The connection between encountered instruction style and perceived professor care was investigated.

There appears to be a relationship between reported instruction style and perceived professor care:

as the level of course interactivity increases students in our sample are more likely to report their
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Figure 7.11: Results from analyses of intersections across different factors investigated: (a) Per-
ceived instruction style and student perceptions of professor care in STEM; (b) sense of belonging
in STEM and perceived instruction style; and (c) perceived professor care and student sense of
belonging in STEM.
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professors care. Students who perceived more interactive approaches also perceived more caring

from their STEM instructors than those who reported lecture-based instruction.

Lecture-Based Instruction May be Associated with Decreased Belonging. Analysis

was done to see how belonging and instruction style are connected. Our data shows a slight

increase in lack of belonging for those in lecture-based courses, though this trend is not statistically

significant.

Belonging and Feeling Professor Care Appear to be Associated. The relation be-

tween belonging responses and the care students perceived from their professors was also analyzed.

Similar trends were seen for both majors and leavers, so the aggregated data are presented. The

data show that those who reported professor care were more likely to report feeling they belong in

STEM than those who did not feel cared about.

Sense of Belonging, Caring Professors, and Interactive Classrooms. These data

suggest a connection between students’ perceptions of their professors’ instruction styles, feelings

of belonging in their major, and whether their professors care about their learning. There are

distinct differences in sense of belonging among STEM majors who felt professors cared and those

who didn’t. Those who felt professors didn’t care were far more likely to report feelings that they

did not belong in their major. The data also show a relationship between perceived instruction

style and perceived professor care. Students who experienced interactive teaching were more likely

to report feeling cared for by their professors. Moreover, gender and racial differences in these

perceptions are consistent with demographic patterns of underrepresentation in STEM.



Chapter 8

STEM Students’ Perceptions of Race & Gender Impacts

This chapter comes from second-author work published in the International Journal of STEM

Education [22] and presents an analysis of responses students gave to two specific questions asked

near the end of the interview:

(1) Is the experience of being a {STEM major} major different for people of different genders?

(2) Is the experience of being a {STEM major} major different for people of different races?

Here, {STEM major} refers to the STEM major chosen or dropped by interviewees such as

biology or chemistry. Students’ responses were analyzed using an iterative coding process. Two

researchers independently coded a subset of responses identifying themes and then compared. In

the first pass, ideas students suggested as impacts of gender and race were collected under common

labels. They were then collapsed, expanded, and refined through a collaborative process. Then

another subset of interviews was independently coded and again compared, further collapsing,

expanding and defining the codes. Disagreements in coding were discussed until full agreement was

reached. Through this repeating process, a coding scheme in which the majority of responses could

be coded was finalized. Codes were collapsed under three broad categories descriptive of the source

of the impact. These codes and categories are summarized in Table 8.1 and elaborated on in the

presentation of results.

At the broadest level, responses can be categorized as either, “notices gender/race differences”

or “doesn’t notice gender/race differences.” If a respondent indicated any difference in impact, that
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Table 8.1: Summary of coding scheme used for students’ perceptions of gender and race differences
in the experiences of STEM students.

Doesn’t Notice
Differences

Not aware of race/gender impact

Notices
Differences

Not sexism/racism Impacts due to differences
in individuals not
attributed to systemic
factors

• “Men and some
races are more in-
terested in or value
science more.”
• “Women naturally

work harder than
men.”

Sexism/Racism
Impacts due to
underrepresentation

• Intimidation
• Pressure to work

harder
• Feeling out of place

Impacts due to
discrimination

• Negative impacts
for employment
• Bias against

women and/or
people of color

Students of color lack
social or cultural capital

• High school
preparation
• Socioeconomic

status
• Informal networks

Differential
benefits

Impacts due to advantages
women and students of
color receive because of
their gender and/or race

• Scholarships
• Job opportunities

response was coded as noticing a difference. A small fraction of the “notices a difference” responses

indicated a belief that women or students of color benefited based on gender/race. Such responses

are reported separately. For those responses coded as “notices differences,” we then divided them
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into those which allude to structural/systemic factors and those which did not (difference was at-

tributable to differences in genders/races and not systemic effects). For those coded as “notices

differences,” it was possible for a response to be coded in multiple categories if respondents ex-

pressed multiple beliefs. Responses coded as identifying sexism/racism impacts fall into three main

categories: (1) impacts due to being a minority; (2) impacts due to discrimination; and (3) impacts

of what we refer to as social capital (which appear only with respect to race). Table 8.1 summaries

these categories.

8.1 Analysis

Analyses were conducted separately for student responses about gender and race differences.

The total number (N) of respondents for both the gender and race analysis are shown in Table 8.2.

For reporting, race is divided into students of color and White students. This is because reporting

results by specific race/ethnicity (i.e., Black, Asian, Hispanic, mixed-race, etc.) results in sample

sizes too small for useful comparisons. Additionally, when looking at data from students of color,

patterns across racial groups emerged that are similar and distinctly different from White students.

Finally, separating out by White students and students of color essentially divides the groups into

those of racial privilege (White students) and those of non-privilege (students of color), which are

essential identities relative to questions about racial impacts. It is of note that while Asian people

are generally not underrepresented in STEM, which may call into question their inclusion in the

non-privileged group, there is ample data suggesting their experiences in STEM are more aligned

Table 8.2: Gender and race demographics of respondents coded for gender and race analysis.

Students of Color White Students

Gender analysis respondents Women 53 53

Men 31 32

Race analysis respondents Women 56 54

Men 32 30
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with people of color than White people (i.e. they do not hold the same privileged status as White

people). This is especially true for Asian women [168, 169].

Analysis for perceptions of race and gender impacts includes responses from 183 total inter-

views. Due to variations in comprehensiveness of individual interviews (a question may have been

deemed uncodable for various reasons), the sample size is different for each analysis: N=169 for

gender and N=172 for race.

In the following sections, respondents’ responses to the two interview questions regarding

race and gender impacts are described, as well as overall frequencies for the broad categories found

in student responses.

8.2 Lack of Perception of Race & Gender Impacts

If a response was coded as “doesn’t notice gender differences” or “doesn’t notice race differ-

ences” the respondent explicitly said there was no difference in the STEM experience for students

of different genders or races or they stated they were unsure if there were differences. Many of

these responses were of the form “I don’t think so” or “not really.”

Several respondents cited equal academic responsibilities for all students as an explanation

for the lack of gender and race differences. For example, one Black female major said

“No I don’t think it is. I think they’re the same. Same course load, I don’t think
they get it any easier or any harder.”
– Black female electrical and computer engineering major

Also common was an appeal to the objective nature of science to justify a lack of impact

relative to race or gender. For example, a White male major said

“I feel like especially in the world of science we are being kind of objective about
who we are and what we are doing, I think we are kind of on the same path.”
– White male environmental science major

While most respondents in this category gave explicit responses about a lack of gender and

race differences, some simply said they were unsure and did not commit to an answer. For example,
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Figure 8.1: Percent of respondents by demographic group who did not notice gender and race
differences. N-values for each group for race and gender analyses, respectively, are: Women of
Color (53, 56), Men of Color (31, 32), White Women (53, 54), and White Men (54, 30).

a White woman majoring in biology stated “No I don’t think so. I mean I couldn’t imagine how

it would be” and a White man majoring in aerospace engineering said “I don’t know. It’s kind of

hard to say for me because I don’t have any experience”

Distributions of respondents from each demographic group are shown in Figure 8.1. White

men were much more likely than other groups to not recognize gender and race differences for

students in STEM and women of color were the least likely. Except for women of color, students

were less likely to report perceiving an impact due to race than gender. Respondents coded in

this broad category of “doesn’t notice differences” were not coded for any of the subsequent broad

categories which required them to identify a gender or race impact.

8.3 Race & Gender Impacts from Individual Differences

Some students indicated that they perceived differences in STEM students’ experiences re-

lated to gender or race, yet they did not attribute these differences to any cultural or structural

systems in which STEM education takes place. Statements in which differences were noted based on

individual characteristics that were not directly or reasonably inferred to be attributed to systemic
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Figure 8.2: Percent of respondents by demographic group who cited gender and race differences
due to individual differences. N-values for each group for race and gender analyses, respectively,
are: Women of Color (53, 56), Men of Color (31, 32), White Women (53, 54), and White Men (54,
30).

causes fell under the code “Individual Differences.” Figure 8.2 shows the distribution of responses

in this category. Under this broad category student responses were categorized into various theme

groups, each of which are described below for both gender and race.

8.3.1 Differences in Individual Characteristics of Men & Women

Some respondents described individual characteristics of men and women as the source of

women’s different experiences in STEM, without inference to these characteristics being driven by

sexism. Below the two most common individual characteristics cited are described. White men

were the most likely to see individual differences as the key factor in differing experiences of different

genders.

8.3.1.1 Belief that Women are Not as Interested in Science as Men

After being asked if there were gender differences in their major, some students (nearly all

men) noted the gender imbalance in STEM and offered women’s ostensible lack of interest in science
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as an explanation. For example, one student explained

“We do an open house and every time I talk to girls, with the exception of one out
of the hundreds of families I have seen walk by me, only one seemed interested in
electrical engineering and she knew that is exactly what she wanted to do. Others
seemed to be afraid of the subject, they are probably afraid it would be too challenging
or hard, but I suppose they probably don’t know much about the major.”
– White male electrical engineering major

8.3.1.2 Belief that Women Willingly Work Harder than Men

Some students (nearly all women) proposed that gender differences were due to effort ex-

penditures. That is, the idea that women work harder than men. In order to be included in this

category the response appeared to be a quality of the gender and not attributed to a systemic cause

(i.e., women work harder because of discrimination). Those citing that women work harder due to

a systemic cause are discussed later in another category.

For example, a White woman majoring in biotechnology said “What I’ve seen is most of the

girls at our school are a lot more willing to put in the extra work to study versus some of the guys.”

In many cases, this involved the idea that women are more academically motivated than their peers

who are men:

“I feel like guys like to take the easier route and it’s not a lot of guys that like to be
challenged, and for a female it’s kind of like they will work harder instead of taking
the easier route” – Black female biology major

8.3.2 Differences in Individual Characteristics of Different Races

Some respondents described individual characteristics of different races as the contributor to

racial differences in experiences in STEM without inference to these characteristics being driven by

racism. Statements were coded in this category when the interviewee gave no indication of larger

systemic causes to the differences between races (e.g., stating something is just a characteristic of

Asian culture). The most common of these was the belief that some races value science more. In

particular, many students mention people from Asian descent come from cultures that encourage
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the pursuit of science. As one Black woman stated

“Not every African American would want to be a doctor, some people want to
pursue other careers and same thing with Caucasians and Asians. I think there’s
a larger number of Asians who go into the math and science and technology kinda
stuff than other races.” – Black female biology major

Additionally, a White male majoring in computer science expressed “I can see it being en-

couraged a lot in the Asian communities because they put such a focus on both successful careers

and like math-oriented careers.”

8.4 Differences in Experiences due to Sexism & Racism

This section focuses on those who attributed impacts to structural or cultural systems (i.e.,

sexism and racism), either explicitly or implicitly. As mentioned above, if a student listed any

impact that could be categorized this way they were counted in this category. Therefore, this

category represents the students who noted any sexism or racism impacts even if they also noted

impacts not attributable to sexism and racism.1 Under this broad category, student responses were

categorized into three main categories: (1) impacts due to minority status; (2) impacts due to

discrimination; and (3) impacts due to social and cultural capital (for race only). Each of these are

described in detail below for both gender and race.

8.4.1 Impacts of Being One of the Few

A number of responses were coded as describing impacts related to the underrepresentation

of some groups. For both gender and race, respondents talked about women and students of

color feeling intimidated, feeling pressure to work harder, and feeling out of place due to their

underrepresentation. Responses related to gender and race tended to be similar, therefore the

discussions of gender and race are combined below. Figure 8.3 presents the number of students

who fell into this broad category for gender and race impacts. A description of the most common

1 The terms “sexism” and “racism” were rarely used explicitly by students.
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Figure 8.3: Percent of respondents by demographic group who cited imbalance in representation for
gender and race differences in experiences in STEM. N-values for each group for race and gender
analyses, respectively, are: Women of Color (53, 56), Men of Color (31, 32), White Women (53,
54), and White Men (54, 30).

impacts attributed to the minority status of women and people of color in STEM are described in

detail below.

8.4.1.1 Feelings of Intimidation

A common theme under the impacts due to being a member of an underrepresented group

was that those in the minority feel intimidated due to their underrepresented status, either directly

when pursuing their degree or in job markets or internships. Often this came up as an expression

of lacking the confidence to pursue STEM or of feeling discouraged. For example, when discussing

her math department, one female major said:

“I have been surrounded by several males and sometimes I have gotten intimidated
by it just because there are only six [female students] all together being outnumbered
by these males. . . Sometimes I do get intimidated myself.”
– White female math major

Nearly all responses in this category for gender were given by women, with White women

making up the majority.



130

8.4.1.2 Pressure to Work Harder

Sec. 8.3 presented a theme revolving around the belief that women naturally work harder

than men as a reason given for gender differences in STEM. Relatedly, some students mentioned

that due to low representation of women and people of color in STEM, women and students of color

would feel pressure to work harder. Although superficially similar (“women work harder”), these

two categories are distinctly different due to the mechanism proposed (individual vs. structural)

and are therefore reported separately. In a later section this same theme of working harder surfaces

again in relation to bias.

Frequently, responses about women and people of color working harder were related to dis-

proving stereotypes about women and people of color in science and feeling a need to prove them-

selves in the field. For example, one White woman double majoring in mathematics and computer

science said “It feels strange if I’m the only female in a class... it feels like I have to keep up. . .

like, if I’m not as good, then it says something bad.” Another White woman spoke of pressure due

to stereotypes as well, stating

“It makes me feel like there is more pressure because I feel like if I don’t do as well
or better that it will be like, turned into a gender thing. . . I don’t want to be treated
differently... I want to kind of prove myself like I’m not only as good, I’m better
than you guys.” – White female biology major

After discussing the low numbers of women in engineering, one White man majoring in

aerospace engineering expressed feeling sorry for women in engineering because they would be “out

of their comfort zone” to be in a class of all men. He went on to say “I guess that [women] would

have to work a little bit harder, I would think, to prove themselves.”

Many people said that students of color likely feel pressure to work harder due to their low

representation in STEM as well. Many of these comments had to do with combating or disproving

stereotypes about certain races, such as Black and Hispanic, in STEM. For example, one Hispanic

man majoring in engineering technology said “I kind of push myself a little bit more just because ...

the majority in STEM are White, White males, so being the only Hispanic in my class kinda makes
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me wanna try a little bit harder. . . I wanna be seen as equally competent as a White male.” One

Black man majoring in mathematics expressed feeling there was “equal opportunity” in STEM,

but also remarked: “I have the drive to try to prove others wrong and I’m here in this field and I’m

successful in this field so far and I’m just going against the stereotype and against the statistics.”

What these students are describing is an experience of stereotype threat [170]. Stereotype

threat research demonstrates that a person whose group is numerically marginalized in a classroom

may perceive a spotlight on their “performance.” If there is also a negative cultural stereotype

associated with their group, the anxiety that spotlight triggers, combined with the negative cultural

stereotype, can lead to diminished effort and/or lower performance. Students from underrepresented

groups may decline to try hard; this way, any “failures” in the class are due to their diminished

effort rather than confirmation of the stereotype. The widespread stereotype threat associated with

certain racial/ethnic and gender groups has been demonstrated as a barrier to success for some

underrepresented groups in STEM. Importantly, a number of respondents indicate that they fight

the stereotype and try harder, rather than diminish their efforts.

8.4.1.3 Feeling Out of Place

Many students speculated that because women are outnumbered in STEM, they may feel

out of place. For example, one White women majoring in computer science said about her major,

“I know it’s easy for women to feel out of place or alienated just because it’s not a very popular

profession for women.” Many women voiced this feeling after being directly asked if they’d ever

felt out of place in their degree program. For example, one Hispanic woman majoring in computer

science said “Sometimes [I feel out of place] because I am pretty much the only girl, I think in all

of my classes this semester.” When asked if the feeling had changed over time, she said “no” and

continued “I think from the very beginning everyone is always like, ‘oh a girl in computer science—

this never happens’ so I am probably used to it at this point.”

Although no White men expressed such views, some participants either experienced or ob-

served that low representation of certain races and disproportionate representation of others can
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make students of color feel out of place. One Black woman spoke from her direct experience as

a Black woman in biology, stating “Sometimes I feel out of place because I’m Black and that’s

a minority in biology.” Another White woman spoke from experience as well, but spoke from a

place of knowing an African-American man in her biology program: “I remember there was like

one African-American in our class and I always felt like, bad for him because I was like ‘oh, he’s

like the only one...’ He kind of felt uncomfortable and he made a couple comments about [how] he

felt alone.” Her acquaintance felt uncomfortable and alone because he was the sole Black person

in the class. Similarly, a Hispanic woman expressed discomfort because she was the only Hispanic

person in her statistics class, saying

“I was very uncomfortable. . . It was just mostly because I think I was maybe the
only Hispanic in that class. . . I would always sit like in the back of the classroom
so that like nobody would notice me. . . And in my other classes, I would always
just stay toward the front of it.” – Hispanic female computer science major

8.4.2 Notices Impacts of Sexism & Racism as Discrimination

Students mentioned impacts that can be characterized as forms of discrimination against

women or people of color. Most responses in this category either related to employment discrimi-

nation in STEM (finding employment and/or being paid fairly) or in cultural bias in favor of men

and White people based on the stereotype that men and White people have more ability in STEM

or are expected and encouraged to pursue STEM. Figure 8.4 indicates the number of students

coded as expressing belief in discrimination as likely impacts. The following sections discuss the

various subcategories of discrimination.

8.4.2.1 Employment Discrimination Against Women and People of Color

Some students reported the belief that the employment experience likely is different for

women and people of color. Responses acknowledged women and people of color can experience

discrimination when seeking a job in STEM or in terms of being paid fairly. For example, an Asian

major said
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Figure 8.4: Percent of respondents by demographic group who cited discrimination impacts as
explanations for gender and race differences in experiences in STEM. N-values for each group for
race and gender analyses, respectively, are: Women of Color (53, 56), Men of Color (31, 32), White
Women (53, 54), and White Men (54, 30).

“I think that out in the professional world there is still a bias towards men and
against women when it comes to the science type field. It doesn’t matter the degree
you got, where you got it from, or the grades. I think that when it comes to science
they are still going to prefer the male over the female. Why, I don’t know. I feel
like the women have to work harder and get more experience in order to get the
job.” – Asian female chemistry major

A female information technology major echoed the difficulties of getting a job and also men-

tioned unfair pay:

“I have heard different stories that men get paid more than women... I have heard
that men actually get paid more and women have a harder time trying to put them-
selves out there and trying to prove themselves when you are competing against men
in the IT field.” – Black female information technology major

The idea that there is discrimination in employment was most commonly associated with

gender-based discrimination with only a few students mentioning it regarding race.
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8.4.2.2 Bias in Favor of Men and White people

Many students identified aspects of bias in STEM either in favor of men and White people or

against women and people of color. Typically this was in the form of assumptions made in society

at large about the competencies of women and people of color in STEM or of the expectations

of careers women and men pursue. Students very commonly added that when faced with bias,

women and/or people of color felt a need to work harder to prove themselves against these societal

expectations.

8.4.2.3 Assumptions of Ability

Numerous students cited the stereotype that men and White people are more competent in

STEM fields. For example, a female biology major stated

“I feel like our male teachers don’t really expect females to do well with the subject;
they kind of think that males are just all knowing and all seeing everything. I feel
like sometimes they think we are not capable of doing certain things.”
– Black female biology major

Or, as another Black woman majoring in chemistry stated: “I’ve had some professors who

make it plain and clear that, ‘no, because you’re Black you’re not focused and I’m not really trying

to, you know, give you the time of day.’” In every case where a specific race was mentioned as

being perceived to have less ability, Black people were the target.

Interviewees sometimes attributed the perception about differing abilities to stereotypes

about who does science. When speaking about race students frequently referred to stereotypes

about Asian and Indian people being more science inclined, for example a White man who left

engineering stated, “I know there are probably some cultural stereotypes that favor the Asian being

known for math and engineering and especially now in today’s world and also the traditional you

know Caucasian engineers as your traditional stereotype.”
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8.4.2.4 Assumptions About Who Pursues Science

There were a number of comments indicating a bias in the expectation that STEM is for men

and White people to pursue. As a Hispanic woman majoring in geology expressed, “I don’t think

that there is intentional racism. I think that it is probably just seen as more of a White field.” Many

students indicated that the bias toward men and White people resulted in women and students of

color being explicitly discouraged from pursuing STEM. As a White male majoring in computer

science expressed:

“Women just aren’t encouraged to make such a career choice growing up. I mean
it’s totally fine if dudes sit on the computer all day and play video games and stuff
like that, which for our generation is easily one of the bigger influences on computer
scientists but it’s not okay for girls to do it. . . they are losers if they sit around
and play video games.” – White male computer science major

8.4.3 Social & Cultural Capital

One emergent theme unique to discussions of race had no parallel for gender: social and

cultural capital. Social and cultural capital refer to resources available to students, often linked

to their higher socioeconomic status. Social and cultural capital can include superior high school

preparation (higher quality teachers, AP courses), parental or extended family experiences with

STEM subjects and occupations (role models), informal family and community STEM learning

(science museums, summer camps, parental assistance with STEM homework), prior knowledge

about applying to and succeeding in college (parents’ education), informal networks as resources,

and encouragement from peers or family [171, 172]. For example, when asked if there are race

differences in pursuing a STEM degree, one Black female leaver said

“Yes, and mainly because [my school] is in a poverty stricken area. I think people
from like places where it’s more financially secure and stuff they have a better
advantage over students with like poverty backgrounds, which would be like the
Native American students or some of the Black students here, but with that being
said. . . I think if you put in the same amount of work I don’t think you would have
a problem with that disadvantage.” – Black female chemistry leaver
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Another Black woman majoring in biology discussed socioeconomic status and how the oc-

cupation of your parents can influence your pursuit of a STEM degree. She spoke of her friends’

“richer families” with parents who were lawyers and doctors, whereas her parents were a truck

driver and social worker. She then said “I didn’t really know anything about science also maybe

because of that, because they {my parents} didn’t have those types of jobs.”

Students of color and White women were the only students who mentioned something related

to social or cultural capital as an explanation for disparate lived experiences as a STEM student.

None of the White men interviewed made connections between race and social or cultural capital

in their reflections on the STEM experience.

8.4.4 Bias Resulting in Women & Students of Color Having to Work Harder

Commonly, when bias was identified, students said that a consequence of this was that

women and students of color had to work harder to prove themselves. For example, a White female

biostatistics major stated “I think sometimes you have to work a little harder to be taken seriously

I think as a blonde female.” Similarly, a Black female biology major expressed, “I think that is

mostly a male dominated field so I feel that women that do choose to go into this career have to

work harder to prove that they are as qualified.”

The notion that women and students of color work harder was common among all codes

within the “notices differences” broad category. This finding is elaborated on in Sec. 8.6.

8.5 Perception that Underrepresented Students Benefit

Approximately 3% of students (most of whom were White women) felt that women and stu-

dents of color had advantages over men and White students because of the current cultural and

political emphasis on expanding STEM undergraduate populations to groups underrepresented in

STEM. Comments about women and students of color benefiting from their demographic profiles

were often related to job prospects, scholarship opportunities, and general encouragement. For

example, a Black woman majoring in electrical and computer engineering commented on the expe-
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rience of being both a woman and a racial minority and the benefits that would come along with

that identity in the job market. She spoke about companies needing to meet a “minority quota”

and how she was both female and African American. She went on to say “I’ve gone to career fairs

and walked by a booth and a guy is going ‘no, no,... come here, come here, we’re looking for African

American females’ and I don’t know anything about their company and I might get an interview.”

Another common theme focused on underrepresented groups’ receiving extra encouragement.

As articulated by a White female major,

“I feel like as a woman at [my university] I have been especially encouraged and I
don’t know if that’s just my experience but I feel like teachers are so afraid to be
sexist that they sort of over put the emphasis on helping the women in their class.”
– White female mathematics major

White women were the most likely to comment on how people of color, a group they are not a

part of, benefit from their race. However, they were also the most likely to comment on themselves

being able to benefit due to their gender.

While there is much discourse about programs to encourage underrepresented groups to

pursue STEM, including scholarship opportunities specific to these groups, the available data (see

Ch. 6) suggest large and negative impacts on these groups that limit access and ability to succeed.

Even when ignoring factors that contribute to a general chilly climate for underrepresented groups

and focusing only on the hiring process there still is no evidence that women or people of color are

advantaged [173].

8.6 Perception that Women & Students of Color Work Harder

As discussed above, a common theme throughout the interviews was the belief that women

and/or students of color work harder as a result of their demographic group’s marginalized status.

Figure 8.5 shows the distribution of this perception by demographic group. Sometimes this was

attributed to a characteristic of a group without an attribution to any cultural or systemic factors

that marginalized the group. Other times, the theme of extra effort by women and students of color
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Figure 8.5: Percent of respondents by demographic group who expressed the theme that women
or people of color work harder. N-values for each group for race and gender analyses, respectively,
are: Women of Color (53, 56), Men of Color (31, 32), White Women (53, 54), and White Men (54,
30).

appeared as an expression of feeling pressure to do well as a result of being unusual or standing

out. The third category in which we saw this theme arising was in students’ expressed belief that

women and students of color felt a need to prove themselves or work extra hard to do better than

their White/male peers due to a perceived bias against them. White men were the least likely

to report this impact and respondents were more likely to report the impact for women than for

students of color.

A number of students observed the impact of needing to exert more effort had on the mental

state of a student, either allowing men to be more relaxed, or resulting in women and students of

color being more stressed. For example, a woman majoring in civil engineering noted her perception

that men were more relaxed:

“I think it’s more challenging for women... just looking at the guys they seem
pretty set and you know they’re going to pass and they’re going to get a job, it
seems pretty laid back. Whereas you see the women in civil engineering and they
are really working hard and striving to outdo the guys because there’s just such a
stigma.” – White female civil engineering major
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Another White female major noted the extra stress this places on women:

“I feel like with women . . . in chemistry are trying to prove themselves and push to
show that they are able and capable of handling the workload and doing the work. . .
I would say just in looking at the men and women in my major, the women are
more ...I don’t want to say stressed out but like they are more ...meticulous and
anxious and organized about things whereas the men are more relaxed.”
– White female chemistry major

This finding is highlighted here because it has important implications. At no time were

students ever asked a direct question that would elicit the expression of women or students of color

feeling a need to exert more effort. Yet, a significant number of students brought this up on their

own. Most commonly they attributed extra effort from women and students of color to a desire to

prove themselves because of bias against them and noted it leads to significant stress.

Chronic stress is associated with poor mental health (including anxiety, depression, and mood

disorders) as well as lower learning outcomes [174]. The literature on mental health of STEM

students relative to their demographic is sparse but consistent with the findings that women and

students of color report more behavior associated with stress. Studies indicate women in STEM

have lower overall mental health [175], more anxiety [176], and more depression than men [177]. In

addition to the impacts of chronic stress on women and students of color in STEM, there is also

evidence [14] that the perception of having to work harder than men in STEM leads to women to

be less likely to feel they belong and to be less motivated to pursue STEM.

Yet, many of the participants identified their extra effort as a badge of honor. For example,

a Black male mathematics major explained “I have the drive to try to prove others wrong and I’m

here in this field and I’m successful in this field so far and I’m just going against the stereotype and

against the statistics.”

8.7 Summary of Gender & Race Impacts

Unlike prior research about each of the demographic groups in this study, these findings

permit the comparison of perceptions of racism and sexism among members of several race-by-
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gender cohorts of college seniors. In summary:

• Undergraduate students in this sample were often unaware that gender or race impacts

the experiences of students in STEM despite extensive research indicating they have all

experienced such impacts.

• Students who were aware of impacts, frequently attributed the effects to differences between

genders and people of different races and not to any systemic or cultural causes.

• Among students who were aware of differences, the most common examples given were that

men and some races are more interested in STEM (and therefore more likely to pursue and

persist) and have different work ethics.

• Some students who were aware of impacts attribute them to sexism and/or racism, though

none used these terms explicitly. Most commonly respondents stated that being a minority

can lead to students feeling intimidated, feeling pressure to work harder, or feeling out of

place, and these feelings have a negative impact on their educational experience. Students

also identified ways women and students of color are discriminated against, especially in

relation to experiences in employment and in bias against them.

• Differing levels of social and/or cultural capital were cited as an explanation for why some

races are more represented than others. In doing so, students often conflated race with

social class differences in opportunities to prepare for STEM.

• A small number of students, mostly White women, believed women and students of color

benefit from their underrepresented status in STEM due primarily to societal efforts en-

couraging more women and students of color to pursue STEM.

• The belief that women and students of color work harder in STEM appeared across cat-

egories including: working harder is a characteristic of the group, it is due to being a

minority, and it is due to discrimination.
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Figure 8.6: Overall distribution of responses to the question of whether there are differences in
experiences due to gender and race. N-values for each group for race and gender analyses, respec-
tively, are: Women of Color (53, 56), Men of Color (31, 32), White Women (53, 54), and White
Men (54, 30).

Overall, these findings can be broken down into three broad categories: (1) respondent doesn’t

notice differences; (2) respondent notices internal differences between groups (not sexism/racism);

and (3) respondent notices differential experiences and identifies them as grounded in structural

factors (sexism/racism). These categories are summarized in Figure 8.6. Below two important

trends in these findings are discussed.

Except for women of color, students were less likely to perceive race has an

impact. Most students in our sample reported perceiving fewer impacts due to race than to

gender. The research literature indicates that both race and gender significantly impact students’

experiences in STEM, and the presented data do not allow for explanations of this gap in perceived

impacts. It is worth noting that the students interviewed were attending schools with a racially

diverse population (the overall system is approximately 40% students of color). This may affect

their awareness of race impacts compared to students in other areas of the country where students

of color are less represented at their universities.
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The enhanced awareness of gender impacts may be due the greater attention given to issues

of women in STEM in the media. It may be that students have simply had their attention directed

more to issues of gender in STEM than race. However, it is beyond the scope of this study

to investigate this possible reason. The finding of lower awareness of race impacts than gender

impacts suggests there is a need to raise awareness of the influence of race, racism, and overall

racial climate for students pursuing a STEM degree. It is more difficult to address inequity if there

is not widespread recognition of its existence.

White males were the least likely to perceive impacts of race or gender on the

experience of majoring in STEM. White men in our sample were the least likely to recognize

race or gender impacts on students’ experiences in STEM. This finding is illuminating, as White

men are the majority population in many subfields of STEM and are overrepresented in positions

of power and influence in STEM (i.e., they are more likely to achieve tenure and fill leadership

positions). Only 40% of White men in the sample acknowledged any impact of sexism in STEM

and only 20% acknowledged any impact of racism on the experience of pursuing a STEM major.

The majority of White men in our sample appear to be unaware of the ways in which gender and

race shape both their own and others’ experiences. This has implications for STEM equity work

because if the majority of individuals in the dominant demographic group do not recognize the

disparate experiences of other demographic groups, it will be difficult to create the disciplinary

cultural and structural conditions necessary to foster greater equity.

Research around equity typically focuses on the experiences of those who are in the minority

rather than those in the majority. This implicitly views inequity in the context of deficits in

individuals in minority populations rather than in the context of the structures and culture created

by the majority population. Efforts that focus on people from underrepresented groups are likely

limited in their impact on equity because the ideas and practices of the majority population also

need to be understood, challenged, and changed. Thus, there is a need for shifting the focus of

equity-based research in STEM away from deficit perspectives of students of color and focusing

more on the ways in which dominant STEM culture can be changed to improve equity.



Chapter 9

Discussion: Impacts of Race & Gender on Student Experiences in STEM

Despite improving trends, women and many people of color remain underrepresented in

STEM fields. The growing body of research on the problem suggests many factors contribute to a

complex dynamic that results in the underrepresentation of women and students of color in STEM.

The Roots of STEM Success Project advances understanding of the persistence of underrepresen-

tation among women and students of color by analyzing interviews conducted with over 300 North

Carolina college students who discussed if they perceived their STEM professors cared about their

learning; the pedagogy they experienced and preferred in their STEM courses; whether they felt

they belonged in these courses; and whether they were aware of differential experiences of students

in STEM due to gender and race. This chapter presents a discussion of key findings and takeaways

from these analyses.

9.1 Professor Care, Instruction Style, & Belonging

Professor care has been shown to have several positive impacts for students [117, 118, 122,

123], as has sense of belonging [15, 14, 17, 18]. Additionally, work has shown possible positive

impacts of interactive course instruction for all students, regardless of gender or racial background

[111, 112], though some work has suggested the implementation of this instruction impacts its

efficacy [113, 114]. The study presented here adds to the literature by considering students’ percep-

tions of care from their professors and sense of belonging in STEM, as well as comparing students’

perceptions of STEM instruction styles to their preferences for instructional styles. Additionally,
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the data expand previous work by comparing these factors for those who major in STEM and those

who left STEM fields. Key findings from our study related to these factors include:

(1) STEM majors are more likely than leavers to report feeling their STEM professors cared

about their learning.

(2) Women of color, whether STEM majors or leavers, perceive less professor care in STEM

than students from any other gender/race cohort.

(3) Students in a physical science field are less likely to report feeling their STEM professors

cared about them and their learning than those in biological sciences.

(4) Women who left STEM show the strongest preference for active instruction approaches but

reported encountering it least frequently in their STEM courses.

(5) Students who feel they belong in STEM are more likely than students who did not feel

they belonged to also report their professors cared about them.

(6) Students who recount encountering more active approaches also feel more care from their

professors.

Findings presented suggest a discrepancy in the preferred and encountered instruction style

for underrepresented students in our sample, in particular women and underrepresented minorities

who left their STEM majors, who preferred more active approaches. Additionally, women of color

were the least likely to feel their STEM professors cared about their learning. A sense of professor

care appeared to be associated with active learning courses and a higher sense of belonging in

STEM. Though these data are correlational, they point to the notion that increasing use of active-

teaching approaches is a possible way to support students underrepresented in STEM and increase

retention of those students. However, this is not a magic bullet, and there have been mixed

results for underrepresented students when active-engagement methods are incorporated in STEM

classrooms [115]. It is important to recognize that the implementation of these instructional styles

can have a large effect of the efficacy and success of these approaches [113, 114].
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The data also show feelings of belonging are associated with having personal relationships

with college peers; students’ confidence in their abilities to complete the requirements of the major

(i.e., a sense of competence); their interest in their major field; and whether or not the student

has a science identity. Sense of belonging was reported more among men, White students, and

majors. STEM students’ sense of belonging also appeared to be correlated with the number of

members of the students’ gender who also are in their major. The visible presence of learners

“like me” renders the student’s presence in this STEM environment as normative rather than an

aberration—essentially conveying to the learner that “I belong” here.

Interviewees who reported personal relationships with others in the major were less likely to

leave it. The influence of a personal relationship on staying or leaving the major holds for women of

all races, White men, and men of color. Across race and gender categories, perceived competence

in the field was the second most commonly cited reason given for feelings of belonging and/or lack

thereof. STEM majors are more likely to attribute their science identity as a reason for their sense

of belonging (as opposed to a lack of it being a reason for not belonging) and remaining in their

major. Levels of personal interest in the STEM discipline contributed a small degree to major’s

sense of belonging, but its magnitude is not markedly different than levels among STEM leavers,

with the exception of women and students of color, whose personal interests contribute more to

their reasons for belonging than interest contributes for men and White students.

The main reasons leavers gave for their low levels of belonging were a lack interpersonal

relationships and weak sense of one’s competence. Student interviewees cited lack of confidence

in their capacities to complete the major at a certain level as a motivation for leaving. However,

unlike majors, leavers also report a lack of science identity as a significant reason for not belonging,

and this lack of science identity is more prevalent for leavers who are women and students of color

than for other leavers.

The finding that STEM leavers across all demographic groups in our sample report a lower

sense of belonging indicates an association between feelings of belonging and persistence in STEM.

Additionally, students from underrepresented groups in STEM overall were less likely to feel they
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belong. Considering the intersections of race and gender illuminates this particularly striking

association among women of color, who are more likely than any other demographic group to feel

they do not belong in STEM, a sentiment found even among women of color who persist in the

field.

Key implications of results regarding sense of belonging in STEM are discussed in more depth

in the following sections.

9.1.1 Demographic Isolation & Sense of Belonging

Analyses based on levels of gender or racial representativeness in a STEM field in relationship

to students’ sense of belonging indicate that being demographically similar to others in the field

may positively impact belonging. In fields where gender parity has been reached (i.e., women in

undergraduate biology programs), students from demographic groups still underrepresented in other

STEM fields report high levels of belonging. This raises the possibility that the problem isn’t that

women or people of color inherently feel they don’t belong in STEM but, rather, they are responding

to the unbalanced representation of certain demographic groups in some fields of STEM. Such a

response to demographic imbalance implies that even if all other individual, familial, or academic

preparatory factors are aligned for a student’s STEM success, until STEM fields become more

demographically diverse, those in the majority group (generally White men) will remain privileged

by the culture and organization of the discipline in ways that sustain their sense of belonging while

undermining the sense of belonging of students from underrepresented groups. This interpretation

suggests the underlying problem is systemic (i.e., based in the cultures and organization of STEM

rather than individuals’ characteristics or preferences) and will require a systemic solution crafted

to change institutional cultures and organizational structures.

9.1.2 Science Identity & Sense of Belonging

Based on our analyses, the presence of a science identity differentiates those who stay and

those who leave a STEM major. A key finding in this work is that the absence of a science identity
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is greater among underrepresented groups. No STEM major in our sample indicated lack of science

identity as a reason for not belonging. In contrast, approximately one-quarter of leavers did so.

These findings align with work by others who demonstrate the connection between science identity,

race/gender, and persistence [135, 155].

The data are correlational and sample sizes are relatively small, so the extent to which a

lack of science identity motivates dropping out of STEM and the extent to which those who drop

out then feel a lack of identity cannot be directly determined. However, among leavers in our

sample, women were more likely to report a lack of science identity than men, and students of

color were more likely to report a lack of science identity than White students. No White male

(major or leaver) in our sample reported a lack of science identity; all reports describing a lack of

science identity were from students in marginalized groups. This relationship suggests that science

identity is strongly connected to both race and gender. Given that students of color and women

leave STEM at higher rates, our work suggests that science identity may play a role in persistence.

9.1.3 STEM Interest & Sense of Belonging

Leavers in our sample rarely cited their lack of personal interest in STEM to explain why

they left their major. However, majors were more likely to mention it, especially students of color

and women—even though interest in science contributed only a small part to interviewee’s sense

of belonging. This is an important finding to note because it challenges the idea that women

and people of color are inherently less interested in science and instead suggests that structural

and disciplinary cultural factors, rather than individual preferences, should be the focus of future

examinations of representation in STEM.

9.1.4 Interpersonal Relationships & Sense of Belonging

The relationships students form with faculty as well as with peers in STEM are important

in relation to persistence for students in our sample. The presence or lack of interpersonal rela-

tionships was the most common reason cited for belonging or lack of belonging. This implies that
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for departments interested in increasing persistence rates among students from all demographic

backgrounds, taking inventory of the extent to which members of the department—faculty and

students—form positive connections and providing structures that encourage strong interpersonal

relationships are likely to be productive strategies.

9.2 Student Perceptions of Gender and Race Impacts

The findings presented in the previous section confirm and add to the large body of literature

that shows students have differential experiences in STEM along lines of race and gender. These

studies provide numerous examples of ways in which women and people of color have experiences

as they pursue STEM that limit their access and engagement in the field.

There are few studies, however, that have investigated students’ awareness of these differences,

especially differences for those outside of their gender and/or race. This study suggests that women

of color may be the most aware of gender and race differences in experiences, while White men

may be the least aware. This has important implications in STEM, in which White men are

overrepresented and thus hold much of the power and privilege within these fields. With power

comes more ability to implement large-scale systemic changes. If White men are largely unaware,

or in denial of, negative impacts of STEM culture on women and students of color (as our data

suggest), they are less likely to implement changes that can have strong positive impacts on the

culture of STEM and underrepresented populations.

White male undergraduates’ lack of awareness of what their peers experience can become

part of the “chilly climate” with which women and students of color must contend en route to their

STEM degrees and communicates that they perceive White male ownership of the field. Addressing

the deficiency in awareness, and the underlying culture that supports the lack of awareness, should

be part of any effort to address equity in STEM. Equity in STEM extends beyond individuals

striving for their degrees. Greater equity in STEM fields can begin to address the loss of talent

among historically excluded groups and the issues of distributive (in)justice related to STEM careers

and social mobility.
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9.3 Study Limitations

In the work presented here, the sample is not representative of all STEM students along

several dimensions. It is not geographically diverse (all students were from North Carolina); is

limited in socioeconomic diversity (all students were attending a public institution); deliberately

overrepresents students of color and women compared to their representation in STEM; and was

subject to self-selection bias.

Due to the problematic nature of dividing the sample into overly descriptive categories,

analyses categorize students of color or underrepresented minority students into one racial category.

Comparisons between different racial groups within the categorization of “students of color,” or

between students pursuing different majors within STEM, was not possible due to low N and the

need to maintain anonymity of participants. As a result of this, findings must be interpreted and

applied only at a general level. One cannot assume that the experiences of subgroups within certain

racial categories (e.g., Black and Hispanic students) all encounter the same experiences, nor can

they assume that the presented findings are true of all students of color, all White students, all

women, or all men. One must recognize the unique experiences each student encounters, but also

consider the ways in which their racial and gender identities may influence their experiences in

STEM environments.

It is worth acknowledging the limited gender options provided on the initial survey when

recruiting students; they were prompted to select either male or female. These data were collected

in 2013. In years since this study began, more inclusive language has been continually adopted

throughout academia and society to expand definitions of gender (e.g., man, woman, non-binary;

cisgender or transgender), and distinguish this from sex (e.g., male and female).

The study did not collect demographic information beyond race, gender,1 and major. Though

the analyses presented are intersectional across race and gender, it is worth highlighting that

1 Gender here refers to male and female. In hindsight, our study should have provided man or woman as gender
identity options. However, gender identity of students was indicated as male or female on the survey; “male” and
“female” were used as genders in this study to respect the identities that students self-reported.
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these are not the only aspects of one’s identity that may influence one’s experience in STEM. For

example, LGBTQ+ identities were not collected, but recent studies have shown that belonging to

the LGBTQ+ community can have significant impacts on experiences in STEM [178].

Identities lie along many dimensions, and these identities interact in complex ways that

cannot and should not be reduced. The aim of the presented study is to provide information that

can illuminate and better inform discussions revolving around equity, diversity, and inclusion in

STEM. One should not interpret this work as law and understand the variable nature of students’

unique experiences.

9.4 Implications

The ultimate question for researchers in this area is “What can be done to increase the

representation of women and people of color in STEM?” While causal claims cannot be made

with the presented data, together these findings shed needed light on the persistent demographic

underrepresentation of women and students of color in most STEM fields. Results can be used to

inform retention efforts in STEM fields; approaches taken, along with lenses used to interpret those

results, can be used to inform future studies regarding representation of women and students of

color in STEM.

9.4.1 The Deficit Model of Women & People of Color

While rarely explicitly stated, many change efforts around equity operate under a deficit

model of change. The deficit model views the problem of underrepresentation through the lens of

individuals instead of larger cultural systems [179, 180]. Under the deficit model, it is assumed

that women and people of color lack something (academic preparation, social capital, role models,

assertiveness, confidence, experiences, encouragement, mathematical skills, etc.) that hinders their

participation in STEM. This model supposes that the problem of underrepresentation can be ad-

dressed by providing supplements to those who are underrepresented, such as extra training and

opportunities for experience or mentoring. Under this model, the assumption is made that gender
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and ethnic/racial equity in STEM will be reached when those who are marginalized (women and

people of color) change to fit the system that is in place. This model does little to question the

culture or structures that contribute to the marginalization of the groups who are being asked to

adapt to the current system of STEM education.

This model is flawed because it fails to recognize larger cultural systems and places re-

sponsibility for change on those who are marginalized, while it leaves intact the cultural climate,

organizational structures, and classroom practices that contributed to creation of the problem in

the first place. Though efforts to support the academic experiences of women and people of color

can be valuable, they may not be sufficient for significant and lasting change to occur. In contrast

to the deficit model of change is a systems model of change. Under the systems model, it is the

environmental and cultural structures that are the target units for change as opposed to individ-

uals; structures within the system can act to privilege some and thereby disadvantaging others.

This model shifts away from a “fix the underrepresented people” model to a “fix the culture and

systems” model.

The presented findings support a need to view equity efforts through a systems model. Specif-

ically, the interviews in the presented study suggest that the classroom environment likely is ex-

perienced differently by those students from underrepresented groups than students from more

privileged gender and racial backgrounds. While all students found an association between per-

ceptions of a classroom as active and perceptions that their professors cared about their learning,

women and students of color who leave STEM are the most likely to report a disconnection between

perceived classroom environment and what they desire. Further, women of color in the sample were

significantly less likely to feel their professors cared about them or feel they belonged in their field.

These results have the following implications for equity work:

(1) Efforts to address inequality in STEM should not disregard White men. As discussed, the

analysis indicates the majority population in STEM may be unaware of the experiences

of marginalized groups. Lasting systemic change will necessitate research to document,
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challenge, and leverage the perspectives of White men. As others are increasingly not-

ing [181, 182], reform efforts often operate from a deficit model, assuming the marginalized

population needs to change in order to achieve success (e.g., mentoring programs, enrich-

ment activities, scholarships, etc.). This perspective disregards the impacts of the majority

population by instead attributing the problem with, and assuming the solution should come

from, marginalized groups. Additionally, this perspective devalues the perspectives of the

marginalized group in favor of the norms of the privileged group, without questioning the

value of those norms. The focus on White men in STEM as setting the norm to be achieved,

while disregarding them as a point of change, is a shortcoming that needs to be addressed.

If the group that most influences the dominate culture is unaware of that culture or its im-

pacts on others, and if little effort is put on identifying and changing the dominant group’s

understanding, one must wonder by what mechanism change would be expected.

(2) Greater attention is needed to issues of race in STEM. There was less awareness of race

impacts among students in the sample. This may be due to a lack of awareness rather

than actual experience, as much of the discourse among STEM research has focused on

the experiences of women in STEM. There is ample evidence that race has a significant

impact on one’s experience in STEM [10, 183] and no indications that it is less than the

impact due to gender. For inequity to be better addressed, a greater acknowledgement of

the inequities experienced based on race is needed.

(3) More work is needed on the relationships among racism, sexism, and the stress they trigger

among underrepresented groups. As discussed, a large number of students commented that

those who are marginalized work harder, which was often connected to feeling more stress

and anxiety in response to marginalization. In a search for literature regarding this topic,

little literature appeared that addressed what appears to be a common and impactful issue.
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9.4.2 The Importance of Intersectional Analyses

The work presented here utilizes an intersectional approach with regards to gender and race.

These types of analyses are important in the field of equity research and highlight key phenomena

for certain groups who could otherwise be overlooked. Unintentional exclusion of experiences can

occur when cross sections of identities are not considered.

Research that examines only race or only gender differences in outcomes may mask the ways

intersections of race and gender shape experiences of students. For example, the presented inter-

views indicate that both race and gender moderate the experiences that impact sense of belonging

for STEM students. Importantly, we see large differences between women of color and both White

women and men of color in our sample. Women of color reported the feeling a sense of belonging less

frequently than any demographic group. Only a bit more than half of the women of color majors

reported consistent feelings of belonging. These were women who were nearing graduation with a

STEM major and yet frequently did not feel they belonged in the field in which they were about to

receive a degree. The extent to which this group struggles with belonging can be overlooked when

race and gender are not considered together. Additionally, the lack of belonging reported by men

in the sample was primarily experienced by men of color. Combining the experiences of all men

obscures this finding.

Intersectional analyses are absent from much of the STEM education literature, which sug-

gests that findings reported in the literature about women’s experiences are most likely reporting

the experiences of White women and reports on people of color are most likely reporting the expe-

riences of men of color. Not disaggregating students by both gender and racial identity masks the

unique experiences of women and men of different races, which has consequential implications for

effective strategies in improving experiences for underrepresented students.
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9.4.3 Implications for Teaching

Taken together, findings from this study suggest that a possible effective way to address

representation issues is to address classroom environments. Recent surveys indicate that while

there is a growing trend toward more active teaching approaches, the majority of faculty report

extensive lecturing. For example, the 2010-2011 HERI survey of faculty [184] found that, in STEM,

the majority of faculty (70% of male faculty and 50% of female faculty) report using extensive lecture

most or all the time. Surveys in individual disciplines have found similar results. A 2010 survey of

calculus faculty found 80% of instructors lecturing “very often” or “often” [185]. Literature suggest

the majority of STEM faculty use extensive lecture the majority of the time. Results of this study

indicate that shifting toward more active approaches may increase the persistence of women and

students of color.

It is of note that as teaching becomes more active and less lecture-based, the level of in-

terpersonal interactions both between students and the student and their professor increases. As

meaningful interpersonal interactions increase it is likely the perceptions of care from faculty will

increase as well, which can support a greater sense of belonging, especially among marginalized stu-

dents. However, it is important to recognize the influences of effective implementation in reaping

the benefits of active instructional approaches [114].

9.5 A Note on the Persistence of Women of Color

Prior studies have found associations between a students’ sense of professor care with several

success measures [118, 122, 123], including rentention [117]. The same can be said for student sense

of belonging and retention [16, 15, 131]. This work supports the idea that those who lack care or

belonging may leave the field.

The data presented here shows women of color reported the lowest ratings of professor care

and belonging in STEM. However, all students in this sample were college seniors nearing completion

of their degree. This presents a narrative counter to those frequently found in the literature; it



155

indicates that, despite encountered barriers in STEM, the women of color in this sample found ways

to successfully complete their degrees and overcome challenges that often push women of color out

of the field. Though it is beyond the scope of this work, there exists literature, e.g. ref. [183], that

investigates women of color’s persistence and resilience in STEM. This is an area that could benefit

from further investigation.

9.6 Roots of STEM Success Project: Summary

The presented study is unique in several ways that go beyond many studies in the literature.

Race and gender, as well as their intersections, are included in analyses in contrast to many studies

that consider only one dimension or the other. Additionally, the data come from a self-selected

sample of college students with a wide range of backgrounds who attended one of the 16 public

universities in North Carolina, while many studies report data from only one institution or from

more selective institutions. Differences across different STEM fields are also included in some

analyses, instead of looking at only a single field or collapsing all majors into a single STEM

category. Impacts of perceptions of instructional style on persisting in the STEM major are also

addressed, a topic that is rarely studied. Sense of belonging and whether the students perceive

their professors as caring (an understudied area in STEM education on its own) is connected to

the issues of instructional approaches in STEM as well.

The findings of this portion of the Roots of STEM Success Project focus on how certain

features of the organization and culture of STEM disciplines contribute to the problem of un-

derrepresentation. The presented findings underscore the necessity of taking a systems approach

to change, rather than attempting to equip individual students from marginalized groups better

to withstand aspects of the culture of the STEM disciplines that they—as well as some students

from more privileged groups—find problematic. With a systems approach to improving equity in

STEM, issues of underrepresentation can more effectively be addressed. As part of this systemic

approach, this work suggests a need to identify and better understand the ways in which the orga-

nization, norms, and cultural climates of STEM disciplines work to support those in the privileged
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group while often discouraging those from marginalized groups. In the biggest of pictures, taken

together, these findings point toward cultural and structural factors that impact experiences of

STEM students, which can impact persistence.

It is important to note that White men who pursue STEM likely benefit from the privileges

of being in a field in which there are many others similar to them and where they frequently

fit favorable stereotypes about who pursues STEM. Even when students stated they belonged

in STEM, they sometimes expressed feeling others did not feel they belonged due to not fitting

those stereotypes. Additionally, having commonalities with others privileges White men in forming

interpersonal relationships, which data show are important for persistence.

White men were the least likely to recognize the well-documented differences in experiences

for women and students of color in STEM. As they hold much of the power and privilege in STEM

disciplines, educators and researchers must work to better inform White men about issues regard-

ing equity, such that effective structural and systemic changes can be made. Research regarding

equity in STEM should turn to examining dominant STEM culture to investigate ways in which

the cultural norms and systemic barriers in STEM can be dismantled. This, along with more in-

tersectional analyses of beliefs and experiences, can lead to more effective changes in STEM that

support marginalized students.
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Conclusion

Understanding of the ways in which race and gender influence experiences while pursuing

STEM degrees can inform development of research-based assessments and interpretation of their

results. The work presented in the second half of this dissertation (Ch. 6-Ch. 9) showed several

ways in which identity mediates experiences in STEM, including whether one feels they belong,

whether they feel their professors care, and if they encounter the instruction styles they prefer. The

intersectional analysis approach in Part 2 provides insight into the experiences of a women of color,

who are often overlooked in studies that look at only race or only gender. Some findings would be

obscured if gender-by-race cohorts were not investigated, such as the finding that White women

feel the most care from their professors while women of color feel the least. Additionally, we found

most men who lacked belonging were men of color, and that women of color reported lower sense

of belonging than White women.

Despite the multiple barriers facing women of color in our sample, from less care from pro-

fessors to lower sense of belonging, they remained persistent in pursuing their degrees, completing

their STEM programs and nearing graduation. This is something that should not be overlooked,

and more studies looking at the resilience of women of color could be beneficial in supporting women

of color and other people from underrepresented groups in pursuing and persisting in STEM.

Many students who left STEM reported feeling their professors did not care about them

or their learning. Even many senior STEM majors had the same seniment regarding professors’

lack of care. Combined with the differential perceptions of care by women of different races, this
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has implications for how STEM professors engage with their students to foster belonging and

retention of underrepresented populations. This could be addressed by faculty through developing

interpersonal relationships with students as well as modifying their instruction. Students who left

STEM had high mismatch between their encountered and preferred instructional strategies, namely

prefering more active instructional approaches and encountering more lecture. This was especially

true for women and URM students who left STEM. These results indicate that incorporating more

active instructional strategies could be one helpful avenue for improving retention of students from

groups underrepresented in STEM.

Effectiveness of instruction is often gauged using research-based assessments. When these

types of assessments produce performance gaps, a myriad of conclusions could be drawn, some of

which could be problematic. The most damaging takeaways appear in the form of assumptions

about who can and cannot do physics or STEM. This could lead people to justify underrepresenta-

tion or exclusion of certain groups in STEM, diminishing efforts to increase and address equity in

the field. Alternatively, this could lead to creation of interventions or new instructional strategies

that may be unproductive or misaligned with reality. Appearance of performance gaps could be

due to bias in assessment items, as has been found in the Force Concept Inventory [5, 6]. Thus,

addressing bias in assessment items presents potential for diminishing performance gaps and pos-

sible resulting problematic conclusions that could be drawn from them. This calls for reevaluating

how assessments are designed and validated.

The assessment developed as part of this dissertation—the Upper-level Statistical Mechanics

and Thermodynamics Evaluation for Physics (U-STEP)—discussed in Ch. 2-Ch. 5 was directly

influenced by knowledge of the differential impacts that race and gender have on STEM students.

This informed the ways in which bias was intentionally addressed during the item development

phase, and the ways in which participants were solicited at every step of the process. In the U-STEP,

a relatively novel approach was taken for design and validation of items. The goal to address

potential bias in the assessment was at the forefront throughout the development cycle. First,

thoughtful and deliberate recruitment at every phase of the development process ensured that our
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data came from a diverse pool of participants, based on student populations served and department

size. We solicited perspectives from many instructors across the country and incorporated their

input into the writing of assessment objectives, use of notation in the assessment, and development

of items. This allowed us to narrow the scope of the assessment such that it could be useful for a

broad range of instructors and institutions.

We also incorporated differential item functioning (DIF), which fostered identification of bias

in items during the development process through analyzing differential performance between stu-

dents of similar abilities but different races or genders. This approach helps in curbing appearance

of gaps due to bias, as is often seen with the FCI. In addition to DIF rooted in classical test theory

(CTT), we also layed the groundwork for Rasch item response theory analyses to allow for less

population-dependent validation techniques and future, more robust DIF analyses. This will aid

in the endeavor to make the assessment more broadly usable, more reliable for comparisons across

groups and institutions, and less susceptible to bias once it is finalized after the Spring 2021 pilot

administration.

The U-STEP will be the first thermal physics assessment that addresses both classical ther-

modynamics and statistical mechanics. It also adds to the limited pool of upper-division physics

assessments composed of coupled, multiple-response items, which allow for automated, streamlined

scoring and partial credit. Though traditional routes for validation such as CTT were utilized,

the U-STEP is one of the first upper-division physics assessments to investigate DIF and Rasch

analyses during the development phase.

The studies presented here propose new best practices in assessment development and equity

work in PER. Development of validated, research-based assessments, and interpretations of their

results, should be informed by qualitative work regarding differential impacts of identity on STEM

students. Despite evidence of these differential experiences based on race and gender in STEM,

we found that many students are unaware of these differences. This is especially true for White

men, who we found to be the least likely to recognize race- and gender-based differences in STEM

experiences. Since White men hold the majority of power in STEM, due in part to their overrep-
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resentation [10], they have the most power in influencing changes in STEM culture and practices.

Thus, White men (along with others in STEM) should be informed about power, privilege, and

differential impacts on students pursuing STEM degrees based on race and gender. This will foster

more effective change in the realms of both equity and assessment design. The work presented here

can be used to inform changes in dominant STEM culture, resulting in evolved norms with regards

to addressing underrepresentation and equity, in addition to assessment development practices.
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Appendix A

Other Core Topics Frequencies

The tables on the following pages present all other core topics and supporting topics presented

on the faculty content survey discussed in Sec. 3.1, along with their frequencies. Frequencies of

other core topics are calculated using the total number of respondents (N=75). Supporting topic

frequencies are calculated using the number of respondents selecting that particular core topic.
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Table A.1: Frequencies of “other core topics” and their supporting topics, with the exception of
statistical mechanics (see. Table A.2). Frequencies of other core topics are calculated using the
total number of respondents (N=75). Supporting topic frequencies are calculated using the number
of respondents selecting that particular core topic.

Other Core (& Supporting) Topics % Other Core (& Supporting) Topics %

Blackbody Radiation (N=62) 83 Magnetism (N=49) 65
Photon gases 86 Curie temperature 74
Planck’s law 98 Demagnetization 41
Stefan-Boltzmann law 95 Ferromagnetism 57
Wien’s law 79 Paramagnetism 88

Bosons (N=62) 83 Phases (N=60) 80
Bose-Einstein condensates 81 Equations of state 90
Boson gases 76 Phase changes 92

Chemical Reactions (N=41) 55 Phase diagrams 95
Chemical equilibrium 95 Phase equilibirum 68
Dalton’s law 29 Phase rule 28
Mass action 42 Vaporization & vapor pressure 57
Reaction equilibrium 54 Pressure Diagrams (N=54) 72

Conduction, Convection,
Radiation (N=38)

51 PT diagrams 82

Emission 53 PV diagrams 98
Thermal conductivity 74 PVT diagrams 39

Cooling Techniques (N=22) 29 Processes (N=68) 91
Diatomic Molecules/Gases (N=59) 79 Adiabatic processes 99

Degree of freedom 100 Compressions 97
Rotational modes 95 Expansions 94
Vibrational modes 88 Isobaric (constant pressure) processes 96

Diffusion (N=33) 44 Isochoric (constant volume) processes 93
Diffusive equilibrium 91 Isothermal processes 100
Effusion 15 Reversible & irreversible processes 93
Osmosis 21 Pure Substances (N=35) 47
Random walk 64 Quantum Phenomena (N=56) 75

Fermions (N=63) 84 deBroglie wavelength 64
Fermi energy 89 Pauli exclusion 80
Fermion gas 86 Uncertainty 54
Free electrons 81 Quantization 71

Fluids (N=15) 20 Scaling (N=52) 69
Hydrostatic system 40 Semiconductors (N=8) 11
Superfluids 40 Solids (N=41) 55
Viscosity 20 Debye solids 81

Kinetic Theory (N=54) 72 Einstein solids 95
Collisions & cross sections 46 Phonons 63
Equilibrium constant 33
Mean free path 70
Molecular velocity distribution 93
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Table A.2: Frequencies for the “other core topic” statistical mechanics and its supporting topics.
The frequency for statistical mechanics is calculated using the total number of respondents (N=75).
Supporting topic frequencies are calculated using the number of respondents selecting statistical
mechanics.

Other Core (& Supporting) Topics %

Statistical Mechanics (N=73) 97
Boltzmann factor 95
Degeneracy 86
(In)Distinguishable particles 96
Lagrangian multipliers 15
Microstates & macrostates 100
Multiplicity 90
Partition function 96
Probability 95
Classical distribution 93
Bose-Einstein distribution 89
Gaussian distribution 52
Fermi-Dirac distribution 90
Maxwell-Boltzmann distribution 90
Planck distribution 71



Appendix B

Assessment Objectives for the U-STEP

The following sections present assessment objectives (AOs) for 10 key topical areas identified

from results of the content survey distributed to physics faculty who teach or have taught upper-

division thermal physics. Note that not all thermal physics content areas are contained within

these AOs, but they encompass important themes within these 10 topical areas. Topical areas are

presented in alphabetical order. In some cases, there is overlap between learning goals (e.g., heat

and the first law); in these cases the AO is placed in the section most strongly linked.

These AOs were used to inform development of items for the U-STEP, though not all were

addressed with the assessment items. Note some AOs were used to inform item construction directly

within the targeted content area, while some addressed AOs were identified post-hoc as also being

addressed by items outside of the targeted content area. *AOs addressed by U-STEP items are

indiciated.
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B.1 Energy

Thermodynamic Potentials

Internal Energy

(1) *Students can use the fact that internal energy is a state function to reason about thermal
systems.

(2) *Students can determine internal energy for an ideal gas from equipartition.

(a) *Students can identify that internal energy doesn’t change from initial to final states
for a cycle.

Enthalpy; Gibbs and Helmholtz Free Energy

(3) Students can identify the physical meaning of different terms composing the thermodynamic
potentials.

(a) Students can identify that the TS term in the expressions for Gibbs and Helmholtz
free energies accounts for heat from surroundings.

(b) Students can identify that the PV term in the expressions for enthalpy and Gibbs free
energy accounts for work done by surroundings.

(4) Students can articulate that depending on what macroscopic quantities are held fixed dif-
ferent thermodynamic potentials are minimized.

(a) Students can articulate that enthalpy, Gibbs free energy, and Helmholtz free energy
are used for non-isolated systems that can interact with their surroundings.

Equipartition

(5) *Students can articulate that changes in temperature cause changes in internal energy.

(a) *Students can determine internal energy change given final and initial temperature
and the number of degrees of freedom within a system.

(6) Students can articulate that the internal energy of an ideal gas is determined by the number
of degrees of freedom available to atoms/molecules comprising the gas system.

(7) *Students can use equipartition to determine characteristics of an ideal gas system (e.g.,
whether a gas is monatomic or polyatomic based on number of degrees of freedom).

(8) *Students can identify under what conditions the equipartition theorem applies.
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B.2 Engines & Refrigerators

(1) Students can explain the purpose of heat engines.

(2) Students can define efficiency and/or coefficient of performance.

(3) *Students can explain why heat engine efficiency can never be 100%.

(a) *Students can articulate that creation of entropy is ultimately responsible for the
limits on maximum possible efficiency of a heat engine.

(4) Students can describe how the temperatures of the hot and cold reservoirs impact the
maximum possible efficiency.

(5) *Students can interpret PV and TS diagrams for a heat engine cycle.

(a) Students can determine from the direction of an engine cycle whether the engine is a
heat engine or refrigerator.

(b) *Students can describe what happens in an engine for each leg of a cycle shown in a
PV diagram.

(c) *Students can describe what happens in an engine for each leg of a cycle shown in a
TS diagram.

B.3 Entropy & the Second Law of Thermodynamics

(1) *Students can identify and apply the appropriate expression for entropy to solve problems
based on the physical nature of a system. Example expressions include:

(a) *Classical: dS ≥ dQ/T or dS ≥ CdT/T (equality only holds for reversible processes)

(b) *Statistical: Boltzmann’s equation → S=kBlnΩ

(2) *Students can determine if particular processes will result in change of entropy of a system
or of the universe.

(a) *Students can determine if entropy changes with volume.

(b) Students can determine if entropy changes with particle number.

(c) *Students can determine if entropy changes with energy and heat.

(d) *Students can determine if entropy changes for mixtures of two different gases.

(e) *Students can determine if entropy changes for particular cycles.

(3) *Students can calculate changes in entropy for particular processes.

(a) *Students can calculate change in entropy when volume changes.

(b) Students can calculate change in entropy when particle number changes.

(c) Students can calculate change in entropy when energy within a system changes.

(d) *Students can calculate change in entropy when two different gases are mixed.

(e) Students can calculate change in entropy for particular cycles.
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(4) *Students can use the second law of thermodynamics to determine if a process is physically
possible.

(5) *Students can apply the second law of thermodynamics.

(a) *Students can articulate why the second law cannot be applied to non-isolated systems.

(b) Students can distinguish between reversible and irreversible processes using the second
law.

(c) Students can describe spontaneous processes using the second law.

(i) Students can articulate the relationship between irreversible processes, spontane-
ity, and the second law.

(d) *Students can articulate/identify when invoking the second law is the appropriate
approach for a given situation.

(e) *Students can identify assumptions that must be true in order to productively apply
the second law.

(6) Students can articulate the second law of thermodynamics in terms of microstates and
probabilities.

(7) *Students can use the fact that entropy is a state function to reason about thermal systems.

B.4 Equilibrium

(1) *Students can identify the exchanged quantities involved in different types of equilibrium.

(a) *Students can articulate that systems exchange energy when approaching thermal
equilibrium.

(b) *Students can articulate that systems exchange volume when approaching mechanical
equilibrium.

(c) *Students can articulate that systems exchange particles when approaching diffusive
equilibrium.

(2) *Students can articulate the what quantities become equal for different types of equilibrium.

(a) *Students can articulate that in thermal equilibrium temperatures are equal.

(b) *Students can articulate that in mechanical equilibrium pressures or forces are
equal.

(c) *Students can articulate that in diffusive equilibrium chemical potentials are equal.

(3) *Students can recognize that interacting systems that have sat in contact for a very long
time are in equilibrium.
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B.5 The First Law of Thermodynamics

(1) Students can compare and contrast properties of heat and work.

(2) Students can articulate the physical significance of the first law of thermodynamics.

(a) Students can articulate from the first law of thermodynamics that heat and work are
both forms of energy transfer.

(b) Students can articulate that the first law of thermodynamics accounts for all energy
exchanged (e.g. energy is conserved) during a thermodynamic process.

(3) *Students can use the fact that heat and work can change internal energy when reasoning
about thermal systems.

(a) *Students can articulate and calculate how heat entering/leaving a system contributes
to changes in internal energy.

(b) *Students can articulate and calculate how work done on/by a system contributes to
changes in internal energy.

(c) *Students can articulate that doing work or having heat transfer does not necessitate
that internal energy changes.

(4) *Students can explain and determine how work and heat contribute to changes in internal
energy for different processes.

(5) *Students can determine characteristics of work and heat using the first law of thermody-
namics and PV diagrams.

(a) *Students can invoke the first law of thermodynamics to make conclusions about the
sign of heat given information about internal energy changes and a PV diagram.

(b) *Students can invoke the first law of thermodynamics to determine the magnitude of
heat and direction of heat flow using a PV diagram for an ideal gas.

B.6 Gases

(1) Students can use the ideal gas law to relate changes in pressure, volume, and temperature.

(a) Students can determine how one variable changes when changes in the other two
variables are specified.

(b) Students can identify that information on one or two variables only does not provide
enough information to determine changes in the others.

(2) *Students can determine the number of degrees of freedom for different systems.

(a) Students can articulate where degrees of freedom come from.

(b) Students can articulate that some degrees of freedom get “frozen out” at certain
temperatures.

(c) Students can determine the number of degrees of freedom for monatomic and diatomic
ideal gases.
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(3) Students can use a PV diagram and the ideal gas law to determine temperature in terms
of given variables.

(a) Students can use a PV diagram to determine the change in temperature for a process
using the ideal gas law.

(b) Students can compare quantities using a PV diagram of an isothermal process using
the ideal gas law.

(4) *Students can identify/articulate what assumptions must be true for a gas to be considered
an ideal gas.

(a) Students can articulate the assumptions that must be made to treat a gas as an ideal
gas.

(b) Students can determine when treating a real gas as an ideal gas is appropriate.

B.7 Heat

(1) Students can articulate that adding heat to a system doesn’t always raise temperature of
the system and use this to solve problems.

(a) Students can provide or recognize examples where processes add heat but do not
change temperature.

(2) *Students can articulate that heat is a flow of energy, caused by a temperature difference.

(a) *Students can articulate why heat has no meaning at a single state.

(i) *Students can articulate that since heat flow between two states depends on the
path between those states, it is not a state variable.

(3) *Students can articulate that heat flows spontaneously from higher temperature systems
to lower temperature systems and use this to solve problems.

(a) Students can explain why heat flows spontaneously in a specific direction (e.g., maxi-
mizing entropy).

(4) *Students can use the definition of heat capacity to solve problems.

(a) Students can determine the heat capacity at constant volume CV.

(b) Students can determine the heat capacity at constant pressure CP.

(5) *Students can determine when heat enters or leaves a system. . .

(a) *given physical constraints of a process.

(b) *using a TS diagram.

(c) *using a PV diagram.
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B.8 Statistical Mechanics

(1) *Students can distinguish between microstates and macrostates.

(2) *Students can determine the number of microstates for a system.

(a) Students can use combinatorics to calculate the number of microstates.

(3) *Students can determine the number of macrostates for a system.

(4) Students can articulate the fundamental assumption of statistical mechanics and its signif-
icance.

(5) Students can manipulate large numbers.

(a) Students can identify when a term or factor is small enough to be ignored relative to
other relevant terms in an expression.

(b) Students can apply logarithms to make very large numbers manageable.

(i) Students can articulate the utility of logarithms when working with large and
very large numbers.

(6) Students can distinguish between Bose-Einstein and Fermi-Dirac distributions on a graph.

(7) Students can determine the entropy and Helmholtz free energy of a system using the sys-
tem’s partition function.

(8) Students can determine the partition function for systems with degenerate states.

(9) Students can match terms in a system’s partition function with a state’s particular energy.

(10) *Students can determine and compare probabilities of states.

(a) *Students can determine and compare probabilities of simple systems using counting.

(b) *Students can determine and compare probabilities for a thermodynamic system using
the Boltzmann factor.

(c) *Students can determine and compare probabilities for a thermodynamic system after
an energy shift using the Boltzmann factor.

(11) Students can distinguish between large and small systems.

(a) Students can articulate the thermodynamic limit and when it is applicable.

(b) Students can use graphical representations of states and probabilities to make con-
clusions about the physical nature of a system (e.g., multiplicity graphs or energy
diagrams).
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B.9 Temperature

(1) Students can articulate that objects in thermal equilibrium have the same temperature.

(a) Students can identify that two objects that have been in thermal contact “for a very
long time” must have the same temperature.

(2) *Students can articulate differences between heat and temperature.

(a) *Students can articulate that temperature differences cause heat flow.

(b) *Students can articulate that temperature is a property of a system and heat is not.

(3) Students can use basic kinetic theory to relate temperature and particle speeds.

(4) Students can determine the temperature of a system given entropy as a function of internal
energy or internal energy as a function of entropy.

(5) Students can compare temperatures at two points using an entropy vs. internal energy
graph.

(6) *Students can identify and interpret an isotherm on a PV diagram for an ideal gas.

(7) Students can identify the appropriate temperature scale (e.g. Kelvin, Celsius, Fahrenheit)
for different applications and articulate why they are appropriate.

B.10 Work

(1) *Students can interpret and use PV diagrams to determine work.

(a) *Students can determine the magnitude of work done on/by a system using a PV
diagram.

(b) *Students can determine whether work contributes to energy entering or leaving a
system using a PV diagram.

(c) Students can compare magnitudes of work done on/by a system by comparing areas
under a curve on a PV diagram.

(d) Students can determine how internal energy changes using a PV diagram showing an
adiabatic process.

(2) Students can articulate why work has no meaning at a single state.

(a) Students can articulate that since the amount of work done during a process depends
on the specifics of that process, it is not a state variable.



Appendix C

U-STEP Pilot Demographics

Table C.1: Gender demographics for U-STEP pilot administrations. N-values are presented.

Gender Fall 2019 Spring 2020 Fall 2020
(N=61) (N=169) (N=164)

Man 45 109 122
Woman 13 44 32
Non-binary/Other 3 4 4
Prefer not to Answer 0 12 6

Table C.2: Racial demographics for U-STEP pilot administrations. N-values are presented.

Race Fall 2019 Spring 2020 Fall 2020
(N=61) (N=169) (N=164)

Asian 9 38 27
Underrepresented Minority 6 28 30
White 46 83 97
Prefer not to Answer 0 20 10
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The U-STEP: The Full Assessment
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Item 1

A non-ideal gas system undergoes a process taking it from point 1 to point 2, as indicated on the
diagram below.

Did work contribute to energy entering or leaving the system?

Work caused energy to. . .
A) enter the system
B) leave the system
C) remain unchanged
D) not determinable

because. . . (select all that support your response above)
a) pressure increases
b) pressure decreases
c) volume increases
d) volume decreases
e) internal energy increases
f) internal energy decreases
g) the change in internal energy is unknown
h) the magnitude of work is directly proportional to the area under the curve for all gas

systems
i) the magnitude of work is not directly proportional to the area under the curve for non-ideal

gases
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Item 2

Consider a non-ideal gas that undergoes the cycle below: a → b → c → d → a.

(i) The change in internal energy over one full cycle is. . .
A) 0
B) positive
C) negative
D) not enough information

because. . . (select all that support your response above)
a) internal energy is a state function (i.e., process independent)
b) temperature is a state function (i.e., process independent)
c) the gas underwent one complete cycle
d) the net work done on the system is zero
e) the net work done on the system is non-zero
f) no net heat flowed into or out of the system
g) net heat flowed into or out of the system
h) we would need to know how internal energy depends on pressure and volume

(ii) The magnitude of the net work done on the system is. . .
A) 0
B) 3PV
C) 6PV
D) 8PV
E) 11PV
F) not enough information

(iii) Does net heat enter or leave the system?
A) net heat enters the system
B) net heat leaves the system
C) net heat does not enter or leave the system
D) it depends
E) not enough information
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Item 3

Consider the following statement:

A thermodynamic system has a certain amount of heat,
just like it has a certain temperature, pressure, and volume

This statement is...
A) true
B) false

because... (select all that support your response above)
a) the amount of heat contained in a system can be calculated from the system’s temperature,

pressure, and volume
b) the amount of heat contained in a system can be calculated from changes in the system’s

temperature, pressure, and volume
c) the amount of heat contained in a system can be calculated from a system’s heat capacity

and temperature
d) heat is a quantity exchanged between systems
e) heat is a flow of thermal energy
f) heat is a scalar, like temperature, pressure, and volume
g) heat is not a state function (i.e., heat is not process independent)
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Item 4

Consider a paramagnet consisting of N = 4 dipoles. Each dipole can be in one of two states:
↑ and ↓. All possible orientations of the dipoles are shown below.

(i) Does this system have more microstates or more macrostates?
A) microstates
B) macrostates
C) there are an equal number of microstates and macrostates
D) impossible to determine

(ii) What is the probability of finding the system in the most probable macrostate?
A) 1/16
B) 1/5
C) 1/4
D) 3/8
E) 2/5
F) 1/2
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Item 5

Consider two interacting systems A and B. If System A has 4 microstates and System B has 2
microstates, what is the total number of microstates of the combined system (which includes both
A and B)?

A) 1
B) 6
C) 7
D) 8
E) 15
F) 20

Item 6

Consider two systems in different types of contact moving towards equilibrium. For each type
of contact, determine what quantity is exchanged between the two systems and which quantity
becomes equal in equilibrium. Fill out the table using the word bank below. Ensure your responses
are spelled correctly.

Type of contact: Thermal contact Mechanical contact Diffusive contact

Exchanged Quantity

Equalized quantity
after a very long time:
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Item 7

Consider a system composed of a box of volume V which is divided in half by a removable partition.
One half of the container holds an ideal gas composed of N Helium atoms and the other holds a
gas composed of N Argon atoms. The gases have been sitting for a very long time.

(i) When the partition is removed, the entropy of the system. . .
A) increases
B) decreases
C) remains the same

because... (select all that support your response above)
a) two species of particles are mixing
b) the volume of each gas species increases
c) the volume of the system remains the same
d) the number of accessible states increases
e) the number of accessible states remains the same
f) the number of particles increases
g) the number of particles remains the same
h) it is required to do so by the second law of thermodynamics

(ii) When the partition is removed in the situation above, the magnitude of the change in entropy
takes the form:

|∆S | = αNkB

Given the Sackur-Tetrode equation

S = NkB

{
ln

[
V

N

(
4πm

3h2

U

N

)3/2
]

+
5

2

}
, (D.1)

what is the value of α?
A) 0 (i.e., the entropy does not change)
B) 2
C) 2ln2
D) ln2
E) not enough information
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Item 8

A heat engine is a thermodynamic cycle designed to transform heat into useable work. Consider
one complete cycle of a heat engine operating between two thermal reservoirs. This heat engine
operates using a working substance that expands and compresses during each cycle.

(i) A Carnot engine is a heat engine for which each step of the cycle is a perfectly reversible process.
As a result of one complete cycle of a Carnot engine, the entropy of the universe will. . .
A) increase
B) decrease
C) remain the same
D) not determinable with the given information

because... (select all that support your response above)
a) the second law of thermodynamics does not allow entropy to decrease
b) reversible processes increase entropy
c) reversible processes decrease entropy
d) reversible processes do not change entropy
e) Carnot cycles are not realistic

(ii) Consider an engine that is more efficient than a Carnot engine. As a result of one complete
cycle of this new engine, the entropy of the universe will. . .
A) increase
B) decrease
C) remain the same
D) not determinable with the given information

because... (select all that support your response above)
a) the second law of thermodynamics does not allow entropy to decrease
b) the efficiency does not depend on change in entropy
c) efficiency is dependent only on heat flows and reservoir temperatures
d) this more efficient engine would have a higher entropy change than the Carnot engine
e) this more efficient engine would have a lower entropy change than the Carnot engine
f) Carnot efficiency assumes positive entropy change in the universe
g) Carnot efficiency assumes zero entropy change in the universe
h) Carnot efficiency assumes negative entropy change in the universe
i) Carnot engines are the least efficient engine
j) Carnot engines are the most efficient engine

{continued on next page}
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Item 8 (continued)

What do the laws of thermodynamics imply about this more efficient engine? (select all that apply)
a) One of the thermal reservoirs is at a negative temperature
b) The difference between the thermal reservoir temperatures is very large
c) The difference between the thermal reservoir temperatures is very small
d) The engine is physically possible but would be difficult to achieve in the real world
e) The engine is not physically possible because it is prohibited by the second law
f) The engine is not physically possible because it is prohibited by conservation of energy
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Item 9

You perform an experiment involving two solids (A and B) which are initially at temperatures TC

and TH, respectively (with TC < TH). You place them in thermal contact with each other inside
of an insulated case to isolate them from everything else. Neglect thermal expansion, stresses, etc.

After the objects have come to thermal equilibrium, what can be said about the change in entropy
for Solid A (∆SA), Solid B (∆SB), and the combined system of the two solids?

(i) The entropy for Solid A. . .
A) increases
B) decreases
C) remains the same

because... (select all that support your response above)
a) heat flows from Solid A to Solid B
b) heat flows from Solid B to Solid A
c) change in entropy is proportional to heat flow
d) change in entropy is inversely proportional to change in temperature
e) the temperature of Solid A increased
f) the temperature of Solid A decreased
g) the second law of thermodynamics does not allow entropy to decrease

{continued on next page}
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Item 9 (continued)

(ii) The entropy for Solid B. . .
A) increases
B) decreases
C) remains the same

because... (select all that support your response above)
a) heat flows from Solid A to Solid B
b) heat flows from Solid B to Solid A
c) change in entropy is proportional to heat flow
d) change in entropy is inversely proportional to change in temperature
e) the temperature of Solid B increased
f) the temperature of Solid B decreased
g) the second law of thermodynamics does not allow entropy to decrease

(iii) The entropy of the combined system of the two solids. . .
A) increases
B) decreases
C) remains the same

because... (select all that support your response above)
a) |∆SA| <|∆SB|
b) |∆SA| >|∆SB|
c) |∆SA| = |∆SB|
d) ∆SA>0 and ∆SB<0
e) ∆SA<0 and ∆SB>0
f) ∆SA and ∆SB have the same sign
g) change in entropy is proportional to temperature
h) change in entropy is inversely proportional to temperature
i) the second law of thermodynamics does not allow entropy to decrease
j) the system is isolated
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Item 10

The heat capacity at constant volume CV of an ideal gas in a sealed container is found to be

CV=3NkB ,

where N is the number of particles and kB is Boltzmann’s constant.

How many degrees of freedom do the particles composing the gas have?
A) 1
B) 3
C) 5
D) 6
E) Not enough information
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Item 11

A particle is in configuration A, with the energy of each available state indicated on the left. The
system undergoes a process such that the energy of the states is shifted by ∆E >0 (referred to as
configuration B). (See figure below.)

(i) How does the partition function change due to the energy shift?

The partition function. . .
A) increases
B) decreases
C) remains the same

because... (select all that support your response above)
a) there are the same number of states before and after the energy shift
b) the partition function does not depend on the value of the energy level
c) each term in the partition function gains an e(∆E/kBT) factor
d) each term in the partition function gains an e(-∆E/kBT) factor
e) the states in configuration B would have more energy than the states in configuration A
f) a particle in configuration B would have more energy than a particle in configuration A

{continued on next page}
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Item 11 (continued)

(ii) How does the probability of the particle being in state 2, P(2), change due to the energy shift?

P(2) . . .
A) increases
B) decreases
C) remains the same

because... (select all that support your response above)
a) the particle is more excited
b) the Boltzmann factor increased due to the energy shift
c) the Boltzmann factor decreased due to the energy shift
d) the Boltzmann factor doesn’t depend on energy
e) the partition function increased due to the energy shift
f) the partition function decreased due to the energy shift
g) the partition function doesn’t depend on energy
h) the Boltzmann factor and partition function changed by the same factor
i) the Boltzmann factor changed by a greater factor than the partition function
j) the partition function changed by a greater factor than the Boltzmann factor
k) there are the same number of possible states before and after the energy shift

(iii) How does the ratio of probabilities of being in states 1 and 2 compare between A and B? That
is, how does PA(1)/PA(2) compare to PB(1)/PB(2)?

The ratio PA(1)/PA(2) is. . .
A) less than
B) greater than
C) equal to

PB(1)/PB(2) because. . . (select all that support your response above)
a) probability increases with increasing energy
b) probability decreases with increasing energy
c) state 2 is more probable in configuration A than configuration B
d) state 2 is more probable in configuration B than configuration A
e) each probability changes by the same factor going from configuration A to B
f) the differences between energy levels are the same in both systems
g) the ground state energy changes the same amount as other states’ energies
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Item 12

Consider a system with one accessible state.

What can be said about the system’s entropy?
A) The entropy is 1
B) The entropy is much less than 1
C) The entropy is zero
D) The entropy is a non-zero constant value
E) The entropy changes with time
F) No statements can be made about the system’s entropy

What can be said about the system’s partition function?
A) The partition function is equal to 1
B) The partition function is greater than 1
C) The partition function is between 0 and 1
D) The partition function is composed of one Boltzmann factor
E) The partition function is determined using Boltzmann’s equation
F) No statements can be made about the system’s partition function
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Item 13

Consider the system of a heat engine (not necessarily using an ideal gas) taken through one cycle
(1 → 2 → 3 → 4 → 1) shown in the pressure vs. volume diagram below. Legs 2 → 3 and 4 → 1
are adiabatic processes. Assume the working substance does not undergo a phase change.

(i) On which leg(s) of the cycle does energy enter the system as heat?

Heat enters the system on leg(s). . .
A) 1 → 2
B) 2 → 3
C) 3 → 4
D) 4 → 1

because on this leg (or these legs). . . (select all that support your response above)
a) an adiabatic process occurred, so heat must have entered
b) pressure increases
c) pressure decreases
d) internal energy increases
e) internal energy decreases
f) volume is held constant
g) temperature is directly proportional to pressure
h) heat must enter when temperature increases
i) heat must enter when temperature decreases

{continued on next page}
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Item 13 (continued)

(ii) On which leg(s) of the cycle does energy leave the system as heat?

Heat leaves the system on leg(s). . .
A) 1 → 2
B) 2 → 3
C) 3 → 4
D) 4 → 1

because on this leg (or these legs). . . (select all that support your response above)
a) an adiabatic process occurred, so heat must have left
b) pressure increases
c) pressure decreases
d) internal energy increases
e) internal energy decreases
f) volume is held constant
g) temperature is directly proportional to pressure
h) heat must leave when temperature increases
i) heat must leave when temperature decreases
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Item 14

Consider the temperature (T) vs. entropy (S) diagram below for a single cycle (1→ 2→ 3→ 4→ 1)
of an ideal gas, as shown below.

(i) Describe what happens on the following legs of the cycle with respect to energy going into or
out of the system as heat and work.

On leg 1 → 2. . .
A) heat flows in, work causes energy to flow in
B) heat flows in, work causes energy to flow out
C) heat flows in, work does not cause energy flow
D) heat flows out, work causes energy to flow in
E) heat flows out, work causes energy to flow out
F) heat flows out, work does not cause energy flow
G) no heat flows, work causes energy to flow in
H) no heat flows, work causes energy to flow out
I) no heat flows, work does not cause energy flow

On leg 3 → 4. . .
A) heat flows in, work causes energy to flow in
B) heat flows in, work causes energy to flow out
C) heat flows in, work does not cause energy flow
D) heat flows out, work causes energy to flow in
E) heat flows out, work causes energy to flow out
F) heat flows out, work does not cause energy flow
G) no heat flows, work causes energy to flow in
H) no heat flows, work causes energy to flow out
I) no heat flows, work does not cause energy flow

{continued on next page}
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Item 14 (continued)

(ii) The shaded area within the cycle represents. . .
A) change in internal energy (∆U)
B) work (W)
C) heat (Q)

because. . . (select all that support your response above)
a) ∆U=

∫
TdS

b) Q=
∫

TdS
c) the magnitude of work is equal to the area under a curve
d) the first law of thermodynamics relates W and Q to ∆U
e) Q=0 over the full cycle
f) W=0 over the full cycle



205

Item 15

Which of the following most closely resembles an isothermal process for an ideal gas?

— End of the U-STEP —
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Items Not Included on the Final U-STEP

The following 6 items were included on one or both versions of the assessment piloted in

Spring 2020 and will not be included in the final U-STEP. They are presented here because they

are referenced in Table 4.2.

Item 16

Consider the following statement:

Any object at a given temperature contains a certain amount of heat.

This statement is. . .
A) true
B) false

because. . . (select all that support your response above)
a) heat is a quantity exchanged between systems
b) it is impossible to know exactly how much heat an object contains
c) heat is a flow of thermal energy
d) heat and temperature are the same thing
e) heat is not a state function
f) the amount of heat in an object determines its temperature
g) it does not make sense to talk about heat as a quantity that can be contained
h) other:
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Item 17

During a class discussion about a system composed of weakly coupled simple harmonic oscillators,
one student says:

Even if the system is isolated and in thermal equilibrium, some microstates within
the system are more probable than others because each oscillator has access to

multiple energy states (e.g. can hold different amounts of energy).

Do you agree or disagree?
A) agree
B) disagree

Why? (select one)
A) the Boltzmann factors are different for different oscillators
B) the Boltzmann factors are the same for each oscillator
C) all microstates are equally probable
D) all microstates are not equally probable
E) the oscillators hold different amounts of energy
F) each oscillator must hold the same amount of energy

I know this because. . . (select all that support your response above)
a) the system is isolated
b) the system is in thermal equilibrium
c) probability only depends on temperature
d) the oscillators are modeled as identical
e) otherwise this would violate equipartition
f) some states are not accessible
g) other:



208

Item 18

A monatomic ideal gas compresses according to the pressure (P) versus volume (V) diagram below.

To achieve this change, does heat flow into or flow out of the system, or is no heat required?

Heat flow is. . .
A) into the system
B) out of the system
C) zero
D) impossible to determine

because. . . (select all that support your response above)
a) temperature increased
b) temperature decreased
c) temperature didn’t change
d) ∆U<0
e) ∆U>0
f) ∆U = 0
g) energy flows into the system as work
h) energy flows out of the system as work
i) according to the first law, heat and work determine internal energy change
j) a PV diagram only provides information about work, not heat
k) other:
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Item 19

Which of the following must be true in order for the equipartition theorem to be used for a given
system? (select all that apply)

a) The equipartition theorem always holds, regardless of system conditions
b) The system is isolated
c) The system is in the “thermodynamic limit” (large N)
d) The system is in thermal equilibrium
e) kBT for the system is much, much larger than atomic energy spacing
f) The system undergoes a slow process
g) The system is a gas
h) The system is a solid
i) All system microstates are equally likely
j) All system macrostates are equally likely
k) There are some quadratic degrees of freedom in the energy function
l) There are only quadratic degrees of freedom in the energy function

m) There are no inter-particle interactions
n) Other:

Item 20

Consider a small system in equilibrium with a heat bath at temperature T. The system is isolated
such that no particles can enter or leave the system. The ground state has zero energy and both
excited states have energy ε.

What is the probability of finding a particle in the ground state when T = ε/kB, where kB is the
Boltzmann constant?

A) 1/3
B) 2/3
C) 1

1+e/2

D) 1
1+2/e

E) 1
1+e

F) 1
1+2e
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Item 21

Consider the following statement:

Heat is a property of a system, like temperature, pressure, and volume.

This statement is. . .
A) true
B) false

because. . . (select all that support your response above)
a) heat is a property that is determined by a system’s temperature, pressure, and volume
b) heat is a property that can be changed by changing temperature, pressure, and volume
c) a system contains a finite amount of heat, like pressure or volume
d) heat is a quantity exchanged between systems
e) heat is a flow of thermal energy
f) heat is a scalar, like temperature, pressure, and volume
g) heat is not a state function
h) other:



Appendix E

Item Scoring for the U-STEP

The following tables display the scoring schemes for the items presented in Appendix D.

Multiple-choice (MC) options are in capital letters; multiple-response (MR) options are in lowercase

letters. Correct MC selections are indicated (*). Matrices of scores correspond to coupled, multiple

response MC-MR pairs and are labeled when multiple pairs are present. (See Appendix D for

reference.) An illustration of how to apply these scoring schemes can be found in Figure 4.1. All

items in Table 4.2 are presented; note items 16-21 will not be included in the final U-STEP.

Item 1: Work & PV Diagram
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Item 2: 1st Law & PV Diagram

Item 3: Heat (see Fig.3.7)

Item 4: Statistical Mechanics Micro/Macrostates & Probability
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Item 5: Statistical Mechanics Multiplicity

Item 6: Equilibrium—Thermal, Mechanical, & Diffusive

Item 7: Entropy & Mixing Gases
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Item 8: Entropy & Carnot Engines

Item 9: Entropy & Heat Flow Between Solids

Note for (iii): The top row indicates the MC response patterns across (i), (ii), and (iii).
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Item 10: Energy & Degrees of Freedom

Item 11: Statistical Mechanics (see Fig. 3.9)

Item 12: Statistical Mechanics, Entropy, & the Parittion Function)
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Item 13: Engines, Heat, & Work

Item 14: Engines & Entropy-Temperature Diagram

Item 15: Isotherm of an Ideal Gas
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The following scoring schemes are for items not included in the finalized U-STEP but were piloted
in Spring 2020.

Item 16: Temperature (see Fig. 3.6)

Item 17: The Fundamental Assumption of Statistical Mechanics
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Item 18: Heat & PV-Diagram

Item 19: Energy & Equipartition

Item 20: Statistical Mechanics & Probability of Degenerate States
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Item 21: Heat (see Fig. 3.6)



Appendix F

Differential Item Functioning Results

The following tables present results from differential item functioning (DIF) analyses for

gender and race from the Fall 2020 pilot administration. Performance differences between men and

women (Table F.1); Asian and underrepresented minority (URM) students (Table F.2); Asian and

White students (Table F.3); and White and URM students (Table F.4) are presented for the upper-

and lower-25th percentiles. Statistical significance and effect size are also presented.
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Table F.1: DIF results for the Fall 2020 pilot based on gender, comparing women and men.
Differences in item averages are presented (∆avg = average(women) - average(men)), along with
significance of the difference determined by a Mann-Whitney test (p) and effect size for both the top
and bottom 25th percentiles. Positive ∆avg indicate women performed better on the item; negative
values indicate men performed better. Statistically significant values are idicated in bold*. The
upper 25th percentile was composed of 5 women and 34 men. The lower 25th percentile was
composed of 12 women and 25 men.

Upper 25th Percentile Lower 25th Percentile
Item ∆avg p effect size ∆avg p effect size

1 -0.12 0.37 -0.42 -0.06 0.19 -0.31
2 0.10 0.46 0.44 -0.14 0.04* -0.76
3 0.00 0.69 -0.01 -0.03 0.79 -0.11
4 -0.08 0.52 -0.32 -0.21 0.09 -0.61
5 0.06 0.62 0.26 0.10 0.57 0.20
6 0.02 0.87 0.10 -0.03 0.80 -0.09
7 -0.08 0.41 -0.44 -0.08 0.42 -0.27
8 -0.24 0.06 -0.93 0.09 0.33 0.37
9 -0.17 0.35 -0.88 -0.02 0.78 -0.09
10 -0.08 0.64 -0.24 0.01 0.97 0.02
11 0.02 0.75 0.10 -0.03 0.37 -0.14
12 -0.11 0.63 -0.34 0.09 0.33 0.28
13 0.30 0.01* 1.38 -0.19 <0.01* -0.95
14 0.26 0.16 0.70 0.03 0.97 0.14
15 0.06 0.062 0.26 -0.19 0.28 -0.39
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Table F.2: DIF results for the Fall 2020 pilot based on race, comparing Asian and underrep-
resented minority (URM) students. Differences in item averages are presented (∆avg = av-
erage(Asian) - average(URM)), along with significance of the difference determined by a Mann-
Whitney test (p) and effect size for both the top and bottom 25th percentiles. Positive ∆avg

indicate Asian students performed better on the item; negative values indicate URM students per-
formed better. Statistically significant values are idicated in bold*. The upper 25th percentile was
composed of 8 Asian students and 4 URM students. The lower 25th percentile was composed of 7
Asian students and 9 URM students.

Upper 25th Percentile Lower 25th Percentile
Item ∆avg p effect size ∆avg p effect size

1 0.13 0.60 0.36 0.09 0.44 0.46
2 -0.03 0.73 -0.18 0.07 0.52 0.41
3 0.03 0.28 0.08 -0.03 0.86 -0.12
4 0.19 0.21 0.87 -0.07 0.78 -0.18
5 0.25 0.22 0.91 0.02 1.00 0.03
6 0.02 0.79 0.10 0.06 0.35 0.22
7 -0.16 0.11 -1.18 -0.18 0.14 -0.74
8 -0.08 0.61 -0.36 -0.10 0.27 -0.50
9 0.05 0.60 0.35 0.06 0.59 0.27
10 0.13 0.69 0.31 -0.19 0.44 -0.42
11 0.16 0.31 0.56 0.06 0.87 0.38
12 0.00 0.92 0.00 -0.13 0.50 -0.42
13 0.19 0.29 0.76 -0.07 0.70 -0.28
14 -0.08 0.85 -0.24 0.12 0.04* 1.13
15 0.00 N/A N/A 0.21 0.43 0.43
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Table F.3: DIF results for the Fall 2020 pilot based on race, comparing Asian and White students.
Differences in item averages are presented (∆avg = average(Asian) - average(White)), along with
significance of the difference determined by a Mann-Whitney test (p) and effect size for both
the top and bottom 25th percentiles. Positive ∆avg indicate Asian students performed better on
the item; negative values indicate White students performed better. No statistically significant
differences appeared in this analysis. The upper 25th percentile was composed of 8 Asian students
and 29 White students. The lower 25th percentile was composed of 7 Asian students and 16 White
students.

Upper 25th Percentile Lower 25th Percentile
Item ∆avg p effect size ∆avg p effect size

1 0.07 0.59 0.21 0.05 0.48 0.22
2 0.07 0.67 0.32 0.00 1.00 -0.01
3 0.05 0.31 0.16 0.02 0.77 0.08
4 0.00 1.00 -0.01 0.08 0.60 0.27
5 0.03 0.65 0.21 0.01 1.00 0.02
6 -0.05 0.67 -0.25 -0.01 0.89 -0.03
7 0.01 0.95 0.04 -0.09 0.44 -0.36
8 -0.04 0.66 -0.14 -0.16 0.10 -0.60
9 0.05 0.67 0.25 0.07 0.48 0.27
10 -0.02 0.89 -0.07 -0.04 0.84 -0.11
11 -0.04 0.66 -0.18 0.07 0.43 0.32
12 -0.06 0.70 -0.19 -0.04 1.00 -0.14
13 0.04 0.68 0.19 -0.05 0.53 -0.25
14 0.21 0.16 0.57 0.06 0.06 0.29
15 0.10 0.37 0.37 0.05 0.84 0.11
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Table F.4: DIF results for the Fall 2020 pilot based on race, comparing White and under-
represented minority (URM) students. Differences in item averages are presented (∆avg =
average(White) - avgerage(URM)), along with significance of the difference determined by a Mann-
Whitney test (p) and effect size for both the top and bottom 25th percentiles. Positive ∆avg indicate
White students performed better on the item; negative values indicate URM students performed
better. No statistically significant differences appeared in this analysis. The upper 25th percentile
was composed of 29 White students and 4 URM students. The lower 25th percentile was composed
of 16 White students and 9 URM students.

Upper 25th Percentile Lower 25th Percentile
Item ∆avg p effect size ∆avg p effect size

1 0.06 0.80 0.19 0.04 0.95 0.21
2 -0.10 0.50 -0.41 0.07 0.40 0.38
3 -0.03 0.68 -0.09 -0.05 0.61 -0.19
4 0.19 0.15 0.81 -0.16 0.37 -0.44
5 0.22 0.11 0.92 0.01 1.00 0.01
6 0.07 0.38 0.38 0.07 0.27 0.26
7 -0.17 0.12 -0.81 -0.09 0.44 -0.31
8 -0.04 1.00 -0.15 0.07 0.67 0.25
9 0.00 0.68 0.01 -0.01 0.98 -0.05
10 0.15 0.44 0.44 -0.15 0.44 -0.33
11 0.20 0.17 0.85 0.00 0.42 -0.02
12 0.06 0.57 0.20 -0.09 0.43 -0.25
13 0.15 0.30 0.64 -0.02 0.80 -0.08
14 -0.30 0.14 -0.82 0.06 0.95 0.34
15 -0.10 0.54 -0.35 0.15 0.46 0.32



Appendix G

Item Response Theory Statistics

The tables on the following pages present IRT analysis results, as discussed in Ch. 4. Table G.1

presents Rasch analysis results for the three thresholds considered—40%, 50%, and 60%—including

difficulties and fit statistics for each item. The remaining tables present fits statistics for the three

thresholds when misift items are removed.
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Table G.2: Rasch analysis fit statistics for the 40% threshold assessment with item 14 removed.
(Original fit statistics for full assessment shown for reference.) Root mean square error of approxi-
mation (RMSEA) values are indicated as Eexcellent (RMSEA<0.01) where applicable. Statistically
significant fit statistics (determined by p) at the 0.05 level are indicated in bold*. Large S-X2 val-
ues with statistically significant p indicated model misfit (i.e., the model does not fit the data well).
Note: only items misfit in the full assessment are removed for this analysis.

No Items Removed Item 14 Removed
Item S-X2 RMSEA p S-X2 RMSEA p

1 8.47 0.019 0.389 13.37 0.075 0.064
2 13.60 0.066 0.093 10.98 0.059 0.139
3 7.91 0.000E 0.443 9.30 0.045 0.232
4 8.17 0.012 0.417 10.94 0.059 0.141
5 10.80 0.046 0.214 13.37 0.064 0.100
6 14.21 0.069 0.076 16.63 0.081 0.034*
7 2.76 0.000E 0.948 4.04 0.000E 0.775
8 4.43 0.000E 0.729 11.25 0.050 0.188
9 7.34 0.000E 0.501 7.26 0.000E 0.509
10 6.49 0.000E 0.593 8.95 0.027 0.347
11 13.75 0.077 0.056 12.69 0.071 0.080
12 9.11 0.029 0.333 3.75 0.000E 0.879
13 12.04 0.056 0.149 10.25 0.042 0.248
14 18.19 0.088 0.020* removed
15 8.35 0.016 0.400 6.40 0.000E 0.603



228

Table G.3: Rasch analysis fit statistics for the 50% threshold assessment with items 1 and 7
individually removed. (Original fit statistics for full assessment shown for reference.) Root mean
square error of approximation (RMSEA) values are indicated as Eexcellent (RMSEA<0.01) where
applicable. Statistically significant fit statistics (determined by p) at the 0.05 level are indicated
in bold*. Large S-X2 values with statistically significant p indicated model misfit (i.e., the model
does not fit the data well).

No Items Removed Item 1 Removed Item 7 Removed
Item S-X2 RMSEA p S-X2 RMSEA p S-X2 RMSEA p

1 14.72 0.082 0.040* removed 12.25 0.080 0.057
2 9.86 0.038 0.275 7.77 0.000E 0.456 8.43 0.018 0.393
3 13.02 0.062 0.111 13.16 0.063 0.106 4.53 0.000E 0.806
4 7.52 0.000E 0.482 4.39 0.000E 0.734 8.50 0.036 0.291
5 7.79 0.000E 0.454 5.50 0.000E 0.704 7.59 0.000E 0.474
6 12.13 0.056 0.145 9.46 0.033 0.305 8.25 0.014 0.409
7 15.17 0.085 0.034* 15.60 0.076 0.048* removed
8 8.15 0.011 0.419 7.62 0.000E 0.471 9.29 0.031 0.318
9 8.59 0.000E 0.476 7.70 0.000E 0.463 8.85 0.025 0.355
10 12.81 0.061 0.119 10.17 0.041 0.254 7.43 0.019 0.386
11 7.79 0.000E 0.454 5.82 0.000E 0.667 5.45 0.000E 0.606
12 5.46 0.000E 0.707 4.52 0.000E 0.718 6.62 0.000E 0.578
13 16.20 0.079 0.040* 20.98 0.100 0.007* 18.16 0.088 0.020*
14 15.26 0.097 0.018* 10.17 0.041 0.253 14.90 0.083 0.037*
15 7.48 0.000E 0.486 6.11 0.000E 0.527 6.16 0.000E 0.629
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Table G.4: Rasch analysis fit statistics for the 50% threshold assessment with items 13 and 14
individually removed. (Original fit statistics for full assessment shown for reference.) Root mean
square error of approximation (RMSEA) values are indicated as Eexcellent (RMSEA<0.01) where
applicable. Statistically significant fit statistics (determined by p) at the 0.05 level are indicated
in bold*. Large S-X2 values with statistically significant p indicated model misfit (i.e., the model
does not fit the data well).

No Items Removed Item 13 Removed Item 14 Removed
Item S-X2 RMSEA p S-X2 RMSEA p S-X2 RMSEA p

1 14.72 0.082 0.040* 13.41 0.087 0.037* 11.94 0.078 0.063
2 9.86 0.038 0.275 9.79 0.049 0.201 5.25 0.000E 0.630
3 13.02 0.062 0.111 8.04 0.006E 0.429 17.17 0.094 0.016*
4 7.52 0.000E 0.482 9.62 0.048 0.211 14.73 0.072 0.065
5 7.79 0.000E 0.454 7.13 0.000E 0.523 4.40 0.000E 0.820
6 12.13 0.056 0.145 8.82 0.025 0.358 11.56 0.052 0.172
7 15.17 0.085 0.034* 13.85 0.067 0.086 9.05 0.042 0.249
8 8.15 0.011 0.419 8.81 0.040 0.267 4.04 0.000E 0.775
9 8.59 0.000E 0.476 9.43 0.033 0.307 8.85 0.025 0.355
10 12.81 0.061 0.119 16.80 0.082 0.032* 8.33 0.016 0.402
11 7.79 0.000E 0.454 7.61 0.023 0.368 5.05 0.000E 0.653
12 5.46 0.000E 0.707 8.44 0.018 0.391 8.03 0.030 0.330
13 16.20 0.079 0.040* removed 17.18 0.094 0.016*
14 15.26 0.097 0.018* 9.08 0.043 0.247 removed
15 7.48 0.000E 0.486 7.74 0.025 0.356 5.51 0.000E 0.598
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Table G.5: Rasch analysis fit statistics for the 50% threshold assessment with items 1, 7, 13, and
14 removed simultaneously. (Original fit statistics for full assessment shown for reference.) Root
mean square error of approximation (RMSEA) values are indicated as Eexcellent (RMSEA<0.01)
where applicable. Statistically significant fit statistics (determined by p) at the 0.05 level are
indicated in bold*. Large S-X2 values with statistically significant p indicated model misfit (i.e.,
the model does not fit the data well).

No Items Removed Items 1, 7, 13, & 14 Removed
Item S-X2 RMSEA p S-X2 RMSEA p

1 14.72 0.082 0.040* removed
2 9.86 0.038 0.275 5.41 0.000E 0.493
3 13.02 0.062 0.111 2.90 0.000E 0.822
4 7.52 0.000E 0.482 8.42 0.035 0.297
5 7.79 0.000E 0.454 18.19 0.112 0.006*
6 12.13 0.056 0.145 8.45 0.050 0.207
7 15.17 0.085 0.034* removed
8 8.15 0.011 0.419 2.72 0.000E 0.843
9 8.59 0.000E 0.476 9.41 0.046 0.225
10 12.81 0.061 0.119 9.14 0.043 0.243
11 7.79 0.000E 0.454 5.79 0.000E 0.447
12 5.46 0.000E 0.707 9.62 0.061 0.142
13 16.20 0.079 0.040* removed
14 15.26 0.097 0.018* removed
15 7.48 0.000E 0.486 9.48 0.060 0.148
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