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A NATURAL AUTONOMOUS FORCE ADDED IN THE
RESTRICTED PROBLEM AND EXPLORED VIA STABILITY

ANALYSIS AND DISCRETE VARIATIONAL MECHANICS

Natasha Bosanac∗, Kathleen C. Howell†, and Ephraim Fischbach‡

With improved observational capabilities, an increasing number of binary systems have been
discovered both within the solar system and beyond. In this investigation, stability analy-
sis is employed to examine the structure of selected families of periodic orbits near a large
mass ratio binary in two dynamical models: the circular restricted three-body problem and
an expanded model that incorporates an additional autonomous force. Discrete variational
mechanics is employed to determine the natural parameters corresponding to a given refer-
ence orbit, facilitating exploration of the effect of an additional three-body interaction and
the conditions for reproducibility in the natural gravitational environment.

INTRODUCTION

With improved observational capabilities and techniques, an increasing number of binary systems have
been discovered both within the solar system, in the form of asteroid pairs, and in extrasolar systems of
planets and/or stars. In fact, approximately 16% of the asteroids that have been catalogued are members of
binary or triple systems, none of which have yet been explored by a spacecraft.1 Additionally, it is estimated
that approximately 23% of detected exoplanets orbit within the vicinity of binary stars.2 In each of these
types of systems, many of the known binaries exhibit mass ratios larger than the Sun-planet and planet-
moon combinations commonly examined within the solar system. Although the relative masses of the bodies
in these binaries may be inferred via observational data or measurements, inaccuracies occur when each
component is difficult to resolve individually. Since the dynamical environment in the vicinity of any binary
system is inherently chaotic, such uncertainties may significantly affect the motion of a nearby small body.

In this investigation, periodic motions in the vicinity of a large mass ratio binary system are first explored
within the context of the Circular Restricted Three-Body Problem (CR3BP). Although the dynamical envi-
ronment near a binary star system may be modified by the presence of additional contributions such as grav-
itational radiation, the CR3BP offers a reasonable approximation for preliminary analysis of the motion of a
nearby exoplanet. Meanwhile, for a binary asteroid, the restricted problem provides a simple, autonomous
approximation to a higher-order gravitational field that may govern the motion of a spacecraft or a moonlet.3

In each of these sample binary systems, the paths followed by comparatively small bodies are influenced by
periodic orbits, which contribute to an underlying structure by attracting, bounding or repelling trajectories in
their vicinity. The identification of stable orbits near a binary star system, for instance, may aid in modeling
exoplanet motion that persists for a long time interval. Unstable orbits, however, could be used in a prelim-
inary analysis of matter ejected from or captured by an asteroid pair. Stability analysis can be employed to
identify suitable periodic orbits in each of these sample applications. Furthermore, the evolution of stability
along a family of orbits also supports locating bifurcations, indicating structural changes or the formation of
new families.
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An alternative dynamical model for the binary system is also derived based on the CR3BP, but extended to
incorporate an additional autonomous term in the potential function, providing a Modified Circular Restricted
Three-Body Problem (MCR3BP). Given the absence of experimental data gathered within the vicinity of a
binary star, for example, it is possible that the gravitational field within this system might not be accurately
modeled solely using pairwise gravitational forces. In this investigation, the presence of an additional three-
body interaction is considered. Many-body forces are not an entirely new concept; in fact, the importance of
three-body interactions in accurately modeling force fields on the atomic scale is well established in nuclear
physics.4 On a much larger scale, the motion of a small body orbiting a binary system serves as a new and
interesting application for determining the characteristics of a three-body interaction in orbital dynamics. The
additional three-body interaction, scaled using a constant k, is assumed to depend inversely on the product of
the distances between the three bodies: the closer the bodies, the stronger the three-body interaction.5 In this
modified dynamical model, families of orbits still exist, but may evolve with the value of k in a manner that
does not mimic the effect of the mass ratio of the binary, µ, thus providing potentially new solutions.

To visualize the stability across a given family of orbits, at various values of the natural parameters, a
two-dimensional representation, similar to an exclusion plot, is employed. Exclusion plots are often used in
physics to depict constraints on combinations of parameters.6 This concept has been extended to represent the
evolution of the stability of a family of periodic orbits near binary systems for various values of the natural
parameters, µ and k.7 From Floquet’s theorem, reciprocal pairs of eigenvalues are frequently employed
for qualitative classification of orbital stability. Through analysis of the stability index, i.e., the sum of each
reciprocal pair of eigenvalues, three cases emerge: stability, positive instability and negative instability.5 Each
periodic orbit can, therefore, be represented on a composite stability plot as a point colored by the type of
stability it exhibits. The resulting stability representation offers a simple visualization of the orbital stability
of members across a given family, thereby enabling the detection of any structural changes, or bifurcations.
Although these figures resemble Benest’s stability diagrams, they differ primarily through their inclusion
of the orbital period as a representative quantity.7,8 This investigation presents exclusion plots for selected
simply-periodic families at mass ratios in the range, µ = [10−6, 0.50] for the CR3BP, which have been
explored in depth in previous works by the authors.7 In addition, composite stability representations are
employed to visualize and summarize changes in the orbital stability across a given family when a three-body
interaction is added to the dynamical environment of a binary system. These plots are constructed at a fixed
value of the mass ratio, µ = 0.30, for varying values of the scaling constant, k. Structural changes in selected
families due to the presence of an additional autonomous force are then straightforwardly identified via a
comparison between the corresponding stability plots.

Changes in the physical configuration of periodic orbits along a family, identified via composite stability
representations, are then explored using discrete variational mechanics. In astrodynamics, this computational
technique is typically used to determine optimal paths for a spacecraft under the influence of a control force.9

In this investigation, however, the underlying formulation is applied to the search for values of the system pa-
rameters, µ and k, that correspond to the existence of a natural trajectory (i.e., no control forces) resembling
a given reference path. The resulting constrained optimization problem delivers locally optimal solutions
that supply approximations to trajectories in a wide variety of scenarios in both the CR3BP and MCR3BP,
potentially avoiding some of the inherent sensitivities of a multiple shooting method when any natural pa-
rameters in a chaotic system are poorly known. Comparison between the geometries of the computed and
reference orbits can then aid in identifying and exploring any potential effects of an additional autonomous
force contribution. Although a three-body interaction is modeled in this investigation, a similar analysis can
be performed for an alternative force that is both autonomous and derivable from a potential function, such
as a time-averaged quantity or a higher-order gravitational term for a body fixed in a given coordinate frame.

DYNAMICAL MODELS

To facilitate exploration of the dynamical structure in the vicinity of a binary system, the CR3BP is em-
ployed. This dynamical model reflects the motion of a massless particle under the influence of the point-mass
gravitational attractions of two primaries. In addition to the pairwise gravitational interaction typically em-
ployed to approximate the dynamics near a binary system, an autonomous term is added to the potential
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function of the CR3BP, producing the dynamical model in the MCR3BP. For this investigation, this addi-
tional autonomous potential contribution takes the form of a three-body interaction, as explored by Bosanac,
Howell and Fischbach.10 The MCR3BP is formulated similar to the traditional CR3BP, with the notation
and general configuration consistent between the two models.5 The form of the augmented potential in the
MCR3BP influences the equations of motion, yielding a model that still admits an integral of the motion, and
allows the existence of families of periodic orbits. Particular solutions, in the form of equilibrium points and
zero velocity curves, are also available in this augmented model and still establish bounds on the motion.5

Circular Restricted Three-Body Problem

By convention, the body of interest, P3, moves in the vicinity of the larger and smaller primaries, P1 andP2,
with each body Pi possessing a mass mi. In the CR3BP, a rotating coordinate frame, x̂ŷẑ, is introduced and
oriented relative to an inertial frame, X̂Ŷ Ẑ. In the frame that rotates with the motion of the two primaries, the
location of P3, measured with respect to the barycenter, is written in terms of the nondimensional coordinates
(x, y, z). Length quantities are nondimensionalized such that the distance between P1 and P2 is equal to a
constant value of unity. In addition, time is nondimensionalized such that the mean motion of the primaries
is equal to unity, while the characteristic mass quantity, m∗, is the sum of the masses of the primaries.
The characteristic mass quantity yields nondimensional mass values for P2 and P1 equal to µ and (1 − µ),
respectively. In the rotating frame, the equations of motion for the spacecraft are written as:

ẍ− 2ẏ =
∂U∗

∂x
, ÿ + 2ẋ =

∂U∗

∂y
, z̈ =

∂U∗

∂z
(1)

where the pseudo-potential function, U∗ = 1
2 (x2 + y2) + 1−µ

r1
+ µ

r2
; then, r1 =

√
(x+ µ)2 + y2 + z2 and

r2 =
√

(x− 1 + µ)2 + y2 + z2. This autonomous pseudopotential function can be exploited to develop the
energy integral that corresponds to the equations of motion as formulated in the rotating frame, and is equal
to CJ = 2U∗ − ẋ2 − ẏ2 − ż2. This energy integral is the well-known Jacobi constant in the CR3BP.11

Modified Circular Restricted Three-Body Problem

Given a system configuration consistent with the CR3BP, derivation of the differential equations governing
the motion of P3 in the MCR3BP requires the definition of the potential function. In the rotating frame, the
scalar potential corresponding to P3, per unit mass, is assumed to consist of the following terms:

U3 =
1− µ
r1

+
µ

r2︸ ︷︷ ︸
pairwise potential

+
k

r1r2︸︷︷︸
three-body potential

(2)

where k is the constant that scales the three-body potential term. Although the three-body interaction is as-
sumed to depend inversely on the product of the distances between all three bodies, the distance between P1

and P2 is equal to a constant value of unity in this model. Accordingly, only r1 and r2 appear in the denom-
inator of the three-body potential term. Since the magnitude and sign of the constant k are unconstrained,
it is assumed that k can be selected as either positive, negative or zero. When the value of the constant k is
equal to zero, the potential in the MCR3BP reduces to the CR3BP potential; if k is positive, the three-body
interaction is attractive, while a negative value of the coefficient corresponds to a repulsive interaction.

From the definition of the potential function in Eq. (2), the equations of motion for P3 are derived and a
constant of motion is subsequently identified. The equations of motion in terms of the rotating frame are then
written using the potential function as:

ẍ− 2ẏ =
∂U∗

k

∂x
, ÿ + 2ẋ =

∂U∗
k

∂y
, z̈ =

∂U∗
k

∂z
(3)

where the pseudopotential function is U∗
k = 1

2 (x2 + y2) + 1−µ
r1

+ µ
r2

+ k
r1r2

.5 Since this pseudopotential is
autonomous, a constant energy integral, Ck, exists and is equal to Ck = 2U∗

k − ẋ2− ẏ2− ż2, reducing to the
Jacobi constant in the CR3BP when k = 0.

3



Equilibrium Points

In the absence of an analytical solution to the nonlinear differential equations, significant insight into the
dynamical environment emerges from particular solutions. In the rotating frame of the CR3BP, there exist
five equilibrium points, labelled Li, for i = 1, 2, 3, 4, 5 and their relative locations are identified by green
dots in Figure 1(a) for a system with a mass ratio of µ = 0.30. At this mass ratio, for k = [−0.20, 0.70], the
five planar Li still exist and are perturbed from their locations in the CR3BP, except for L4 and L5 which no
longer exist within the plane of motion of the primaries for k < −0.1985. For positive values of k, the planar
equilibrium points are numerically computed and located in the MCR3BP in Figure 1(a) using blue dots,
while red dots are used to depict each Li for negative values of k. Purple dots correspond to two additional
equilibrium points that exist over the small range of values k ≈ [−0.1985,−0.1839].12 Analysis of Figure
1(a) reveals that, for an increasingly attractive three-body interaction, i.e., larger positive values of k, the
collinear equilibrium points are located farther from P2.10 In addition, the triangular equilibrium points, L4

and L5, are no longer located at the vertices of equilateral triangles as in the CR3BP. For negative values of
k, however, the equilibrium points each exist closer to P2. To understand the appearance and disappearance
of an additional pair of equilibrium points, labelled L4b and L5b, over a small range of negative values of
k, a summary of the stability of each equilibrium point is useful. In Figure 1(b), the two colored bars for
each of the labelled Li reflect a qualitative measure of the linear stability of each of the two planar modes.
Specifically, blue portions along a bar indicate oscillatory modes, while red reflects the presence of a stable
and unstable pair of eigenvalues at the corresponding values of k. Across the range k = [−0.20, 0.70],
indicated along the horizontal axis, this figure reveals that the stability of L2 and L3 remains qualitatively
unchanged. For L1, however, the oscillatory mode, which contributes to the existence of the planar Lyapunov
family in the CR3BP, undergoes a pitchfork bifurcation at k ≈ −0.1839. In addition to a change in the
stability of L1 due to this bifurcation, L4b and L5b are created and each possess one pair of imaginary
eigenvalues. As k becomes increasingly negative, the locations of L4b and L5b, indicated by purple dots
in Figure 1(a), symmetrically evolve away from L1 on the x-axis, approaching L4 and L5 until the critical
value of k ≈ −0.1985, when the pairs of equilibrium points meet. While these equilibrium points represent
constant solutions to the equations of motion, additional types of steady-state solutions also exist: periodic
orbits, quasi-periodic orbits, and chaotic motion.13 Each of these motions can be examined using concepts
developed in dynamical systems theory.10

P2 P1 

L4 

L1 L2 L3 

L5 

k = 0 
k = 0.70 

k ≈ -0.1985 L4b 

L5b 

(a) Location of planar equilibrium points
in the CR3BP (green) and the MCR3BP
for: k > 0 (blue dots), k < 0 (red dots),
and −0.1985 < k < −0.1839 (purple).

L3 

L2 

L1 

L4 / L5 

L4b / L5b 

k 
(b) Stability of two planar modes for each equilibrium point as
a function of k, with blue indicating oscillatory modes and red
corresponding to a pair of stable and unstable eigenvalues.

Figure 1: Equilibrium points in the MCR3BP.

PERIODIC ORBITS

Of particular interest in this investigation are planar, periodic solutions, which lie within the plane of
motion of the two primaries and repeat after a period, T . In fact, the dense set of periodic orbits in both the
CR3BP and the MCR3BP, exist in continuous families and form the underlying structure of the phase space:
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a stable orbit attracts or bounds trajectories in its vicinity, while trajectories near an unstable orbit flow away
from the orbit.14 In the vicinity of stable periodic orbits are quasi-periodic orbits, which trace out the surface
of a torus. This boundedness may be approximately retained in a higher-fidelity gravitational environment.
Unstable orbits, however, may also supply transfer mechanisms between various regions of the phase space.
Thus, identifying periodic orbits and evaluating their stability delivers significant insight into the underlying
structures in their vicinity. Periodic orbits can encircle either one or both primaries in any direction in the
rotating frame. For clarity, some definitions are useful. At any instant, a trajectory as viewed in the rotating
frame with an angular momentum vector with respect to one of the primaries in the +ẑ direction is defined as
prograde.5 Correspondingly, a state along a retrograde path possesses an angular momentum vector directed
in the−ẑ direction. In the rotating frame, a periodic orbit can appear to wind about one of the primaries in an
entirely prograde or retrograde direction, or alternate between the two directions as it encircles the primaries.

Stability

The stability of a periodic orbit is typically deduced from the monodromy matrix, defined as the state
transition matrix propagated for precisely one period of the orbit.15 Given a reference planar periodic orbit,
the solution that approximates a nearby arc is determined using the linear variational equations of motion. The
solution describing the relative neighboring arc is written as δx̄(t) = Φ(t, 0)δx̄(0) where δx̄(0) is the vector
variation with respect to the initial state along the reference path and Φ(t, 0) is the state transition matrix,
essentially a linear mapping from t0 = 0 to a time t.16 Via Floquet theory, each planar periodic orbit, which
exists in the full three-dimensional space, possesses a monodromy matrix, Φ(T, 0), that can be decomposed
into six eigenvalues, λi, and their associated eigenvectors.16 Two of the eigenvalues are equal to unity due
to periodicity. The other four nontrivial eigenvalues, which exist in reciprocal pairs due to the symplectic
and time-invariant properties of the state transition matrix, may be represented in the form λ = a ± bi, in
terms of two real numbers, a and b. For a planar orbit, one nontrivial pair of eigenvalues corresponds to an
in-plane mode, while the other corresponds to out-of-plane stability. A stability index, s, can also be defined
as the sum of each pair of reciprocal eigenvalues.5 Depending on the value of a and b, three specific types of
eigenvalues emerge: real, complex, and imaginary. From the Lyapunov definition of stability, a periodic orbit
that exhibits stability possesses a pair of complex or imaginary eigenvalues, λ1, λ2 = a± bi, and, therefore, a
real-valued stability index between s = −2 and s = +2. A pair of reciprocal eigenvalues, |λ1| = a > 1 and
|λ2| = 1/a < 1, however, correspond to instability.15 Unstable periodic orbits can, therefore, be identified
by at least one stability index with a magnitude greater than two. Since the stability of a planar periodic orbit
reflects the behavior of solutions within its vicinity, the parameter s reduces the complexity in visualizing the
stability of orbits along a family at various values of the mass ratio.

Bifurcations

In the CR3BP, periodic orbits exist in families that, for a given mass ratio, depend upon the energy constant,
Ck. Varying Ck, the natural parameter, directly modifies the vector field and, therefore, its infinite set of
solutions. In dynamical systems, a bifurcation may occur as a natural parameter is varied and can result
in either a change in the stability of the periodic orbits along a family, the formation of a new family of
periodic orbits, or termination of the current family.17 Since the stability of a periodic orbit reflects the
behavior of nearby trajectories, local bifurcations are detected through the pairs of nontrivial eigenvalues of
the monodromy matrix corresponding to each periodic orbit along a family, reflected by the parameter s as it
passes through any critical values.

Although many possible bifurcations exist, two types emerge within the dynamical environment that is the
focus of this investigation: tangent and period-multiplying bifurcations. A family of periodic orbits undergoes
a tangent bifurcation when the qualitative stability characteristics of its orbits change as its eigenvalues pass
through the critical values λ1 = λ2 = +1. Simultaneously, the stability index passes through s = +2.
Depending on the type of tangent bifurcation, the resulting change in stability may be accompanied by the
creation of families of orbits with a similar period or by the intersection with another family of orbits. During
a period-multiplying bifurcation of multiplicative factor m, a family of period-mq orbits emerges from a
family of period-q orbits. Here, q is the integer corresponding to the number of times a periodic orbit encircles
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a reference location. Employing properties of the state transition matrix, this bifurcation is detected when a
pair of eigenvalues from the period-q orbits along a family pass through the first and (m − 1)-th complex
roots of unity, and when the stability index passes through the critical value, s = 2 cos

(
2π
m

)
. The special case

of a period-doubling bifurcation occurs when the stability index passes through s = −2. This bifurcation can
be accompanied by a change in stability if the corresponding pair of eigenvalues split off onto the real axis.

COMPOSITE STABILITY REPRESENTATION

To visualize the evolution of the orbital stability across a family, a simple composite representation is
constructed. The in-plane and out-of-plane stability indices across a family of orbits at a given mass ratio
and a value of the scaling constant, k, each form a single curve when plotted against the orbital period.
Often, the stability index along these curves exhibits a number of turning points and a large range of values.
Accordingly, simply overlaying these complex curves at various values of a natural parameter can hinder
any exploration of the stability characteristics along the family. A simplified representation of the stability
in a two-parameter space, such as (µ, T ) or (k, T ), however, enables clearer visualization, and aids in the
examination of the evolution of the family. Although only a short summary is presented in this paper, these
composite stability representations are discussed in detail and explored within the context of the CR3BP by
Bosanac, Howell and Fischbach for a variety of orbit families.7

The composite stability representation employed in this investigation is constructed by simply assessing a
qualitative measure of the stability along a family. Since the eigenvalues of the monodromy matrix reflect a
linear approximation of the dynamics, they can only be used to qualitatively determine the type of stability
exhibited by a periodic orbit in the nonlinear dynamical environment in either the CR3BP or MCR3BP. In
particular, each orbit along a family is classified using either the in-plane or the out-of-plane stability index, s:
stable, for s = [−2, 2]; positive unstable, for s > 2; and negative unstable, for s < −2. The point representing
a single periodic orbit in the two-parameter space, (µ, T ) or (k, T ), can, therefore, be colored by the type of
stability it exhibits. In this investigation, a stable orbit is assigned the color blue, a positive unstable orbit
is colored red and negative instability is represented by the color purple. Since multiple periodic orbits may
possess the same orbital period, points corresponding to stable periodic orbits are brought to the front of each
plot, as they correspond to the motion of interest in this investigation. Thus, for a given value of µ, a complex
curve encompassing a large range of values of s is reduced to a single line that is overlaid for various mass
ratios within a specified range, forming a useful, two-dimensional composite stability representation.

To demonstrate the construction of a composite stability representation, consider a simply-periodic ret-
rograde family of orbits in the CR3BP that exists within the exterior region, far from both primaries. The
corresponding stability representation for a portion of this family possessing periods below 20 nondimen-
sional time units, is depicted in Figures 2(a) and 2(b) for the in-plane and out-of-plane stability, respectively.
To facilitate visualization of the evolution of a family across a large range of mass ratios, a mixed linear-log
scale is employed to represent µ on the vertical axis. Specifically, mass ratios in the range µ = [0.10, 0.50]
are plotted via a linear scale, while mass ratios in the range µ = [10−6, 0.10) are displayed using a log scale.
The boundary between these two scales is indicated by a black dashed line. For comparison, selected systems
with known mass ratios are also indicated on the plots that represent the three-dimensional stability index,
such as in Figure 2(b). In addition, sample periodic orbits are displayed in the margins at selected values of
the natural parameters and period to reflect the configuration of family members in physical space as viewed
in the rotating frame. Recall that stable orbits are located within the blue regions of these composite repre-
sentations, while negative instability is indicated by purple structures and positive unstable orbits are located
within the red regions. Colored structures, therefore, reflect the stability of periodic orbits along a family, as
well as the occurrence of some bifurcations. If the family is closed or reduces to an equilibrium point, for
example, these “dynamical barriers” are represented via gray shading, which indicates that the family cannot
extend into the shaded region of the (µ, T ) or (k, T ) space. To limit the computational time and effort, mem-
bers of each family are only computed until they pass through a predefined maximum period, pass within
some radius of either primary, or become difficult to compute numerically. Since the CR3BP and MCR3BP
are inherently nonlinear, it may not be possible to accurately predict the stability across any portions of the
family that are not computed. Accordingly, any white regions of space, at a given value of µ or k, indicate
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Period

µ

µ

(a) In-plane stability.

(b) Out-of-plane stability.

Figure 2: Stability representation for retrograde orbits in the exterior region for µ = [10−6, 0.5] and k = 0.
Orbital stability is indicated via color: stable (blue), positive unstable (red), and negative unstable (purple).

that the family may not be computed in its entirety. Due to the possible existence of turning points along a
family, periodic orbits that are not computed may possess periods either within or beyond the colored regions.
For computed portions of a family, however, a composite stability representation allows for straightforward
visualization of the stability across a family for varying values of a natural parameter, such as µ or k.

CONSTRAINED OPTIMIZATION USING DISCRETE VARIATIONAL MECHANICS

To supplement the use of composite stability representations in observing changes in the periodic orbits
along a family, discrete variational mechanics is employed to explore the effect of an additional force con-
tribution that is both autonomous in the rotating frame of the CR3BP and may be derived from a potential
function. In this investigation, it is of interest to determine if the effect of varying k, the scaling constant cor-
responding to a three-body interaction with an assumed form, is reproducible in the CR3BP by varying the
mass ratio, µ. Such analysis may reveal if the effect of an additional term is unique, enabling identification
of periodic solutions that may not exist in the CR3BP. To explore the effect of an autonomous force term,
discrete variational mechanics is leveraged to determine a combination of natural parameters, (µ, k), that
supplies a trajectory which closely resembles a given reference path. As opposed to collocation or a multiple-
shooting method, which require the continuous dynamics of a system be exactly satisfied at a discrete set
of nodes or along multiple trajectory arcs, the discrete variational methodology begins with a discretization
of the action integral.18 A discrete version of Hamilton’s principle, which involves the variation only at a
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finite set of nodes along a discretized path, is then used to constrain the motion within a dynamical system.9

This method does not require integration, and may alleviate the effect of numerical sensitivities induced by a
poor initial guess. To establish a framework for this methodology, some background is offered, followed by
a discussion of the application of discrete variational mechanics to the construction of natural trajectories in
both the CR3BP and the MCR3BP.

Variational Principles for Continuous Time Systems

Prior to a discussion of discrete variational concepts, fundamental variational principles in Lagrangian me-
chanics are summarized within the context of continuous time systems. First, consider a mechanical system
which can be described by a Lagrangian, L(q(t), q̇(t)), for the generalized coordinates q and generalized
velocities q̇. Integrating this continuous Lagrangian along a path followed by the system from a time t0 = 0
to a subsequent time t yields the following functional, typically identified as the action integral:19

A =

∫ t

t0

L(q(t), q̇(t))dt (4)

By Hamilton’s principle, any actual path q(t) that could be followed in a holonomic system results in a
stationary action integral with respect to path variations, for fixed endpoints.20 Mathematically, this statement
is expressed as:

δA = δ

∫ t

t0

L(q(t), q̇(t))dt =

∫ t

t0

(
∂L

∂q
− d

dt

(
∂L

∂q̇

))
δqdt = 0 (5)

For this statement to be true for all nonzero variations along the path q(t), the integrand of Eq. (5) must equal
zero, thereby recovering the continuous time Euler-Lagrange equations:

∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0 (6)

Thus, any natural trajectory followed by a continuous time system must satisfy the Euler-Lagrange equations,
a well-known concept in Lagrangian mechanics.19

Discrete Variational Mechanics

In the absence of an analytical solution for the motion of a system, only a discretely sampled path is
available, requiring modification of the continuous variational concepts in Lagrangian mechanics to accom-
modate discrete time as investigated by Marsden and West.21 Sampling of a natural trajectory inherently
occurs during numerical integration, or even observation. Consider, for this investigation, discrete sampling
occurring N times at constant intervals, of length h, for a total time t = (N − 1)h. Then, a continuous path
q(t) is approximated by a discrete path q̃ described by the set of generalized coordinates qi = q̃(ih) where
i = 0, 1, ..., N − 1.21 Velocities along the path are replaced by finite difference approximations, such as
q̇i ≈ (qi+1−qi)

h , which converge to the true velocity along a nonlinear path as h approaches zero. Analogous
to the theory associated with continuous time systems, a discrete time Lagrangian can then be defined as
Ld(qi, qi+1, h), approximating the integral of the true Lagrangian, L(q(t), q̇(t)), over the i-th time interval of
length h as the system travels from qi to qi+1.9 Since Ld(qi, qi+1, h) is calculated as a numerical integral, an
appropriate quadrature rule must be selected to approximate the continuous dynamics of the system.21 Once
an expression for Ld(qi, qi+1, h) is defined, a discrete action can then be constructed using the summation of
the discrete Lagrangian over all N − 1 time intervals, such that:

Ad =

N−2∑
i=0

Ld(qi, qi+1, h) ≈
∫ t

t0

L(q(t), q̇(t))dt (7)

Applying Hamilton’s principle to this expression for the discrete action, and using summation by parts, a
discrete time counterpart to Eq. (5) is available:

δAd = δ
N−2∑
i=0

Ld(qi, qi+1, h) =

N−2∑
i=1

[(
∂Ld(qi, qi+1, h)

∂qi
+
∂Ld(qi−1, qi, h)

∂qi

)
δqi

]
= 0 (8)
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From this expression, for the discrete action to be stationary with respect to all path variations, with fixed
endpoints, the discrete Euler-Lagrange equations must be satisfied across each time interval [ti, ti+1]:

∂Ld(qi, qi+1, h)

∂qi
+
∂Ld(qi−1, qi, h)

∂qi
= 0 (9)

for i = [1, N − 2]. Note that this form of the discrete Euler-Lagrange equations is only true for systems with
no external forcing, as is the case for the dynamical model employed in this investigation. Straightforward
modifications to incorporate forcing terms into these discrete equations, however, have been presented and
used by numerous authors in previous works.9

Formulation of Constrained Optimization Problem

The concepts from discrete variational mechanics provide a set of constraints, in the form of the discrete
Euler-Lagrange equations, that can be used in a constrained optimization problem to determine a discrete
path minimizing a given objective function. In a continuous time system, this objective function takes the
form of an integral over the path q(t) from time t0 to t, given by J(q, q̇) =

∫ t
t0
C(q(t), q̇(t))dt, for some

specified function C. However, this infinite dimensional functional J(q, q̇) can be transformed into a finite
dimensional objective function by replacing the integral with a summation of discrete cost functions, each
evaluated at the N nodes along the discrete path:

Jd(q̃) =

N−2∑
i=0

Cd(qi, qi+1, h) ≈
∫ t

t0

C(q(t), q̇(t))dt (10)

Since this approximation implies that the discrete cost function at the i-th node is a numerical integral of the
continuous function C over the i-th time interval, an appropriate quadrature rule can be selected to produce
an expression for Cd(qi, qi+1, h).9 Of course, the order of the selected quadrature rule influences the rate of
convergence of the error between Jd(q̃) and J(q, q̇) as the time interval is reduced.

Any discrete path that optimizes this objective function must also satisfy the discrete Euler-Lagrange equa-
tions, which reflect the dynamics of the system. A finite dimensional constrained optimization problem is,
therefore, summarized as:

min Jd(q̃) =

N−2∑
i=0

Cd(qi, qi+1, h)

subject to the constraints from Eq. (9), reflecting the system dynamics:

∂Ld(qi, qi+1, µ, k, h)

∂qi
+
∂Ld(qi−1, qi, µ, k, h)

∂qi
= 0 i = 1, ..., N − 2

At each of the interior nodes, the resulting constrained optimization problem can affect the two position
variables in this planar problem, qi = (xi, yi). Furthermore, h, µ, and k are all treated as variables to allow
modification of both the orbital period and the dynamical environment, resulting in a total of 2N + 3 design
variables. Additional position and/or momentum boundary conditions can also be applied.9 To enforce
both symmetry and periodicity along an approximate path, an extra node is added to the discrete path and
position boundary conditions are employed. Next, equality constraints can be applied to h, µ, or k depending
upon the application. The resulting constrained optimization problem, formulated using discrete variational
mechanics, is straightforward to apply to the computation of a natural trajectory in the MCR3BP, assuming a
constant time interval between each node and a constant value of each of the natural parameters, µ and k.

To construct the constraint relationships that enforce natural motion in either the CR3BP or MCR3BP, a
discrete Lagrangian, approximating the integral of the exact Lagrangian over each of the N − 1 segments
between two nodes, must first be defined. In this investigation, the numerical integral supplying the discrete
Lagrangian is approximated using the midpoint rule:

Ld(qi, qi+1, h) = hL

(
qi + qi+1

2
,
qi+1 − qi

h

)
(11)
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where Ld is constructed using the average of the position variables evaluated at both the left and right bound-
aries of the i-th segment, with a velocity that is calculated using a first-order finite differencing. For the
MCR3BP, the continuous Lagrangian of the system is straightforwardly written as:

L(x, y, ẋ, ẏ) =
1

2
(ẋ− y)2 +

1

2
(ẏ + x)2 +

1− µ
r1

+
µ

r2
+

k

r1r2
(12)

reducing to the Lagrangian of the CR3BP for k = 0. Once this continuous Lagrangian is employed to evaluate
the discrete Lagrangian across each segment using the midpoint rule in Eq. (11), the resulting expressions
for Ld over the i-th and (i-1)-th segments are differentiated and combined using Eq. (9) to form the discrete
Euler-Lagrange equations, which must be satisfied for all discrete path variations, given fixed endpoints.

The objective function to be minimized must also be defined. In the examples in this investigation, the
desired solution should resemble a given reference path. To formulate a useful cost function, note that the
motion along a periodic orbit can be influenced by the stability and existence of equilibrium points, sometimes
even forming loops in their vicinity. As the value of k or µ is varied, these equilibrium points may appear at
different locations in the configuration space. Accordingly, a converged solution may resemble a reference
path in its general behavior and appearance, even if it does not possess exactly the same path in the (x, y)
configuration space. A continuous cost function for a point located at q = (x, y) is, therefore, defined using
the distance from a corresponding point along the reference path, qref = (xref , yref ), such that C(x, y) =
(x − xref )2 + (y − yref )2. A discrete cost function, Cd(qi, qi+1, h), is then determined by applying the
midpoint rule to this continuous cost function. The resulting objective function, constructed by summing
Cd(qi, qi+1, h) across all segments, is used in the sequential quadratic programming algorithm available in
MATLAB’s fmincon routine to produce a converged solution that is located close to the reference path in a
dynamical environment described by the natural parameters, (µ, k).

APPLICATION OF STABILITY ANALYSIS AND DISCRETE VARIATIONAL MECHANICS:
EXPLORING THE EFFECT OF AN ADDITIONAL AUTONOMOUS FORCE CONTRIBUTION

By combining composite stability representations with the capability to reproduce a desired trajectory
at specified values of the natural parameters, µ and k, via discrete variational mechanics, it is possible to
explore the effect of an additional three-body interaction force. First, composite representations of the in-
plane and out-of-plane stability indices are employed to examine the evolution of selected families in each of
the following cases: varying µ within the range µ = [10−6, 0.50], while k is held fixed at a value of zero; and
allowing the strength of the three-body interaction to vary within the range k = [−0.20, 0.70], for µ = 0.30.
Since the orbital stability within and out of the plane can be decoupled for planar periodic orbits, the two
corresponding stability indices are isolated and examined separately in each case. Using each composite
stability representation, qualitative changes across each family are identified using colored structures that can
reveal changes in the stability. Orbits of interest that are identified using these exclusion plots are isolated
and input to the constrained optimization problem. This process is used to explore selected orbits and assess
their existence in the MCR3BP as unique, or their potential to be approximately reproduced in the CR3BP
by perturbing the mass ratio. The examples considered in this investigation involve two simply-periodic
families: large retrograde orbits in the exterior region, and prograde orbits about the largest primary.

Retrograde Circumbinary Orbits

If observational data suggests that a moonlet, for example, follows a circumbinary orbit in a binary asteroid
system, encircling both primaries, a simply-periodic family of retrograde orbits that exist in the exterior region
in the CR3BP may be of interest. The composite representations in Figures 2(a) and 2(b) are used to assess
the effect of changes in the mass ratio on the evolution of this family. First, consider the in-plane stability
along this family of orbits. Note that these simply-periodic retrograde orbits do not collapse to a singularity.
Instead, this family originates at its minimum energy value within the homoclinic tangles of the manifolds of
the L2 Lyapunov orbits.7 Below periods of approximately T = 11.3 nondimensional time units, the majority
of members of this family are stable within the plane of motion of the primaries, as indicated by the large
blue regions in Figure 2(a). There does, however, exist a thin purple band of negative instability centered
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about T = 9.42, where the stability curve plunges below s = −2, creating two planar, period-doubling
bifurcations that persist over the range of mass ratios considered in this investigation. The blue region to the
right of this purple structure is bound on its other side by a red region. Accordingly, the retrograde exterior
family undergoes a variety of planar period-multiplying bifurcations as the stability index encompasses the
range of values s = [−2, 2] within this blue region. As the orbital period is increased, this evolution of the
stability index corresponds to a pair of complex conjugate eigenvalues moving from -1 to +1, along the unit
circle. Beyond a period of approximately 11.3 time units, the simply-periodic retrograde exterior family is
predominantly unstable in the plane of motion of the primaries, for large values of µ. There is, however, a
thin blue and purple structure that indicates the presence of stable members over a small range of high orbital
periods, as the stability curve plunges below s = −2. Since this stable region is curved, and does not form a
vertical band, the values of the orbital period corresponding to these stable members is considered sensitive
to changes in large values of the mass ratio. As an example of the utility of such analysis, if the mass ratio
of a binary is inaccurately known, it may be difficult to determine if, for a fixed orbital period between 16.84
and 19.37 nondimensional time units, simply-periodic retrograde motions resembling orbits in this family -
that exhibit in-plane stability - could be followed by a small body for a long time interval.

For large mass ratios in the range µ = [0.10, 0.50], the three-dimensional stability associated with the
simply-periodic retrograde family of orbits in the exterior region exhibits alternating structures that appear
at almost regular intervals along the orbital period. By examination of Figure 2(b), members of this family
are predominantly stable in a direction that is perpendicular to the plane of motion of the primaries. There
are, however, thin regions of negative and positive instability that are embedded within this figure. The
alternating configuration of these structures, which appear to nearly repeat approximately every 2π time
units in the orbital period, indicates that the out-of-plane stability index is oscillatory with respect to the
orbital period. This oscillation in the three-dimensional stability across the family appears correlated to the
presence of loops that form along the orbits in this retrograde exterior family near L4 and L5: as the orbital
period is increased by 2π time units, the orbits in this family form additional nested loops near the triangular
equilibrium points in a fractal manner. In fact, each new set of loops that forms near L4 and L5 corresponds to
the orbit completing an additional revolution around the system barycenter when viewed in an inertial frame.
This observation appears consistent for values of µ where the period of orbits in this family grows large.

Using the evolution of the retrograde exterior family in the CR3BP as a reference, the effect of a three-body
interaction can be explored using the same type of stability analysis by varying the value of k, while holding
the mass ratio fixed at µ = 0.30. Figures 3(a) and 3(b) depict the composite stability representation for values
of k within the range k = [−0.20, 0.70]. Since the two stability indices can be decoupled for planar periodic
orbits, initially consider the in-plane stability along the family. As k is increased in the positive direction,
and the three-body interaction is increasingly attractive, the negative unstable periodic orbits that exist in the
purple structure near T = 9.42 encompass a wider range of orbital periods. In comparison to the CR3BP,
this effect occurs for a decreasing mass ratio close to µ = 0.30. A similar expansion in the range of periods
corresponding to negatively unstable orbits also occurs for decreasing values of k. Thus, the variation in the
range of orbital periods corresponding to each region of stable or unstable orbits due to a nonzero k does not
appear to exactly mimic the effect of modifying the mass ratio value around µ = 0.30. Despite the varying
size of these blue and purple structures, their consistent presence for orbital periods below approximately 10
nondimensional time units suggests that the three-body interaction may not qualitatively impact the in-plane
stability curve of this family at low orbital periods. Similarly, the thin blue and purple structures that occur
at higher orbital periods, inherited from the CR3BP at k = 0, seem to persist for the majority of k values
represented in the composite stability representation. At large negative values, however, the thin blue structure
at periods close to 25 nondimensional time units, seems to undergo a significant change in the corresponding
orbital periods for a small perturbation in the value of k. In fact, this structural change is also apparent in the
out-of-plane stability representation in Figure 3(b) as it impacts both the thickness and location of the purple
and red structures. This significant change in the stability indices suggests that the physical characteristics of
the orbits themselves may be influenced by the presence of a three-body interaction force.

Observing the physical configuration of the retrograde exterior orbits in the margins of the composite
stability representations for the MCR3BP reveals some change in the appearance of the orbits as k varies. In

11



(a) In-plane stability.

Retrograde)Ext)–)mu=0.3)3D)

(b) Out-of-plane stability.

Figure 3: Stability representation for the selected family of retrograde orbits in the exterior region for
k = [−0.20, 0.70] and fixed mass ratio, µ = 0.30. Orbital stability is indicated via color: stable (blue),
positive unstable (red), and negative unstable (purple).

Figure 3(a), low period orbits plotted to the left of the composite stability representation appear similar in
their near-circular shape and large size, presumably because they exist far from the two primaries. However,
the difference in the evolution of the retrograde exterior family between the CR3BP and MCR3BP is apparent
through examination of orbits with a larger period. In the CR3BP, Figure 2(a) reveals that, as the orbital period
increases along the family for large values of the mass ratio, the orbits evolve towards the primaries and form
loops in the vicinity of L4 and L5. Increasing the orbital period even further, in multiples of 2π, additional
loops form near these two equilibrium points in a fractal manner. In the MCR3BP, however, both L4 and
L5 no longer exist at the vertices of equilateral triangles with respect to the two primaries. Accordingly, the
loops that form along these retrograde orbits appear shifted in configuration space, as evident in the margins
of 3(a). This effect of the three-body interaction can be attributed to the varied locations of the equilibrium
points themselves. Furthermore, for large negative values of k close to k = −0.20, these loops tend to exhibit
‘pointed tips’ which evolve towards L1, as evident in the zoomed-in view in Figure 4. To understand this
significant change in the physical configuration of the retrograde exterior family, recall that a straightforward
stability analysis for the collinear equilibrium points assuming large negative values of k reveals a change in
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the stability of L1. In fact, at the critical value of k ≈ −0.1839, the pair of eigenvalues corresponding to the
planar oscillatory mode inherited from the CR3BP undergoes a stability change, resulting in L1 possessing
only stable and unstable modes, and causing the disappearance of the L1 Lyapunov family. These changes to
the equilibrium points and, therefore, their manifolds and the underlying dynamical structure of the MCR3BP,
influence the physical configuration of this family of orbits. In fact, this observation suggests that the effect of
the three-body interaction on these retrograde exterior orbits at large negative values of k may not be exactly
reproduced within the CR3BP, but, rather, mimicked. Accordingly, discrete variational mechanics is used to
explore the effect of this additional force and if it is approximately reproducible in the CR3BP.

P1 P2 L1 

Figure 4: Loops forming along the
retrograde exterior family for a large
repulsive three-body interaction, with
pointed tips directed towards L1 for
µ = 0.30 and k = −0.20.

To test the validity of using discrete variational mechanics to pre-
dict the existence of periodic orbits in the MCR3BP, a known orbit
with ‘pointed tips’ is recovered, along with the corresponding val-
ues of the natural parameters µ and k. First, an orbit of period
T = 26.26 nondimensional time units is selected from the bottom
right of the composite stability representation in Figure 3(a). This
orbit is known to exist in the MCR3BP with a mass ratio µ = 0.30
and k = −0.20. As depicted in Figure 5(a), this orbit is discretized
into 500 nodes using a constant time step, with each node repre-
sented as a black dot. In this figure, the primaries are located using
gray filled circles, while the equilibrium points in the MCR3BP are
identified via red filled diamonds. The plotted discrete reference
path is supplied as an initial guess for the constrained optimization
problem, along with the natural parameters µ = 0.32 and k = 0.01,
which represent a poor guess for µ and k. While the value of the
mass ratio is constrained to possess a value of µ = 0.30, both the
time step h and value of k are allowed to vary. The converged solu-
tion, overlaid on the reference path in Figure 5(b) using blue circles,
returns a discrete path that appears to closely match the original reference path, to within a small numerical
error. In addition, the locally optimal solution that minimizes the distance to the reference path returns natural
parameters with the values µ = 0.30 and k = −0.1996, which are close to the exact values corresponding
to the true periodic orbit. As the constant time interval between neighboring nodes is reduced further, the
returned value of k approaches the true value of k = −0.20. In addition, note that the converged discrete
path does not exactly reflect a periodic orbit in the continuous time system, but rather an approximation. The
returned solution does, however, lie sufficiently close to the original periodic orbit, thereby demonstrating the
use of discrete variational mechanics in determining the natural parameters of a dynamical system that may
enable a desired type of motion to exist.

Another example of the utility of discrete variational mechanics in supplementing the exploration of au-
tonomous dynamical systems involves the search for a periodic orbit in the CR3BP that approximately re-
sembles a given orbit existing in the MCR3BP. Such analysis may be useful in exploring and isolating the
effect of a three-body interaction, or any other autonomous force contribution. Consider the same retrograde
exterior orbit existing in the MCR3BP for µ = 0.30 and k = −0.20, with an orbital period of T = 26.26.
This reference path is discretized into 500 nodes and depicted in Figure 6(a) using black dots. Given that
k possesses a nonzero value below the critical value of k = −0.1985, neither of the triangular equilibrium
points exist. Of course, since the selected orbit exhibits pointed loops in the vicinity of the location at which
these equilibrium points would exist in the CR3BP, this particular orbit from the MCR3BP may not be exactly
reproducible in the CR3BP. Rather, the goal of this example is to determine if an orbit resembling this refer-
ence path in terms of its general geometry exists in the CR3BP, as well as the required value of µ. To achieve
this goal, the discrete path in Figure 6(a) is supplied as a reference path for the constrained optimization
problem formulated using discrete variational mechanics. When searching for a locally minimum solution
that resembles this periodic orbit, the value of k is held constant at k = 0, consistent with the CR3BP, while
the time step (and, therefore, the orbital period), the mass ratio and the path itself are all treated as variables.
Without a lengthy continuation process in both natural parameters, which may not necessarily be successful,
the value of µ at which a similar family of orbits might exist in the CR3BP is unknown. Furthermore, the
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Figure 5: Recreating an orbit in the retrograde exterior family: (a) reference path with µ = 0.30, k = −0.20,
and (b) discrete path for µ = 0.30, k ≈ −0.1996.

P1 P2 P1 P2 P1 P2 

(a) (b) (c) 

Figure 6: Recreating a retrograde exterior orbit: (a) reference path (black) for µ = 0.30 and k = −0.20,
(b) closely reproduced in the CR3BP for µ = 0.50 by a discrete path (blue), and (c) verified to exist near a
continuous periodic orbit (green) in the CR3BP at µ = 0.50.

addition of the three-body interaction directly modifies the acceleration field, and, therefore, the velocities
and periods of any orbits with a similar geometry in the CR3BP. To accommodate this effect, 500 unique
initial guesses are input to the constrained optimization problem that is implemented using the sequential
quadratic programming algorithm available in Matlab’s fmincon routine. Each initial guess is constructed
using the reference path with a small amount of random noise applied to the position variables at each node.
In addition, each initial guess for µ is randomly selected to lie somewhere in the range µ = [0.10, 0.50], while
the initial guess for the time step variable, h, lies within 25% of the value of h along the reference path. The
constrained optimization problem is then solved, with k = 0 incorporated as an equality constraint, for each
of these 500 guesses and the best locally optimal solution is selected.

The constrained optimization problem as formulated via discrete variational mechanics is leveraged to
explore the selected retrograde exterior orbit that exists in the MCR3BP and deduce if it is approximately
reproducible in the CR3BP. The best converged solution is plotted with blue dots and overlaid on the original
reference orbit (gray) in Figure 6(b). Note that the primaries and equilibrium points indicated in this plot
correspond to µ = 0.50, the mass ratio at which the converged solution exists in the CR3BP. This locally
optimal solution also possesses a period of T = 25.89, which is slightly lower than the orbital period of
the reference orbit. Although the computed solution is an approximation, it is straightforward to verify that
this discrete path exists close to a continuous periodic orbit at µ = 0.50 in the CR3BP. A nearby continuous
periodic orbit, computed using a multiple shooting algorithm, is overlaid in green in Figure 6(c) and closely
matches the computed discrete path. As expected, the presence of the three-body interaction impacts both
the position and velocity along an orbit. Correspondingly, the converged orbit does not exactly follow the
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same path as the reference orbit. Furthermore, the loops around L4 and L5 for this converged solution in
the CR3BP encompass the location of L1, rather than exhibiting pointed tips that are characteristic of the
reference path. This inconsistent behavior of the orbit close to L1 can likely be attributed to a difference in
the stability of the collinear equilibrium point for the dynamical environments corresponding to the reference
and computed solutions. In fact, the periodic orbit for µ = 0.50 and k = 0, plotted in green in Figure
6(c), encircles L1 in a direction and shape that resembles the L1 Lyapunov family itself. Recall that the L1

Lyapunov family of orbits does not exist for µ = 0.30 and k = −0.20. Accordingly, the ‘pointed tips’ along
the reference orbit in the MCR3BP are a reflection of the absence of any oscillatory modes about L1. Thus,
while the exact characteristics of the motion along the reference orbit are not reproducible in the CR3BP,
a similar geometry is certainly achieved. This observation, resulting from the complementary use of both
composite stability representations and discrete variational mechanics, suggests that while large retrograde
orbits of a given geometry may be inherited from the CR3BP, the presence of a three-body interaction may
significantly affect their characteristics relative to the primaries in a binary system. Such key differences may
supply insight into the presence of any unique effects of the selected autonomous force contribution.

Prograde Circumstellar Orbits Encircling the Largest Primary

Figure 7: Sample members of prograde
orbits in ‘family 1’ and ‘family 2’.

One type of simply-periodic circumstellar motion that encircles
the larger primary, P1, includes two families of prograde orbits.
These two families, plotted in Figure 7 at a sample mass ratio equal
to µ = 0.30, are labelled ‘family 1’ and ‘family 2’. The location
of the largest primary is marked by a gray filled circle and the
direction of motion for both families is indicated by the arrows.
Although each family evolves with the mass ratio in an intriguing
manner that is evident in their composite stability representations
and can be clarified using the stable and unstable manifolds ema-
nating from the L1 Lyapunov orbits, only ‘family 1’ is explored in
this investigation.7

To examine the evolution of ‘family 1’ in the CR3BP, the in-
plane stability index is first examined over various mass ratios. As
evident in the stability representation in Figure 8(a), the family
becomes closed (with the upper and lower bounds on the period
indicated by the gray shaded regions) and disappears as the mass
ratio approaches the value of µ ≈ 0.26284. The in-plane stability
curves for selected mass ratios close to this critical µ value are
plotted as a function of the period in Figure 9, with dotted lines
located at s = +2 and s = −2. In this figure, it is clear that, for
each period, two orbits exist in ‘family 1’ for the corresponding values of µ. As the mass ratio is further
decreased towards the critical value, the minimum along the stability curve rises and passes through s = −2,
causing the two period-doubling bifurcations at s = −2 to eventually disappear, with a stable periodic orbit
existing at each value of the period across the family. Thus, small blue structures appear at the bottom of the
composite stability representation in Figure 8(a). Eventually, the two tangent bifurcations at the minimum
and maximum period of the family collide, and the family no longer exists. The physical interpretation
of this collision of bifurcations has been explored in previous work using the manifolds of orbits in the
L1 Lyapunov family.7 Assuming that the dynamical environment near a binary star is adequately modeled
by the CR3BP and that close approaches to the primaries are allowable, the disappearance of ‘family 1’
at the critical µ value suggests that an exoplanet would not exhibit the behavior typical of this particular
family near a binary star with a mass ratio below µ ≈ 0.26284. There could, however, be some type of
prograde motion that an exoplanet orbiting P1 could exhibit for mass ratios below µ ≈ 0.26284, as long as
the observed or hypothesized motion is not consistent with orbits belonging to ‘family 1’. In addition to the
termination of ‘family 1’, the composite stability representations reveal a discontinuity in the stability indices
corresponding to ‘family 1’ at another critical mass ratio: µ ≈ 0.4232. As explored in previous work, two
tangent bifurcations at s = +2, occurring in both ‘family 1’ and ‘family 2’ meet as µ approaches this critical
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(a) In-plane stability.

809 Lundia 

(b) Out-of-plane stability.

Figure 8: Stability representation for ‘family 1’ in the CR3BP, comprised of prograde orbits about P1.
Orbital stability is indicated via color: stable (blue), positive unstable (red), and negative unstable (purple).

Period

Figure 9: In-plane stability index for ‘family 1’ at selected values of the mass ratio near µ = 0.26284.

16



mass ratio, yielding a collision of bifurcations.7 For mass ratios near µ = 0.4232, branches along each of the
prograde families are exchanged, resulting in a structural change along the family in the CR3BP.

Since ‘family 1’ exists in the CR3BP for µ = 0.30, the evolution of this family of orbits is also examined
in the MCR3BP. The resulting composite stability representations appear in Figures 10(a) and 10(b) for the
in-plane and out-of-plane stability indices, respectively. Although this investigation considers values of the
constant scaling factor representing the three-body interaction within the range k = [−0.20, 0.70], this family
only appears to exist for k ≈ [−0.0139, 0.1866]. To understand these bounds on the value of k, first consider
the case of a repulsive three-body interaction. With increasingly negative values of k, this family becomes
closed and the two tangent bifurcations occurring at the minimum and maximum orbital periods approach
each other. These tangent bifurcations collide at k ≈ −0.0139, and the family disappears. Considering both
the in-plane and out-of-plane stability, comparison of Figures 8 and 10 indicates that the effect of a repulsive
three-body interaction on the existence and stability of this prograde family of orbits is qualitatively similar
to the effect of decreasing the mass ratio below µ = 0.30. When the three-body interaction is attractive,
however, two discontinuities appear in the colored structures for the planar stability in Figure 10(a). These
discontinuities are not numerical artifacts; rather, they reflect the occurrence of structural changes along the
family. The first discontinuity occurs at k ≈ 0.01, with a larger blue region of stable periodic orbits appearing
at lower orbital periods. As in the CR3BP, this family often possesses two members at a given value of the
orbital period. At k ≈ 0.01, a small purple region also appears from behind the red and blue structures
that are brought to the front in the plot, indicating that the family might no longer be closed. To explain
these discontinuities, analysis of the in-plane stability index along ‘family 1’ reveals that by varying k, a
local minimum in the stability index approaches the critical value s = +2 from above. At a critical value
of k, a collision of tangent bifurcations occurs between two separate families as they exchange branches,
thereby resulting in a discontinuity in the composite stability representation. As k is increased further, the
blue structures corresponding to stable periodic orbits become smaller. Once k reaches another critical value,
k ≈ 0.058, the family can be confirmed to be closed and a discontinuity appears in the blue structure,
corresponding to periodic motion that is stable with respect to planar perturbations at higher orbital periods.
In fact, the stable region encompasses a wider range of orbital periods than at lower values of k and even
in the CR3BP for mass ratios close to µ = 0.30. Further increasing the strength of the attractive three-
body interaction, the two tangent bifurcations at the minimum and maximum orbital periods approach and
eventually collide at k ≈ 0.1866, causing the family to cease to exist. Examination of the out-of-plane
stability in Figure 10(b) for positive values of k reveals a significant departure from the effect of varying the
mass ratio. In comparison to the CR3BP, a larger portion of the family is stable to perturbations normal to the
orbital plane for the values of k > 0 at which it exists. In addition, the structures corresponding to unstable
orbits encompass a smaller range of periods. Together, these observations suggest that the evolution of the
selected prograde family about P1 appears quite sensitive to the presence of a three-body interaction.

Further insight can be gained from the plots of selected orbits in the margins of Figure 10(a), as viewed in
the rotating frame. The physical configuration of orbits in this prograde family appear to be dependent upon
the sign of k. For instance, orbits along this family tend to exhibit loops near L4 and L5. When the three-body
interaction is attractive and the family disappears, the loops along the limiting orbit appear nearly above and
below the largest primary. However, as the value of k becomes increasingly negative towards k = −0.0139,
the limiting orbit possesses loops that are skewed towards P2. This difference in the appearance of the limiting
orbits at the minimum and maximum values of k for which this family exists can be attributed to both the
change in the dynamical field due to the presence of the three-body interaction and the sequence of branch
exchanges occurring during each collision of bifurcations as k increases or decreases away from zero.

Given the sensitivity of the evolution of the prograde orbits in ‘family 1’ to changes in µ and k, discrete
variational mechanics is used to supplement the exploration of this family by recreating an orbit at a mass
ratio not encompassed by this family in the CR3BP, and allowing k to be nonzero. By employing the discrete
variational formulation to approximately recreate this type orbit, the use of a lengthy continuation process in
both natural parameters, which may be unsuccessful or computationally expensive, is avoided. Recall that
this particular family of simply-periodic prograde orbits does not exist for mass ratios below µ ≈ 0.26284 in
the CR3BP. However, assume that an exoplanet was discovered to move along a path resembling this type of
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Figure 10: Stability of selected prograde orbits about P1 for µ = 0.30, k = [−0.0139, 0.1866]. Orbital
stability is indicated via color: stable (blue), positive unstable (red), and negative unstable (purple).

prograde motion about the larger primary in a binary star. Also assume, for this example, that the value of the
mass ratio of this binary is accurately known to equal µ = 0.25. The prograde motion typical of this family
may not be followed by an object in the CR3BP, since this particular family does not exist at µ = 0.25. This
type of periodic motion may, however exist in the MCR3BP at µ = 0.25 for some nonzero value of k.

To determine the value of k at which the periodic motions typical of the prograde family of interest may
exist for µ = 0.25, a periodic reference path from the CR3BP is discretized and used as an initial guess in
the constrained optimization problem as formulated with discrete variational mechanics. An orbit is selected
from ‘family 1’ at a sample mass ratio in the CR3BP and discretized into 600 nodes to supply a reference
path that is representative of motion along this family. The selected discrete path, plotted in Figure 11(a)
using black dots, exists at a mass ratio of µ = 0.274625 and possesses an orbital period of T = 2.97
nondimensional time units. In this figure, P1 is located using a gray filled circle, while equilibrium points
are indicated by red diamonds. As with the previous example, 500 initial guesses are constructed using
the reference path with a small amount of noise. Furthermore, each initial guess is given a mass ratio of
µ = 0.25, while the value of k is randomly selected within the range k = [−0.20, 0.70] and the initial
guess for the time step variable, h, lies within 25% of the value of h along the reference path. Each initial
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Figure 11: Prograde orbit from ‘family 1’ in the rotating frame: (a) discretized reference path (black) for
µ ≈ 0.274625 in the CR3BP, (b) discrete approximation (blue) of a periodic orbit existing at µ = 0.25 and
k = 0.01134, and (c) a continuous periodic orbit (green) corrected using the discrete path (blue).

guess is used in Matlab’s fmincon routine to construct a locally optimal solution close to the reference path.
The best locally optimal solution, existing closest to the reference orbit in configuration space, is retained
and plotted using blue dots in Figure 11(b). The locations of the larger primary and L1 now reflect the
new values of the natural parameters corresponding to this particular solution, which exists at µ = 0.25
and k = 0.01134, with a period of 2.915 nondimensional time units. Note that the computed solution is
simply an approximation to a continuous periodic orbit. Accordingly, a verification step is completed using a
multiple shooting method to ensure that a periodic orbit exists in the vicinity of the converged discrete path in
the prescribed dynamical environment. The resulting orbit, that is periodic in the continuous time system, is
represented by a green solid line in Figure 11(c). Note that in this figure, the maximum y-excursions along the
orbit differ slightly between the continuous and discrete paths. This discrepancy occurs due to the high orbital
speed near the closest approach to P1, which may not be accurately approximated using a first-order finite
differencing. Increasing the number of nodes used to the discretize the orbit reduces this discrepancy between
the continuous and discrete motion. However, nodes added to this path mostly congregate near the maximum
y-excursions where the velocities are significantly slower than near periapsis. Accordingly, such orbits would
benefit from time-adaptive stepping to reduce the computational expense associated with using an excessively
large number of nodes. Nevertheless, the discrete variational formulation accurately predicts the presence of
periodic orbits at this combination of the natural parameters, (µ, k). Furthermore, the results of this example
suggest that, in the presence of a small three-body interaction, prograde periodic motion typical of ‘family
1’ may be observed in binary systems with mass ratios at which the family does not normally exist in the
CR3BP. Such analysis thereby demonstrates the utility of discrete variational mechanics as a supplement
to stability analysis when understanding the effect of an additional autonomous force contribution added to
the CR3BP. In addition, such analysis may aid in identifying key signatures of additional force terms when
investigating systems with an accurately known mass ratio.

SUMMARY

The influence of a three-body interaction on periodic orbits in the restricted problem is explored using a
combination of both stability analysis and discrete variational mechanics. The composite stability represen-
tation employed in this investigation offers a clear and simple method for visualizing the stability of a family
of orbits across various mass ratios in the CR3BP, as well as under the influence of an additional autonomous
force of various strengths. These figures, which resemble the exclusion plots often employed in physics, al-
low for the detection of structural changes in a family and an evaluation of the orbital periods corresponding
to stable or unstable members across a range of each natural parameter describing a dynamical system. Such
analysis is completed in both the CR3BP and the MCR3BP for simply-periodic retrograde orbits that exist
in the exterior region and simply-periodic orbits that encircle the largest primary in a prograde direction. As
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a supplement to the stability analysis used to study the evolution of a family, discrete variational mechanics
is employed to determine whether a given reference path is reproducible in a system that is described by a
different set of natural parameters. In particular, a constrained optimization problem is formulated and solved
to find discrete approximations to periodic orbits along with the corresponding values of µ and k describing
the dynamical environment. In combination, both stability analysis and discrete variational mechanics are
used in this investigation to explore the influence of an autonomous force added to the restricted problem,
and to determine whether its effects are approximately reproducible by varying the mass ratio.
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