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SUMMARY

Given two rewarding stimuli, animals tend to choose
the more rewarding (or less effortful) option. How-
ever, they also move faster toward that stimulus
[1–5]. This suggests that reward and effort not only
affect decision-making, they also influence motor
control [6, 7]. How does the brain compute the effort
requirements of a task? Here, we considered data
acquired during walking, reaching, flying, or isomet-
ric force production. In analyzing the decision-mak-
ing and motor-control behaviors of various animals,
we considered the possibility that the brain may esti-
mate effort objectively, via the metabolic energy
consumed to produce the action. We measured the
energetic cost of reaching and found that, like
walking, it was convex in time, with a global mini-
mum, implying that there existed a movement speed
that minimized effort. However, reward made it
worthwhile to be energetically inefficient. Using a
framework in which utility of an action depended on
reward and energetic cost, both discounted in time,
we found that it was possible to account for a body
of data in which animals were free to choose how
to move (reach slow or fast), as well as what to do
(walk or fly, produce force F1 or F2). We suggest
that some forms of decision-making and motor con-
trol may share a common utility in which the brain
represents the effort associated with performing an
action objectively via its metabolic energy cost and
then, like reward, temporally discounts it as a func-
tion of movement duration.

RESULTS

Love goes toward love as schoolboys from their books.

But love from love, toward school with heavy looks.

—William Shakespeare

Suppose you are at the airport awaiting arrival of a passenger. As

you scan the arrivals, you decide which person is your destina-
tion, and then walk to greet them. In this thought experiment,

you will likely walk faster if the passenger is your child, rather

than a colleague.

Our concern here is to describe a framework to account for

both decision-making (which stimulus to acquire) and motor

control (how fast to move). To do so, we need to consider the

interaction between reward and effort. Let us consider the pos-

sibility that the brain represents effort objectively, via the ener-

getic cost of the action.

We measured the rate of metabolic energy expenditure during

reaching _er as a function of distance d and found that as reach

duration T increased, _er decreased, approaching a non-zero

asymptote (Figure 1A):

_er = am+b
mdi

Tj
: (Equation 1)

In the above equation,m is effective mass of the arm (Supple-

mental Mathematical Derivations). If we integrate Equation 1with

respect to T, we arrive at an estimate of the energy expended to

reach distance d:

er = amT +b
mdi

Tj�1
: (Equation 2)

This finding illustrates that the energetic cost of reaching is

convex in time and that there exists a reach duration that mini-

mizes the cost. The energetics of walking a distance d are similar

to that of reaching [8]:

ew = amT +
bmd2

T
: (Equation 3)

Therefore, for both human walking and reaching there exist

optimum speeds of movement that minimize the energetic

cost. In contrast, an optimal duration does not exist if we assign

a cost that depends on the integral of squared forces (Supple-

mental Mathematical Derivations), because in that case the

cost is proportional to m2=T3.

However, minimizing energy expenditure cannot be the only

concern of the nervous system (Supplemental Mathematical

Derivations), as evidenced by the fact that reward modulates

movement speed [1–5]. To incorporate the effect of reward,

consider reaching for food that has reward value a > 0. Passage

of time discounts reward, a=ð1+gTÞ, where g determines how

rapidly reward is discounted [9, 10]. If we view duration of the

movement as an implicit delay in the acquisition of reward [11],
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Figure 1. The Effects of Reward, Effort, and Time on Decision-Mak-

ing and Movement Vigor
(A) Rate of metabolic energy expenditure during reaching as a function of reach

duration for different distances. Fit to Equation 1, R = 0.99, a = 15 ± 4.8 J/s/kg

(p < 10�2), b = 77 ± 16 (p < 10�3), i = 1.1 ± 0.2 (p < 10�3), and j = 2.7 ± 0.4 (p <

10�4). Error bars indicate the SEM.

(B) Temporally discounted reward andmetabolic cost of movement, plotted as

a function of movement duration (a = 0.5 kJ, d = 0.1 m, m = 2 kg, g = 1).

(C) With increased reward, the utility of the movement increases and the

optimal duration shifts to a smaller value. As a result, a stimulus that promises

greater reward carries a greater utility and also producesmovements that have

greater velocity.

(D) The effort of the movement is increased by increasing the mass of the limb.

This decreases the utility, but also shifts the optimal duration, thereby

decreasing the velocity of the resulting movement.

(E) Increasing the rate of temporal discounting decreases the utility and

shifts the optimal duration to a smaller value, thereby increasing movement

velocity.

(F) Increased inter-trial delay decreases the utility of the movement and shifts

the optimal duration to a larger value, thereby decreasing movement velocity.

Therefore, although increased inter-trial delay and rate of temporal discounting

both decrease utility of the movement, the former decreases movement vigor

and the latter increases it.

See also Table S1.
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then the act of moving fast or slow is a decision between acqui-

sition of a large reward soon in exchange for payment of large

effort and acquisition of smaller, discounted reward later in ex-

change for payment of small effort. We represent effort with
2 Current Biology 26, 1–6, July 25, 2016
function UðTÞ and write the utility of the movement as the sum

of reward and effort:

J=
a

1+gT
+UðTÞ: (Equation 4)

For reaching, we arrive at the following representation of effort:

UðTÞ= � amT +bmdi=Tj�1

1+gT
: (Equation 5)

The resulting utility is plotted in Figure 1B. A fast movement re-

sults in small discounting of reward but requires larger effort. A

slowmovement requires a small effort but will produce large dis-

counting of reward. The maximum utility is achieved at the opti-

mummovement duration. Equation 4 makes four predictions: as

reward increases, the utility of the movement increases, but its

optimum duration decreases (Figure 1C). Animals should not

only prefer stimuli that promise greater reward [12], but also

move with greater speed toward them [1, 2, 4, 5]. As the meta-

bolic cost of themovement increases, the utility of themovement

decreases, but its duration increases (Figure 1D). Animals should

not only prefer to move toward stimuli that require lower ener-

getic cost, but move with greater speed toward them. As time

discounts reward more steeply (larger g), both the utility of the

movement and its optimum duration decrease (Figure 1E). Indi-

viduals that are more impulsive should not only prefer the imme-

diate reward, but also move faster than individuals who are more

patient [13]. Finally, if we make someone wait period q before al-

lowing them to make a movement, we are altering the time to

acquisition of reward, extending it to T +q. The utility becomes

J=
a� amT � bmdi=Tj�1

1+gðT +qÞ : (Equation 6)

As the imposed delay increases, movement duration also in-

creases (Figure 1F). As a result, subjects would rather not wait

to move toward a rewarding stimulus, but, if forced to do so,

they will move slower [14].

We chose a utility in which effort additively combined with

reward. In contrast, in previous approaches, reward and effort

were combined multiplicatively [15–18]. A utility in which reward

is multiplied by a function of effort is inconsistent with the obser-

vation that reward modulates movement speed (Supplemental

Mathematical Derivations). We chose a utility in which time dis-

counted effort and reward hyperbolically. Exponential temporal

discounting fails to predict the effect of time delay on movement

speed (Supplemental Mathematical Derivations).
A Common Utility for Some Forms of Decision-Making
and Motor Control
Our framework should be able to predict the choice of which

movement to perform, as well as the speed of the chosen move-

ment. The arm has a mass distribution that resembles a heavy

object when it moves in some directions (Figure 2A, major axis

of the ellipse) and a light object when it moves in other directions.

In [19], subjects reached without time constraints and chose a

peak velocity that was around 55 cm/s for some directions, but

only 35 cm/s for other directions (Figure 2B). We used the inertial

properties of the arm to estimate its effective mass as a function
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Figure 2. Effort Representation via Meta-

bolic Cost May Account for Both the Deci-

sion of Which Movement to Make and the

Speed of the Ensuing Movement

(A) The configuration of the arm at the start posi-

tion and the associated effectivemassmðqÞ. In this
configuration, the greatest mass is associated

movements to targets aligned with the forearm

and is three times the mass in the perpendicular

direction.

(B) Subjects were instructed to reach to a target

at 10 cm with no time constraints [19]. The

resulting peak velocity as a function of direction

is plotted as dots. The gray curve shows pre-

dictions of the utility function, where effort is

objectively measured via metabolic cost of the

reach (Figure 1A).

(C) Subjects performed an out-and-back move-

ment but were free to choose the reach direction

(no target provided). The gray region shows the

probability distribution of the observed choices

[20]. The black curve is the prediction.

(D) The mass matrix for an out-and-back move-

ment as a function of reach direction for the left

and right arm.

(E) Probability of choosing to reach toward first or

third quadrant. Error bars indicate the SD.

(F) Subjects were presented with two targets [21]

and chose to reach to one of the targets, moving

their hand through a via point.

(G) The effective mass of the arm at the start position and at each of the various targets.

(H) The ratio of the utilities for targets T1 and T2, and targets T3 and T4, when all targets are 11 cm from the start point.

(I) The probability of choosing target T1 (or target T3) as a function of the log of the ratio of the distances for targets T1 and T2 (or targets T3 and T4). The curves are

probabilities computed from the differences in utilities of the two targets.

See also Table S1.
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of reach direction (Supplemental Mathematical Derivations), re-

sulting in mðqÞ, where q is direction of reach. Using Equation 4,

we computed the duration that maximized the utility for each

direction (Figure 2B). The resulting peak velocity was largest

for the directions of smallest effective mass (Figure 2B; R =

0.83, p < 10�34).

Volunteers were asked to reach but were not provided with a

target [20, 22]. Rather, they were given the freedom to choose

their own direction of movement (Figure 2C). We found that

movement utility was a reasonable predictor of the distribution

of directions that people had chosen (Figures 2D and 2E; right,

R = 0.67, p < 10�8; left, R = 0.68, p < 10�9).

Volunteers chose from two targets [21]. A via point was placed

between the start position and each target, thereby constraining

the reach trajectory (Figure 2F). This made it so that part of the

trajectory was aligned with the major or minor axis of the mass

ellipse. For example, consider a trial in which the options were

targets T1 and T2, each placed at a distance of 11 cm from the

start location (Figure 2G). Approaching T2 from the via point re-

quires moving the hand along the major axis of the mass ellipse,

whereas approaching T1 requires moving the hand along the mi-

nor axis. Because the effective mass of the arm is higher along

the trajectory toward T2, its utility is lower. As a consequence,

people should prefer to reach toward T1. We used Equation 4

to estimate the utility of each reach. The resulting ratio of utilities

for targets T1 and T2, represented as JT1=JT2, and targets T3 and

T4, represented as JT3=JT4, are shown in Figure 2H. As the dis-
tance to targets T1 and T3 increased, the preference shifted to

targets T2 and T4 (Figure 2I).

In summary, if we define utility of an action as the temporally

discounted sum of reward and effort, where effort is the ener-

getic cost of the movement, then we may account for both

movement vigor and movement choice across a few reaching

experiments.
Temporal Discounting of Effort: Walking versus Flying
Starlings chose whether to walk or fly to obtain reward [23]. The

value of reward was the caloric content of the food, and the

metabolic costs of flying _ef andwalking _ew weremeasured (flying

required about 15 times more energy than walking). The birds

chose between making multiple flying trips to receive reward

and making multiple walking trips (to a closer site) to receive

the same reward. On the final trip, the birds obtain the reward.

For a fixed number of flying trips nf , the number of walking trips

nw was incremented until a preference reversal was observed,

indicating an indifference point (Figure 3A). Using Equation 4,

we calculated the utility of each option. The utility of making nw
walking trips is

Jw =
a� ewðnwÞ
1+gTwðnwÞ: (Equation 7)

To compute indifference points, we set JwðnwÞ= Jf ðnf Þ and

solve for nw. The only free parameter is g. In this experiment,
Current Biology 26, 1–6, July 25, 2016 3
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Figure 3. Decision-Making in Birds and

Humans

(A) Birds chose between flying a number of times

and walking a number of times to receive a con-

stant reward. The data points represent the indif-

ference values [23]. Error bars indicate the SEM.

The solid curves are the predicted indifference

curve for the utility function in which both reward

(energetic content of the food) and metabolic cost

are discounted by time. The effect of g, the only

unknown parameter in the model, is a monotonic

change in the indifference curve.

(B) Predictions of a utility in which neither reward

nor metabolic cost are discounted by time. There

are no free parameters.

(C) Predictions of a utility in which only reward is

discounted by time. The effect of g is a non-

monotonic change in the indifference curve and

the optimal value produces a poor fit to the data.

(D) Iso-utility curves for a force production task

[24], where each curve connects the force-time

pairs that were judged to be equally effortful. For

durations of greater than 0.5 s, force held for a

short amount of time was judged to be approxi-

mately equal in effort to the same force magnitude

held for a longer amount of time. Error bars indicate the SEM.

(E) The iso-utility curves predicted by an effort cost in which the metabolic cost of force production (force-time integral; see Figure S1) is discounted as a hy-

perbolic function of time. The function reaches a plateau as the duration of force production increases.

(F) The indifference curves predicted by an effort cost that depends on the integral of the squared force (as is typical in optimal control models). The function goes

to zero with increased duration.

(G) The indifference curves predicted by an effort cost that does not temporally discount the force-time integral. The function goes to zero with increased duration.

See also Figure S1 and Tables S2 and S3.
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where the value of reward and effort were objectively known, the

model’s performance was an excellent match with the decisions

that the birds had made (R = 0.99, p < 0.0001).

Now consider a scenario in which reward and effort are not

temporally discounted, Jw =a� ewðnwÞ. This predicts that the

birds should take many more walking trips than observed (Fig-

ure 3B). Alternatively, consider a scenario in which only reward

is discounted,

Jw =
a

1+gTwðnwÞ � ewðnwÞ: (Equation 8)

Here, the effect of g on the indifference curve is non-mono-

tonic, grossly over-estimating the measured data (Figure 3C).

In summary, when the values of reward and effort were

known via their energetic contents, a utility in which effort is

represented via temporally discounted movement energetics

accounted for the decisions that birds made in flying versus

walking.
Temporal Discounting of Effort: Isometric Force
Production
The metabolic cost of producing an isometric force fðtÞ for dura-
tion T is (Figure S1)

e= a1

ZT

0

jfðtÞ jdt + a2: (Equation 9)

When one is asked to produce a constant force F for period T,

the utility of this action is
4 Current Biology 26, 1–6, July 25, 2016
J=
a� a1FT � a2

1+gT
: (Equation 10)

The effort is

U= � 1

1+gT
ða1FT + a2Þ: (Equation 11)

The above result makes the surprising prediction that as dura-

tion of force production increases, effort reaches an asymptote.

That is, as duration of action increases, subjects become

increasingly indifferent to duration.

Volunteers produced F1 for T1, and then F2 for T2 [24]. They

chose which force-time pair they would like to experience again

(‘‘choose the force-time pair that you judge to be less effortful’’).

By increasing F2, the authors determined the indifference point

and observed that the iso-utility curves reached a plateau with

increased duration (Figure 3D). Our theory provides an explana-

tion. We solved the equality JðF1;T1Þ= JðF2; T2Þ for F2, arriving at

the following expression for the iso-utility curve:

F2 =
gða� a2ÞðT1 � T2Þ+ a1F1T1ð1+gT2Þ

a1ð1+gT1ÞT2

: (Equation 12)

As T2/N, F2 reaches an asymptote that depends on F1 (Fig-

ure 3E; R = 0.92, p < 10�11). In contrast, let us consider existing

models in which effort is represented as the undiscounted sumof

squared forces. In that case,

J=
a

1+gT
� aF2T : (Equation 13)



Please cite this article in press as: Shadmehr et al., A Representation of Effort in Decision-Making and Motor Control, Current Biology (2016), http://
dx.doi.org/10.1016/j.cub.2016.05.065
The iso-utility curves become

F2
2 =

F2
1T1

T2

� a

aT2ð1+gT1Þ+
a

aT2ð1+gT2Þ: (Equation 14)

As T2/N, F2/0 (Figure 3F), a fact inconsistent with mea-

surements [24]. Indeed, this inconsistency remains whether

forces are quadratically penalized or not (Figure 3G).

In summary, if we represent effort as the temporally dis-

countedmetabolic cost of action, then the perceived effort asso-

ciated with generating an isometric force does not grow un-

bounded as a function of duration, but rather approaches an

asymptote. This counter-intuitive prediction provides the first

explanation that we are aware of for empirical data regarding de-

cisions that people made in an isometric force task.

DISCUSSION

We measured the energetic cost of reaching and parameterized

it as a function of movement duration, mass, and distance. We

found that energetics of reaching, like that of walking, is a convex

function of time with a global minimum. This demonstrates that

for both reaching and walking there are movement speeds that

are energetically optimum. Indeed, people and other animals

walk and reach at speeds that are near energetic minimums

(Supplemental Mathematical Derivations). However, animals

move faster when there is greater reward at stake [1, 5]. That

is, reward makes it worthwhile to be energetically inefficient.

Earlier work had suggested that the brain may assign a utility

for each potential action, where utility contains an interaction be-

tween reward and effort [6, 7]. Here, we represented effort objec-

tively via the energy needed to produce the movement and then

temporally discounted it like reward. The resulting equations

made the following predictions: animals should prefer the more

rewarding stimulus and move with greater vigor toward it [5]; an-

imals should prefer the less effortful movement [21] and make

that movement with greater vigor [19]; and animals should prefer

not to wait before acquiring reward, but, if forced to do so, they

will move with reduced vigor [14].

In our framework, effort and reward interact additively and are

discounted by time. In decision-making, it is often assumed that

effort discounts rewardmultiplicatively [15, 16, 18]. This is incon-

sistent with the observation that reward modulates movement

vigor. In motor control, effort is represented as the undiscounted

sum of squared forces [25–28]. This makes the incorrect predic-

tion that effort grows unbounded with action duration [24]. In

contrast, our results connect motor control with optimal foraging

theory [29], where decisions depend on the energy gained via the

reward, minus the energy spent performing the act, divided by

time.

We did not consider decision-making in tasks where evidence

is accumulated over time [30]. A recent study demonstrated that

the urgency with which a decision is made (i.e., decision speed)

affects the vigor of the ensuing movement [31]. We also did not

measure the relation between mass and energetic cost of reach-

ing. When people walk with backpack loads, energetic cost in-

creases linearly with mass [32]. Thus, our framework assumes

a linear relationship between mass and energetic cost, but this

awaits experimental validation.
Our utility cannot account for certain behaviors. When people

train to reach in a force field in which a straight trajectory requires

more force than a curved trajectory, they choose the straight tra-

jectory [33] (but see [27, 34, 35]). When people walk with an

exoskeleton that alters the relationship between step frequency

and metabolic cost, they persist on producing their now higher

cost natural step frequency, until coached to explore [36]. These

examples illustrate instances in which the brain chooses an ac-

tion that requires greater effort, despite availability of a lower

effort option.

Dopamine depletion alters the interaction between reward and

effort, shifting preferences toward actions that are less effortful

[37, 38]. In the striatum, dopamine interacts with medium spiny

neurons (MSNs). MSNs with D1-type receptors project via the

direct pathway of the basal ganglia, whereas MSNs with D2-

type receptorsproject via the indirect pathway.Bilateral activation

of MSNs in the indirect pathway reduces movement vigor,

whereas stimulationofMSNs in thedirect pathway increases vigor

[39]. This led Hwang [40] to propose that the indirect pathway of

the basal ganglia is involved in computing effort costs, whereas

the direct pathway is involved in computing the expected reward.

In this framework, the utility of an action may be computed via the

convergence of the direct and indirect pathways at the substantia

nigra pars reticulata (for control of saccades) or the internal

segment of globus pallidus (for control of reaching).

Our theory provides a different way to consider experiments in

which subjects are free to choose the stimulus to reach for, as

well as the arm to use. A current approach asks whether the stim-

ulus is chosenfirst, or thearm [41]. Incontrast, our theorysuggests

that each potential stimulus/arm pairing is assigned a utility, and

then the option is chosen that has the highest utility. Our model

suggests a strong coupling between the neural circuits respon-

sible for generating an action and the circuits involved in deciding

between actions. This aligns with the hypothesis that decision-

making involves sensorimotor areas, where each potential move-

ment is represented simultaneously and competes against other

potential movements [42]. The intriguing possibility is that effort

is associatedwith an internalmodel of the energetic cost of action

and, like reward, is discounted in time.
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Figure S1. Related to Figure 3D-G. Energy consumed during isometric contraction grows linearly with the force-
time integral.  A. The measured force during electrical stimulation of the human gastrocnemius muscle at 20 or 
80Hz (data from [S1]). The 20Hz stimulation produced a force that increased with a time constant of around 
0.25sec, reaching a plateau of approximately 230N.  The 80Hz stimulation produced a force that had a similar time 
constant, but reached a plateau of approximately 430N.  B. Energy expended by the muscle as measured via 
consumption of ATP.  The data points are from [S1].  Error bars are SEM. In the left subplot, the curves depict a 
model where energetic costs grow linearly with the force-time integral.  In the right subplot, the curves depict a 
model where energetic costs grow with the squared force-time integral.  The fit with the force-time integral has 
about half of the errors as in the squared force-time integral.  C. Oxygen consumed during electrical stimulation of a 
frog muscle plotted as a function of the force-time integral.  Data from [S2].   

	
	 	



	
	

Supplemental Mathematical Derivations 
 
Speed of walking 
Considerable research has approached the question of natural walking speed of various animals.  Here, we briefly 
summarize this work, demonstrating that like reaching, energetics of human walking are convex in time, suggesting 
an optimum speed.  However, this speed is slower than one that humans choose during locomotion.  We suggest that 
the reason for this is that reward interacts with effort, making it worthwhile to be energetically inefficient. 
 The current view in walking research is that the energetic cost of locomotion defines the optimal speed of 
motion [S3].  For example, Ralston [S4] measured rate of energy expenditure in human walking and found that 
when people were not walking, the rate of energy expenditure per unit mass was    !e0 = a0 , and when they were 

walking    !ew = !e0 + a1 + bv2   per unit mass, where v is average speed of walking.  Suppose that during an arbitrary 

period of time  T  a person spends some time  Tw < T  walking a distance d, and is otherwise not walking.  During 

walking their average speed is  d Tw .  The rate of energy spent during walking (per unit mass) becomes: 

 
   
!ew = a0 + a1 +

bd 2

Tw
2  (S1) 

If that individual has mass m, total energy spent during that  T period is: 

 

  

eT = a0(T −Tw )m+ a0 + a1( )mTw +
bmd 2

Tw

= Ta0m+ a1mTw +
bmd 2

Tw

 (S2) 

To find the speed of walking that minimizes energy expenditure, we compute the derivative of the above expression 
with respect to  Tw , and find the optimum walk duration   Tw

* : 

 
  
Tw

* = d b
a1

 (S3) 

The optimum walking speed is:  

 
  
v* = d

Tw
* =

a1

b
 (S4) 

Therefore, the energetic cost of walking, similar to that of reaching, describes a convex function of time which 
exhibits a minimum. This means that in this energetics-only formulation of movement, there is an optimal speed and 
duration that minimizes the energetic cost of walking.  Indeed, Hoyt and Taylor [S5] concluded that humans and 
other animals “select speed within a gait in a manner that minimizes energy consumption”.   

However, this energetics-only framework has a number of limitations.  As Srinivasan [S3] has pointed out, 
the optimum speed predicted by Eq. (S4) is considerably slower than the speed that people naturally choose to walk.  
The reason for this, our theory suggests, is that reward discounts effort, making it worthwhile to expend energy to 
acquire a rewarding goal (Figure 1).  One caveat is that the optimum walking speed depends on how energetic cost 
is represented. A common approach in the locomotion literature [S4] is to represent it as the total energetic cost to 
walk a unit distance, referred to as the cost of transport. The optimum speed predicted by minimizing the total cost 
of transport provides a reasonable match to the natural speeds observed. However, an argument against optimization 
of total cost of transport is that it relies on the unrealistic assumption that one will always be walking and nothing 
else.  

Ultimately, regardless how energetic cost is calculated, an energetics-only framework does not consider a 
role for reward.  As a result, this framework cannot account for the observation that people and other animals move 
faster toward stimuli that promise greater reward [S6-S10].  It cannot account for the observation that more 
impulsive people may move faster than less impulsive people [S11].  It cannot account for the observation that 
movement speed declines with increasing inter-trial intervals [S12].  It cannot account for the observation that 
people in different cities walk at different speeds [S13]. 

Because we found that energetics of walking and reaching were both convex functions of time, our results 
regarding effects of reward, mass, distance, etc. on vigor of reaching predict similar effects on vigor of walking.   



	
	

In summary, our framework extends the existing approach in the field of walking research in a critical way: 
using energetics of action as a measure of effort, we define a utility in which there is interplay between reward, 
effort, and time.  We arrive at a theory that not only describes where one should walk (toward the choice that offers 
the greatest utility), but also how fast one should walk (via a speed that maximizes the utility).  As a result, the 
theory provides an account of the observation that when there is greater reward at stake, one should walk faster.  
When time is more valuable, one should walk faster.  If mass increases, one should walk slower. 
 
Combining effort and reward additively vs. multiplicatively 
We suggested that effort discounted reward additively.  This is in contrast to earlier work where it was assumed that 
effort discounts reward multiplicatively [S14-S16]. Let us compare these two approaches.  In the case of 
multiplicative interaction between reward and effort, we have the following representation for utility: 

 
  
J = α

1+ γ T
U (T )   (S5) 

In the above formulation increasing reward increases the utility of the action, but has no effect on the optimal 
movement duration (because the effect of reward is to scale the utility function, which has no effect on the value of 
time that maximizes the utility).  Therefore, such a formulation is inconsistent with the observation that reward 
makes movements faster.  That is, any utility in which reward is multiplied by a function of effort will fail to predict 
sensitivity of movement vigor to reward. This is in contrast to experimental evidence [S10].  In contrast, an additive 
interaction between reward and effort correctly predicts that increased reward increases movement vigor. 
 
Hyperbolic vs. exponential temporal discounting 
We suggested that like reward, effort is discounted hyperbolically.  In reinforcement learning [S17], future rewards 
are discounted exponentially, largely due to mathematical convenience.  Exponential discounting has also been 
suggested in models of human decision making [S18].  Hyperbolic discounting, however, is more consistent with 
decision-making data in humans [S19] and monkeys [S20].  In our expression for movement utility, we opted to 
discount reward and effort as a hyperbolic function of time.  The reason for this is that exponential discounting 
makes the incorrect prediction that changes in inter-trial intervals should have no effect on movement vigor.  To 
illustrate this, suppose that time discounts utility exponentially.  For an arbitrary effort   e(T ) , we have:  

 
  
J = α + e(T )( )exp −T + q

τ
⎛
⎝⎜

⎞
⎠⎟

 (S6) 

If we take the derivative of the above equation with respect to T, we find the following expression: 

 
  

dJ
dT

= de(T )
dT

− α + e(T )
τ

⎡

⎣
⎢

⎤

⎦
⎥exp −T + q

τ
⎛
⎝⎜

⎞
⎠⎟

 (S7) 

To find the optimum duration, we set the above expression equal to zero, and find that the inter-trial delay q has no 
consequence on the optimum duration.  Thus, in the case of exponential discounting we find that vigor is 
independent of inter-trial delay, something that is inconsistent with experimental evidence [S12]. 

We also considered the possibility that reward and effort were discounted exponentially in time in our 
analysis of the choices that birds made in walking vs. flying, and the choices people made in isometric force 
production.  For the walking vs. flying data set, we found that exponential discounting of reward and effort provided 
as good a fit to the data as hyperbolic discounting (R=0.99, p<10-8).  For isometric force production (Figure 3), we 
found that exponential discounting did a better job than no discounting at all, but still underperformed hyperbolic 
discounting (R=0.84, p<10-7).   

In Figure 3D, the indifference curves dip downward, and then move slightly upward with increasing 
durations. This is unexpected because it suggests that the utility of producing a force for a given duration is equal to 
producing a larger force for a larger duration. Intriguingly, exponential discounting can account for the curious dip 
observed in the indifference curves, although the overall fit to the data was still worse than hyperbolic discounting. 
The dip could also be explained by a utility in which time was discounted hyperbolically, where discounting of time 
is due to a power function of time: 

 
  
U =

α − a1FT − a2

1+T γ   (S8) 

While the above utility could account for the curious dip, its overall fit to the data (R= 0.65, p< 10-3) was 
not as good as the utility where effort is hyperbolically discounted by time. 
 



	
	

Integral of squared motor commands vs. energetic cost 
Assuming that temporal discounting of effort is hyperbolic, is there a fundamental difference between representing 
effort via energetic cost as compared to sum of squared forces?  We will consider this question in this section and 
show that sum of squared forces presents a cost that is convex in time but has no global minimum.  In contrast, 
energetics of both walking and reaching are convex in time but also have a global minimum.  The implications of 
this result are presented. 

Let us describe a utility that represents effort via integral of squared forces.  How does this utility depend 
on duration of movement?  Suppose a movement is made in period T, along trajectory   q(t) .  We compute the 
integral of the squared forces for that movement, represented by s.  Now suppose that the system makes the 
movement in period T/a.  What is integral of the squared forces produced in this movement?  We note that: 

 
  

q(t) = q(r(t))
r(t) = at

 (S9) 

The velocity of the movement   q(t)  is related to the movement   q(t)  by the following:  

 
   
dq(t)

dt
= dq(r)

dt
= dq(r)

dr
!r = ′q (r) !r = a ′q (r)  (S10) 

For acceleration we have:  

 

   

d 2q(t)
dt2 =

d ′q (r) !r( )
dt

= d ′q (r)
dt
!r + ′q (t)!!r = d ′q (r)

dr
!r 2 + ′q (t)!!r = ′′q (r) !r 2 + ′q (t)!!r

= a2 ′′q (r)
 (S11) 

For a typical system that has dynamics described by inertial and coriolis/centripetal forces, we have the following 
relationship between forces and motion:  
 

    
τ (t) = I q(t)( )!!q(t)+C q(t)( ) !q2(t)  (S12) 

For the sped-up trajectory, we have:  

 

   

τ (t) = I q(t)( ) d 2q(t)
dt2 +C q(t)( ) dq(t)

dt
⎛
⎝⎜

⎞
⎠⎟

2

= I q(r)( )a2 ′′q (r)+C q(r)( )a2 ′q (r)

= a2τ (r)

 (S13) 

The above result implies that when we scale time to go from one trajectory that takes duration T to another that takes 
duration T/a, the forces scale by a2.  Let us now compare the integral of the squared forces in the two trajectories.  
We indicate this integral with the symbol   i(T )  for one trajectory, and   i(T a)  for the other trajectory.   

 

  

i(T ) = τ 2(t)dt
0

T

∫ = s

i(T a) = τ 2(t)dt
0

T /a

∫ = a4τ 2(r) dr
a0

T

∫ = a3s
 (S14) 

These two equations imply that there exists a function   i(T )  such that:  

 
  

i(T )
i(T a)

= 1
a3  (S15) 

A function that satisfies the above condition is: 

 
  
i(T ) = c

T 3  (S16) 

This result implies that the sum of squared forces required to move an inertial system along an arbitrary trajectory 
will decreased as the third power of the duration of movement.  These forces scale approximately linearly with 
mass.  As a result, we conclude that if our measure of effort is sum of squared forces, then the utility of a constant 
amplitude movement as a function of duration T and mass m is: 

 
  
J = α − cm2 T 3

1+ γ T
 (S17) 

In comparison, if our measure of effort is the energetic cost of that movement, then the utility is: 



	
	

 
  
J = α − amT − bm T 2

1+ γ T
 (S18) 

We find that a fundamental difference between representations of effort via sum of squared forces vs. energetic cost 
is that the latter is a convex function of time with a minimum, whereas the former is not.  The minimum arises from 
the bias term,  am , in Eq. (1) that represents an energetic cost that grows with time, penalizing movements with 
longer durations. The bias term is not present if effort is sum of squared forces or even sum of forces. It also cannot 
be explained by the cost of supporting the arm against gravity, as the arm was supported throughout the movement. 
Interestingly, a similar bias is present in walking, and also leads to energetics that are convex in time with a 
minimum [S4]. 

What is the implication of a movement duration that minimizes energetic cost?  Consider a thought 
experiment in which one is given the option of doing nothing (and receiving no reward), vs. performing a movement 
for   T = 10  seconds to receive reward α.  If we set α large enough, then both utilities produce a positive value, which 
implies that one should choose to perform the movement and receive the reward.  Now suppose that we increase the 
required movement duration.  If the utility of these choices is based on squared forces, as  T →∞ ,   J → 0 , but 
always remains positive.  This means that according to the squared forces model, if we accept to perform a short 
duration movement for some reward, we must also accept it despite the requirement of extremely long movement 
durations.  This unreasonable prediction arises because representation of effort via sum of squared forces does not 
exhibit a minimum as a function of time.  

However, if the utility of the choice is based on energetic cost, then as  T →∞ , then 
  
J →− am

1+ γ T
.  This 

means that regardless of reward, the utility of doing an action for a very long period is always less than zero.  As a 
result, while we will accept to perform the movement for a short period of time in exchange for the reward, as the 
movement duration becomes longer, we will reject the offer of reward and opt to do nothing.  This reasonable 
prediction arises because the energetic cost has a global minimum. 
 
Effective mass of the hand as a function of movement direction 
In Figure 2 we considered data from experiments in which people reached to various directions.  To compute the 
utility of each movement, we needed to estimate the effective mass of the arm as it moved in each direction.  Here, 
we show how to estimate this effective mass. 

We begin with the inertia of the arm, which for the planar configuration is a 2x2 position-dependent matrix 

  I(θ ) , where 
 
θ = θs θe

⎡
⎣

⎤
⎦

T
, representing angular position of the shoulder and elbow joints.  At rest, inertia 

represents the relationship between a vector of joint accelerations and the resulting torque: 
    τ = I(θ )!!θ  (S19) 
We are interested in computing the mass matrix   M (θ ) which represents the relationship between the acceleration 
vector   !!x  and the force vector as measured at the hand at rest: 
    f = M (θ )!!x  (S20) 
We use the Jacobian matrix:  

 
 
Λ = dx

dθ
 (S21) 

and the principle of virtual work to relate force to torque, and acceleration in joint coordinates to hand coordinates: 

 

  

τ = ΛT f
!x = Λ !θ

!!x = dΛ
dθ
!θ !θ + Λ !!θ

 (S22) 

Using the above equalities, we can write the relationship between hand acceleration and force: 

 
   
f = Λ−1( )T

I(θ )Λ−1!!x − Λ−1( )T
I(θ )Λ−1 dΛ

dθ
!θ !θ  (S23) 

 
 



	
	

When the hand is at rest, the velocity-dependent term on the right side of the equation is zero, providing the 
following relationship between acceleration and force: 

 
   
f = Λ−1( )T

I(θ )Λ−1!!x   (S24) 
As a result, we can define the mass matrix at the hand as:  

 
  
M (θ ) = Λ−1( )T

I(θ )Λ−1  (S25) 

In the case of the planar arm that we are considering, the mass matrix   M (θ )  is a 2x2, describing the relationship 
between accelerations and forces at the hand.  To compute the effective mass   m(θ )  we apply an acceleration of 
length unity in a given direction and compute the length of the resulting force vector. 
 
Energetic cost of isometric force production 
We considered data from an experiment in which energy consumption was estimated via the change in ATP 
concentration (or alternatively, oxygen uptake) during the electrical stimulation of an isometric muscle (Figure 
S1A).  We modeled the actual forces produced by the muscle, computed its integral, and then fitted the following 
equation to the measured data, with the results shown in Figure S1B (left panel): 

 
  
e = a1 f (t) dt

0

T

∫ + a2   (S26) 

We found that this model produced a mean-squared error that was about half as large as those produced if we had 
assumed that energy was related to the integral of the squared force: 

 
  
e f (t)( ) = a1 f 2(t)dt

0

T

∫ + a2  (S27) 

The results are shown in the right subplot of Figure S1B. Other experimental data [S2] provided further evidence for 
the conjecture that the energetic cost associated with isometric force production is a linear function of the force-time 
integral (Figure S1C).  

Let us consider the iso-utility curves in Figure 3D and ask what would happen if effort was the energetic 
cost of force production, but not discounted in time.  This means that the utility of producing a constant force F for 
duration T is:  

 
  
J = α

1+ γ T
− a1FT − a2  (S28) 

To find iso-utility curves, we solve the equality 
  
J F1,T1( ) = J F2 ,T2( )  and obtain the following expression: 

 
  
F2 =

a1F1T1

a1T2

− α
a1T2 1−γ T1( ) +

α
a1T2 1−γ T2( )   (S29) 

This equation tells us that if effort is not temporally discounted, then the iso-utility curves will asymptote to zero 
with increasing duration   T2 .  Therefore, undiscounted energetic cost, like the time-integral of force (Figure 3G), will 
lead to iso-utility curves that go to zero, which is inconsistent with the experimental data.  
 

 

 

	

	

	

 



	
	

Supplemental Tables 

Table S1. Simulation Parameters and Goodness of Fit for Figures 1 and 2 

  Parameters Goodness of Fit 

Simulation Fig a  

(J/s/kg) 

b i j α   

(kJ) 

γ  

 

m 

(kg) 

d 

(m) 

θ   

(sec) 

k  

Movement Utility 1B 15 77 1.1 3 0.5 1 2 0.1 0 n/a n/a 

Effect of reward 1C 15 77 1.1 3 0.5 

1.0 

1 2 0.1 0 n/a n/a 

Effect of mass 1D 15 77 1.1 3 0.5 1 2 

3 

0.1 0 n/a n/a 

Effect of impulsivity 1E 15 77 1.1 3 0.5 1 

2 

2 0.1 0 n/a n/a 

Effect of inter-trial 
delay 

1F 15 77 1.1 3 0.5 1 2 0.1 0.5 

1 

n/a n/a 

 Effect of mass on 
movement duration 
(Gordon et al. 1994 ) 

2B 15 77 1.1 3 0.31 1 m(θ)  0.1 0 n/a R = 0.83, p<10-34 

 Effect of mass on 
movement direction 
(Wang and 
Dounskaia 2012) 

2C 15 77 1.1 3 0.1 1 m(θ) 0.15 0 n/a Right: R=0.67, p<10-8  

Left:   R=0.68, p<10-9 

 Effect of mass on 
movement direction 
(Cos et al. 2011) 

2H 
2I 

15 77 1.1 3 0.1 1 m(θ) 0.11 

0.075-
0.145 

0 28 T1/T2: R=0.96,p=0.009  

T3/T4: R=0.96,p=0.008 

	

	

	

	

	



	
	

Table S2. Simulation Parameters and Goodness of Fit for Figure 3A-3C 

  Parameters Goodness of Fit 

Simulation Fig 
  !ew  

(J/s) 

  
!ef  

(J/s) 

  
!ep  

(J/s) 

 tw  

(sec) 

 
t f  

(sec) 

 
tp  

(sec) 

α  

(kJ) 

γ   

 

 

Walk/Run Indifference Points: 

Temporal discounting of 
reward and effort 

3A 2 J/s 31.7 1.09 0.6 1.1 1.25 1.3 0.03 R=0.99, p<0.0001, 
SSE=74.35 

Walk/Run Indifference Points: 

No temporal discounting  

3B 2 J/s 31.7 1.09 0.6 1.1 1.25 1.3 0 R=0.99, p<0.0001, 
SSE=757.84 

Walk/Run Indifference Points: 

Temporal discounting of 
reward only 

3C 2 J/s 31.7 1.09 0.6 1.1 1.25 1.3 0.007 R=0.99, p<0.0001, 
SSE=109.28 

	

	

	

Table S3. Simulation Parameters and Goodness of Fit for Figure 3E-3G 

   Parameters  Goodness of Fit 

Simulation Fig α  
  a1    a2  γ    

Temporal discounting of reward and effort: 
Force-Time Integral 

3E 1  1 1 25 R=0.92, p<10-11 

No temporal discounting: Force2-Time 
Integral  

3F 1 1 n/a n/a R=0.67, p<10-4 

No temporal discounting: Force-Time 
Integral 

3G 1 1 n/a 0.001 R=0.62, p<10-3 

	
	 	



	
	

Supplemental Experimental Procedures 
EXPERIMENT: Energetic cost of reaching 
We measured rate of metabolic energy expenditure via expired gas analysis as subjects made reaching movement of 
different distances and durations.  Fifteen healthy adults (mean ± SD age 24.2 ± 4.4 yrs, 8 females, 7 males) 
participated in this study. All subjects were right-handed and recruited from the University of Colorado Boulder 
student body. The University of Colorado Institutional Review Board approved the study protocol and all subjects 
gave informed consent. 

Seated subjects grasped the handle of a robotic arm (Interactive Motion Technologies, Shoulder-Elbow 
Robot 2) to move a circular cursor from a home circle to a target circle at five pre-determined reaching speeds. The 
cursor, home circle, and target circle were displayed on a vertically mounted computer screen at the subject’s eye-
level. The five speeds are referred to as Very Slow, Slow, Medium, Fast, and Very Fast. We tested three reach 
distances of 10, 20, and 30cm. On odd numbered trials, reaches started ~15 cm in front of the chest area with the 
arm in a flexed position.  On even numbered trials, the reach started at the previous target location with the arm in 
an extended position and involved flexing the arm back towards the center target. Subjects wore bilateral shoulder 
straps and a lap belt to limit torso movement. A cradle attached to the robot handle supported the right forearm 
against gravity and restricted wrist movement.  

A training bar that moved with a velocity that corresponded to the minimum jerk trajectory was used to 
illustrate the desired reaching speed during a familiarization period at the beginning of each reaching block. 
Additionally, the target turned gray if the reach was too slow, green if the reach was too fast, and “exploded” as a 
flashing yellow ring if the reach was within ±50ms of the desired movement duration. A pleasant auditory tone was 
also used to signal that the subjects successfully hit the target within the desired time window. After reaching the 
target, subjects had 800ms to settle in the center ring of the home circle before the next target circle was displayed. 
Thus, the inter-trial time was fixed at 800ms for all speeds at each reach distance.  

We measured metabolic rate using expired gas analysis (ParvoMedics, TrueOne 2400). Subjects wore a 
nose clip and breathed in and out of a mouthpiece during data collection. We sampled the rates of oxygen 
consumption (

   
!VO2

) and carbon dioxide production (
   
!VCO2

) at 5 second intervals as subjects made reaching 

movements at the desired speeds. Data collections occurred early in the morning, after subjects had fasted overnight. 
We calibrated the system prior to each data collection using certified gas mixtures and with a range of flow rates 
using a 3 liter calibration syringe. All metabolic data were corrected with standard temperature and pressure, dry 
(STPD).  

Subjects performed five 5-minute reaching blocks at each of the five fixed speeds. The speeds for these five 
reaching blocks were randomized for each subject. Each 5-minute reaching block began with 20 practice trials 
during which no energetic data was recorded. After the practice trials, subjects placed the clip on their nose, inserted 
the mouthpiece, and breathed for ~1 minute while sitting quietly. After this 1-minute breathing period, subjects 
performed N number of reaches, where N was chosen to last ~5 minutes. Thus, all subjects performed the same 
number of reaches for a given reaching speed and reach distance. In between reaching blocks, subjects rested for at 
least 5 minutes during which no energetic data was recorded. If subjects were naïve to reaching with the robotic arm, 
we asked them to come in for a brief ~15 minute familiarization session the day prior to the data collection. The 
familiarization session involved short reaching blocks of 50 trials at relatively slow and fast speeds until the subject 
appeared to be comfortable with the robotic arm and the task. Only the trials performed during the last 3 minutes of 
each reaching block, corresponding to the steady-state metabolic data, were used in the calculations. 

We only analyzed metabolic data with respiratory exchange ratio, 
   
RER = !VCO2

/ !VO2
, values less than 1.0 

and generally below 0.85, suggesting that oxidative metabolism was primarily involved [S21]. Normal resting RER 
values range from 0.74 to 0.87, partly depending on diet and other factors [S22, S23]. 

We calculated the average gross metabolic rate to perform the task in terms of Joules per second using the 
Brockway equation [S24].  As we were interested only in the cost of moving the arm, we calculated the net 
metabolic rate by subtracting the bias representing the cost of sitting quietly with the hand resting in the cradle. To 
obtain a movement’s net metabolic cost in units of Joules, we multiplied the measured net metabolic rate in J/s for 
each movement duration and distance, by trial duration. Trial duration is the time between the start of consecutive 
movements, which represents the sum of the movement duration, the inter-trial time, and reaction time. The net 
metabolic rate for a movement of a fixed distance and duration was then calculated as the net metabolic cost of the 
movement divided by the movement duration. Note that   !er  represents the average not the instantaneous metabolic 
rate over the course of a movement. We next parameterized the relation between a movement’s net energetic rate 



	
	

and the duration and distance of the movement. We fit metabolic rate to Eq. (1), to determine the free parameters a, 
b, i, and j.  The distance d was known. The effective mass of the arm and robot was estimated as   m = 2  kg, based on 
an inertial model of the arm using standard anthropometric values (see section on Mass of the Arm and Movement 
Vigor for more details regarding the arm model).    

 
SIMULATIONS 
Goodness of fit for each model was determined by calculating the correlation coefficient and the sum of squared 
errors, SSE. Parameter values and goodness of fit for each simulation are provided in Supplemental Tables S1-S3. 
Simulation code is available upon request. 
 
Mass of the arm and movement vigor 
We tested the predictions of the theory in conditions where the mass of the limb was varied via the direction of the 
reach (Figure 2).  We considered an inertial model of the human arm that was composed of two segments, with the 
following properties:   

 

  

d1 = 0.33 d2 = 0.43 meters

m1 = 1.93 m2 = 1.52 kg

λ1 =
d1

2
λ2 =

2d2

3
meters

I1 = 0.014 I1 = 0.019 kg m2

 

In the above expressions, di  is length of each segment, m is mass, λ  is length from point of rotation of the segment 
to its center of mass, and I is the inertial of the segment, with the subscript 1 referring to the upper arm, and 
subscript 2 referring to the forearm and hand.  To predict what the movement duration and velocity should be for 
each direction θ , we first computed the effective mass along that direction 

 
m θ( )  by computing the length of the 

vector that resulted when an acceleration of 1 m/s2 in the direction of movement was multiplied by the mass matrix 
M.  The result was scalar value function 

 
m θ( ) , which was then used to compute the predicted duration for a reach 

in that direction, with an amplitude of 10cm, that is,   d = 0.1  (as shown in Figure 2B).  We then computed the peak 
velocity of the resulting movement using a minimum-jerk trajectory.   

To compute effort of each movement, we used the energetic costs that we had measured in Figure 1A, and 
set  γ = 1 , with the only free parameter α .  We found that a value that provided a good fit to the data of Gordon et 
al. [S25] was α = 310 .   
 
Mass of the arm and choice of the movement  
We next tested the predictions of the theory by considering the choices that people made when they were free to 
choose their own movement direction.  In this experiment, the right and left arms were placed in a given 
configuration and the subjects were asked to make an out-and-back reaching movement to a circle of 15cm radius, 
but to a direction of their choice [S26].  The resulting probability distribution of the directions that they chose is 
shown in Figure 2C (gray region).  To see whether our theory could account for the data, we fit the data, with only 
one free parameter, α , keeping all other parameters unchanged from the simulations shown in Figure 2B.  We 
found that a value that provided a good fit to the data was  α = 100 .  

We first computed the effective mass for the left and right arms for the out-and-back movement by using 
the mass at the start point and each possible turn-around point about a circle of 15cm radius.  We then used this 
effective mass to predict the duration of each 30cm movement, and then to compute the utility of that movement.  
For each possible movement direction we computed its utility, and then computed the ratio of this utility to the sum 
of utilities across all movement directions, producing the following probability:   

 

  

Pr θ i( ) = J θ i( )
J θ i( )

i
∑

 (S30) 

The results are shown with the black curve in Figure 2C, with the effective mass distribution for an out-and-back 
movement plotted in Figure 2D. In Figure 2E, the sum of utilities for quadrants 1 and 3 is compared to the fractions 
of trials that the subjects chose to reach to those quadrants. 



	
	

Our formulation of utility function was further tested by considering the choices that people made when 
they were given the option of reaching to one of two possible targets (Figure 2F).  The idea was that for each target, 
the effective mass of the movement described the utility for that movement, and the difference in the utilities 
associated with the two targets should describe the probability of choosing one target over another.  We kept the 
parameters that we had found in Figure 2C unchanged.  This produced a utility function with nothing to fit.  To 
compute the effective mass for the reach to a given target, we computed the effective mass at the start and end points 
and averaged the two.  To compute the probability of choosing a target, we used a logistic function in which the 
probability was a function of the difference in the utility of each target.  Target T1 had a utility that was 16% larger 
than the utility of target T2.  When the two targets were equally distant from the start point, the subjects chose target 
T1 on around 80% of the trials. To model the choice of targets as a function of movement distance, we used a 
logistic function: 

 
  
Pr(T1) = 1+ exp k 1

2
−

JT1

JT1 + JT 2

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

  (S31) 

Here, k is a free parameter representing noise in the decision making process and was fixed to the same value in all 
simulations. Figure 2H illustrates the fit of the function to the data for the probability of choosing target T1 over 
target T2, and target T3 over target T4. As the distance to target T1 and T3 increases, the preference shifts to target 
T2 and T4. In the logistic function, the only free parameter was k, which we found to be 28 for the data in Figure 2I. 
 
To walk or to fly 
One of our main ideas is that representation of effort may depend on temporally discounted energetic cost of action.  
To test this idea, we considered an experiment in which both the caloric values of reward and the energetic cost of 
performing the action were objectively known.    

Bautista et al. [S27] trained starlings to choose between walking a short distance or flying a long distance to 
acquire a piece of food.  The caloric content of this reward was known,  α = 1.3x103 , as was the energetic rate 
associated with walking, perching, and flying:     !ew = 2 , 

   
!ep = 1.09 , and 

   
!ef = 31.7 .  Time spent in each act was also 

known:   tw = 0.6 , 
  
tp = 1.25 , and 

  
t f = 1.1  sec.  According to our theory, the utility function takes the following form: 

 
  
J = α − e

1+ γ T
  (S32) 

Here, T is total travel time,  e  is energetic cost of the movement, and γ  is a temporal discounting factor.  The 
variable T represents the time the animal spends performing three different activities: moving, perching, and 
handling the food. The movement time  tw  is the time the birds spend walking in a one-way trip (or time spent 

flying, represented as 
 
t f ).  In addition to walking or flying, the animals spent time perching in between walking or 

flying one-way trips (
 
tp ), and there is additional time spent handling the reward ( th ) before they consumed it.  If the 

animal chose to walk  nw  times to acquire reward, the travel time is: 

 
  
Tw nw( ) = 2nw tw + tp( ) + th  (S33) 

Bautista et al. [S27] estimated the energetic rate during perching 
  
!ep  from previous recordings and assumed that the 

energetic rate of handling   !eh  was the same.  Thus the total energetic cost for making  nw  walking trips is: 

 
   
ew nw( ) = 2nw !ewtw + !eptp( ) + !epth  (S34) 

Combining the above equations, we find the utility for the choice of taking  nw  walking trips: 

 

   

Jw nw( ) =
α − 2nw !ewtw + !eptp( ) + !epth( )

1+ γ 2nw tw + tp( ) + th( )   (S35) 

We can similarly define the utility for flying, 
 
J f .   



	
	

The indifference point is found by setting 
 
Jw nw( ) = J f n f( )  and solving for  nw . The only free parameter is 

γ .  We found that changing γ had a monotonic effect on the indifference curve: as Figure 3A illustrates, small γ  
(patient animal) led to a preference for walking, whereas large γ  (impulsive animal) led to a preference for flying.  
The data was best fit for  γ = 0.03 .   

If neither reward nor effort is temporally discounted, then there are no free parameters in the utility 
function.  The number of walks is proportional to the number of flights, where the proportion is determined by the 
ratio of the energetic cost of flying to walking (Figure 3B).   

Finally, if reward is temporally discounted but not effort, then once again there is only one free parameter, 
γ .    However, in this case changing γ  has a non-monotonic effect on the indifference curve.  When γ  is very 
small (patient animal,  γ = 0.0001), there is a preference for walking (Figure 3C).  When γ  is very large (impulsive 
animal,  γ = 1 ), there is once again a preference for walking (Figure 3C).  The closest that we can come to the 
measured data is with  γ = 0.007 , which provides a poor fit.  Indeed, if we assume that effort is not temporally 
discounted, the mean-squared error between the model and data is an order of magnitude larger than if effort is 
temporally discounted. 
 
Sensitivity of results to parameter values 
We chose to represent utility as a sum of effort and reward.  A number of earlier approaches have used a 
multiplicative approach, where effort multiplicatively discounts reward [S14-S16].  An additive formulation is a 
better fit to the data because a multiplicative interaction cannot account for the observation that increased reward 
results in increased movement vigor [S10, S28]. 

We chose to discount the utility via a hyperbolic function of time.  Earlier works have suggested an 
exponential discounting [S18].  Regardless of parameter values, hyperbolic temporal discounting is a better fit to the 
data because exponential discounting cannot account for the observation that vigor declines with increased inter-trial 
interval [S12]. Hyperbolic discounting performs as well or better, compared to exponential discounting in the 
choices birds made in walking vs. flying and the choices people made in isometric force production. 

We considered the possibility that only reward but not effort may be temporally discounted.  Such a 
scenario produced a model that had the same number of parameters as in the utility where both effort and reward 
were temporally discounted.  However, we found that temporal discounting of reward and effort always produced a 
better fit to the measured data in choices that birds made in walking vs. flying, and choices that people made in 
isometric force production. 
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