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Is a “loss of balance” a control error signal anomaly? Evidence for
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Abstract

Given that a physical definition for a loss of balance (LOB) is lacking, the hypothesis was tested that a LOB is actually a loss of effective
control, as evidenced by a control error signal anomaly (CEA). A model-reference adaptive controller and failure-detection algorithm were
used to represent central nervous system decision-making based on input and output signals obtained during a challenging whole-body planar
balancing task. Control error was defined as the residual generated when the actual system output is compared with the predicted output of
the simple first-order polynomial system model. A CEA was hypothesized to occur when the model-generated control error signal exceeded
three standard deviations (3�) beyond the mean calculated across a 2-s trailing window. The primary hypothesis tested was that a CEA is
indeed observable in 20 healthy young adults (ten women) performing the following experiment. Seated subjects were asked to balance a
high-backed chair for as long as possible over its rear legs. Each subject performed ten trials. The ground reaction force under the dominant
foot, which constituted the sole input to the system, was measured using a two-axis load cell. Angular acceleration of the chair represented the
one degree-of-freedom system output. The results showed that the 3� algorithm detected a CEA in 94% of 197 trials. A secondary hypothesis
was supported in that a CEA was followed in 93% of the trials by an observable compensatory response, occurring at least 100 ms later, and an
average of 479 ms, later. Longer reaction times were associated with low velocities at CEA, and vice versa. It is noteworthy that this method
of detecting CEA does not rely on an external positional or angular reference, or knowledge of the location of the system’s center of mass.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In any country and in any language, humans intuitively
understand what is meant by a “loss of balance” (LOB).
Yet, how and when the central nervous system (CNS) de-
cides, in quantitative terms, that a LOB has occurred is not
understood. The noun ‘balance’ is defined in the Oxford
English Dictionary (OED) as ‘that which balances, or pro-
duces equilibrium’, and as ‘stability or steadiness due to the
equilibrium prevailing between all the forces of the system’.
For slow, quasistatic movements, balance is said to be con-
trolled when the projection of the center of mass (COM),
usually the center of gravity (COG), is maintained within
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the base of support (BOS). In more rapid movements, work
by Pai et al. has shown that, while rising from a chair, bal-
ance can also be controlled in a ballistic sense, even when
the COG lies outside the BOS, as long as the COM velocity
lies within certain lower and upper bounds[1,2]. One can,
therefore, infer from this work that LOB occurs if the COM
velocity–position limits are exceeded in this chair rise task.
Thus the balance theory proposed by Pai et al. is dependent
upon COM position and velocity with respect to the BOS.
On the other hand, Wu et al. proposed that a fall occurs
when the speed of a certain point on the body exceeds a
fixed absolute limit[3]. In that scheme COM position and
BOS are not involved in the definition of a LOB. In a less
quantitative approach, an attempt was made to distinguish
between a LOB and slips, trips or falls in occupational acci-
dents by defining LOB subjectively as ‘any temporary situ-
ation whereby one loses or expresses a difficulty maintain-
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Fig. 1. Block diagram representations of the feedback control model of
balance: in overview (a) and in more detail (b).

ing body equilibrium or stability’[4]. Clearly, differences
of opinion exist on the physical definition of a LOB.

In the event of a fall, the only externally observable ev-
idence that a human has perceived a LOB is an attempt to
recover their balance, usually by a rapid adjustment of body
configuration, such as the use of a compensatory step. Sev-
eral studies have used this evidence to describe when the
switch from a postural adjustment to a compensatory step
becomes necessary as perturbation direction is varied and
its magnitude is increased[5–8]. A compensatory stepping
response turns out not to be a strategy of last resort, how-
ever, but is often initiated well before the COG is displaced
outside the BOS[5,6]. This paper addresses the unknown
mechanism(s) by which humans determine that a LOB has
occurred.

Let us begin by positing that a ‘LOB’ is a loss of ef-
fective control of balance, as evidenced by the appearance
of a control error anomaly (CEA) (seeSection 4). We use
the word ‘control’ here as defined in the OED: ‘the fact of
controlling, or checking and directing action; the function
or power of directing and regulating’. Similarly, we use the
word ‘anomaly’ here as it is defined by the same source: as
an ‘irregularity, deviation from the common order, excep-
tional condition or circumstance’. We therefore model the
body as a mechanical system with an input signal, a con-
troller, a plant, feedback of the output signal (Fig. 1a), and
system states that are normally both observable and con-
trollable. As long as the human is conscious, and we shall
assume that to be the case in this analysis, the system con-
troller monitors system states and stability via vestibular,
visual and/or somatosensory afference.

When a human performs any balancing task, the system
being controlled is inherently an unstable system, by defi-
nition of what it means to ‘balance’ a mass in a force field.
In his authoritative text, Ogata defines control as ‘the act of
measuring the value of the controlled variable of the system
and applying the manipulated variable (input) to the system

to correct or limit deviation of the measured value from a
desired value’[9]. Thus, whether in unsupported sitting,
standing, or walking the body is unstable unless the central
nervous control system exerts control over body configura-
tions and its interactions with the environment. Its control
system must also reject internal and/or external perturbations
in order to prevent temporary instability about what control
engineers call an ‘operating point’. In the event of a CEA
a change in control strategy is necessary to regain stability.

To identify what might trigger this change in strategy,
we start by modeling the CNS control of balance using a
model-reference adaptive control architecture (Fig. 1b). The
proposed architecture has three main components: a forward
internal model, the creation of the internal model using
system identification techniques, and a failure-detection
algorithm. The notion of an internal model being used
by the CNS is not new. Wolpert et al. provided evidence
for a forward internal model and proposed that the CNS
internally simulates dynamic behavior of the motor sys-
tem in planning, control, and learning[10]. Similarly, van
der Kooij et al. showed that a control model with an in-
ternal model that includes knowledge of body dynamics,
sensory dynamics and external environment can describe
how humans compensate for environmental changes[11].
Although recent work has been based on an internal model
and optimal estimation theory, there is no engineering de-
scription of how such a model may be created. Thus far,
researchers have obtained the model pre-hoc from dynamic
equations and anthropometry. As an example, Johansson
et al. developed an optimal control model of posture and
locomotion that used adaptive control in the case of un-
known or uncertain parameters[12]. The parameters were
updated as part of a linear regression problem with a least
squares solution. Their model operates on the assumption
that the initial model parameters are known. We shall exam-
ine the possibility, however, that the system might employ
self-identification techniques to circumvent the requirement
for a priori knowledge of initial model parameters.

In this work, a method is proposed whereby a dynamic
description of the internal model of the task is created online,
or bootstrapped from initial steady-state data, using system
identification techniques. This has the advantage of on-line
implementation and adaptation. In addition, the proposed
method obviates the need for a priori knowledge or estimates
of the model parameters. Based on the control error between
the model and the plant output, on-demand adaptation (in the
form of a large postural correction) is initiated in the event
of a CEA. In the absence of a disturbance, we regard a CEA
as a system failure resulting from a malfunction in one or
more subsystems that tends to cause an undesired state[13].

Our next goal is to detect the CEA, the signal that triggers
the attempt to correct the above system failure. The detec-
tion of CEA can be couched as a failure-detection problem
involving both residual generation and decision-making.
In physical terms, the controller must monitor the control
error (or residual) between the model output (anticipated)
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and the actual output. The input is sent to both the model
and actual plant (Fig. 1b). The residuals are analyzed
by a sub-component of the controller we call the ‘CEA
detector’ using a failure-detection algorithm (Fig. 1b). The
CEA detector monitors the residuals and compares them
to the maximum allowable limits. The failure-detection al-
gorithm signals a CEA when the resulting residual crosses
a pre-defined threshold (upper control limit) that we shall
define as the 3� point (three standard deviations from the
mean). This information is relayed to the central controller,
where it is used in planning the control action.

Once the 3� threshold is reached, any compensatory
response that is initiated is externally observable; this re-
sponse is then confirmatory evidence that the controller was
“aware” that its compensatory action was needed. Without
this response, physical evidence of a CEA is not externally
observable in terms of kinematic or kinetic quantities al-
though, conceivably, newer brain imaging techniques might
allow one to detect CNS neuronal responses.

In this study we assume that a CEA is an event that can
be detected by an external observer monitoring the same
physical parameters known to be observed by the CNS. Then
a CEA can be defined to have occurred once a pre-defined
control error signale crosses a threshold level,ethresh, set
at three standard deviations (3�) above the mean of the
baseline signal. We selected 3� because in this one-sided
distribution this limit would constitute an unusual event, with
a less than 1-in-700 probability of occurring if the error is
assumed to be normally distributed.

The primary hypothesis (H1) that a CEA is detectable
once the error signal reaches a 3� threshold was tested in
healthy young volunteers asked to perform a balancing task
so challenging that a CEA was inevitable. This only became
obvious to them, however, after several trials. Physical con-
firmation of CEA was the onset of task failure within 2 s of
the instant of CEA detection (TCEA) (seeSection 4). A sec-
ondary goal was to examine the reliability of using the 3�

threshold to predict any impending compensatory response
by testing the secondary hypothesis (H2): any compensatory
reaction will invariably lag the instant of CEA by at least
100 ms. The 100 ms value was based upon results show-
ing the fastest volitional human response time to be on that
order[14,15].

2. Methods

2.1. Theoretical development

To test these hypotheses we considered the situation in
which a person is attempting to balance themselves over the
two rear legs of a chair (Fig. 2). The task was constrained
by the condition that the person can only control his or her
inclination by modulating the ground reaction forces (Rx,
Ry, Fig. 2) between the dominant foot and the floor. This
balancing task was modeled as an observer-based feedback

control system consisting of an input signal (the foot force),
a controller, a plant, an internal model, and feedback of
the command signal (anticipated output) and of the actual
output (angular position measure or its derivatives) (Fig. 1b).
The plant represents the configuration maintained by the
human body with the leg muscles as the actuators. Since the
subject was completely supported by the chair, the subject
and the chair may be modeled as a single inverted pendulum
pivoting about the line between the rear feet of the chair, P,
greatly simplifying calculations. The system thus modeled
is governed by the following equation of motion:

Iθ̈ = T + mgl sinθ (1)

The system mass, moment of inertia, acceleration due
to gravity, and distance from the pivot point to the COM
are denoted bym, I, g, andl, respectively. The input,T, is
the resultant ground reaction force acting on the dominant
foot multiplied by its distance from the pivot point, and the
angle,θ, is the angle of the COM with respect to the vertical
(Fig. 2).

In the analysis, particular attention was paid to the control
error, e, the difference between the output and command
signals (Fig. 1b).

e(t) = y(t) − ŷ(t) (2)

The output signal,y, represents the actual output,θ̈,
that the CNS has sensed through vestibular, proprioceptive,
and/or visual signals. In the described task, however, this
signal cannot be directly measured but was assumed to be
externally observable as the acceleration of the chair. Phys-
ically, the command signal,̂y(t), is the resultant movement
anticipated by the CNS due to the applied force. Using
the system equation of motion, it was possible to obtain a
parameterization of the internal model that would result in
the command signal as a prediction of the high-frequency
acceleration signal,̈θ, based on a known input. Physical

Fig. 2. Schematic of a subject starting his attempt to balance over the
line ‘P’ by varying the unipedal reaction forcesRx and Ry . Unbeknown
to the subject, the safety frame ‘F’ (along with padding on the floor,
not shown) protects the subject from injury. It acts once the system has
become unstable, is accelerating backwards, and has tipped backwards
by an angle of 35◦ from the system balance position.
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insight prompted us to separate the input signal into high
and low-frequency components,Thf andTlf , respectively:

T = Thf + Tlf (3)

The resulting equation of motion for the system is:

θ̈ = 1

I
Thf + 1

I
Tlf + mgl

I
sinθ (4)

To identify the controlled system and obtain parameter es-
timates forI, m, g, andl we started with a multiple, first-order
polynomial model:

ŷ(t) = c0 + c1u1(t) + c2u2(t) + c3u3(t) (5)

whereu1 = Thf , u2 = Tlf , u3 = sin(θ).
This equation represents a black-box model of the plant.

The output,̂y(t), is the model prediction for the acceleration
output,θ̈. In accordance with the objective of identifying the
controlled plant,u3 was removed as a regressor in (5) since
it was not a control input. Statistical analysis of the two
remaining regressors (Thf andTlf ) showed thatThf had the
greatest significance (P < 0.001). Therefore, in the interest
of simplicity, we used a simple first-order polynomial with
Thf as the single input,u(t):

ŷ(t) = c0 + c1u(t) (6)

The parametersc0 andc1 were obtained using least-squares
optimization applied to a steady-state interval of 2 s at the
start of the balancing task. The model was then used to
simulate the anticipated output given the measured input
for the duration of the task.

Merging (2) and (6) yields (7), after re-defininge as the
residual generated when the actual chair acceleration is com-
pared with the predicted output of a simple first-order poly-
nomial model (Fig. 3a, b).

e(t) = y(t) − ŷ(t) = θ̈ − (c0 + c1Thf) (7)

The 3� threshold algorithm detects a CEA whene crosses
the threshold set at three standard deviations (3�) above the
mean of the baseline performance data, as shown inFig. 4.
Also included inFig. 4 are the following details. First, the
model parameters were identified at the beginning of the
trial using the data in the fixed, 2-s window,a. The baseline
performance data is obtained fromb, a 2-s forward-moving
trailing window, which lagged the current time instant,t, by
100 ms. The mean,µb, and standard deviation,�b, obtained
from this window were then used to calculate the threshold
ethreshat timet, 100 ms later (9). Calculation of the moving
threshold commenced at ‘Start’, initially using the data ina
as baseline data, with a 100 ms delay (δ) to allow for neural

Fig. 3. Sample time history of each parameter from one subject along
with an illustration of the implementation of the data analysis methods:
(a) time history of the torque applied by foot; CEA onset is marked by
the solid vertical line; (b) corresponding calculated command and output
signals; (c) calculated control error (e) signal; (d) reaction onset.
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Fig. 4. Sample time history of the error (black) andethresh (gray) signals from one subject along with timing marks illustrating the salient variables given
in the text. The CEA is detected oncee crossesethresh. Points ‘F’ on the chair must strike the ground within window ‘c’, a 2-s limit following CEA.
Any voluntary or involuntary reaction must occur no earlier than 100 ms after CEA.

processing[11]. The moving 2-s window,b, continues to
move through the trial, calculating the threshold 100 ms
later. A CEA is detected when:

e > ethresh, (8)

where

ethresh = µb + 3�b (9)

andµb is the mean, and�b is the standard deviation of the
window:

b = e(t−2.1 s):(t−0.1 s)

In addition to the 3� threshold error criterion, the head
(and chair) angular acceleration and velocity at timet must
exceed published vestibular sensory thresholds, 0.00087
rad/s2 and 0.017 rad/s, respectively[16,17].

2.2. Experimental setup and procedure

Twenty healthy, young adult volunteers (ten males and ten
females) aged 18–25 years were tested. Males and females
had an average height of 176.6± 4.8 and 167.55± 5.0 cm,
respectively. All subjects gave written informed consent as
approved by the institutional Internal Review Board.

Subjects were tested in a sagittally-symmetric posture
while sitting in a sturdy, four-legged experimental chair with
a rigid head rest (Fig. 2). The legs and arms were main-
tained in a neutral posture, neither ab- nor adducted. Shoes
were not removed. Subjects were asked to grip the seat
with one hand on either side. A 200 N capacity two-axis
force-transducer was placed under the metatarsal joints of

the dominant foot. A lead brick was placed as a spacer be-
tween the foot force-transducer and the floor so that the ini-
tial posture of the ankle joint was neutral. The contralateral
foot rested on the chair frame.

The subject was asked to push down with the metatarsal
joints of their dominant foot in order to push themselves
slowly backwards until they (and the chair) were perfectly
balanced “for as long as possible” over its rear legs, P, with
no foot–ground contact. The dominant foot force was the
sole input to the one degree-of-freedom mechanical system
comprised of the subject and chair. To ensure this, the subject
was asked to constrain the head, neck, and torso as a rigid
body by using the chair for full support, and was directed to
maintain contact between their head and the support while
they were balancing. To ensure the subject’s safety, the hor-
izontal rungs of the chair were extended backwards by 1
m in order to prevent the chair from rotating backwards by
more than 35◦ with respect to the vertical, thereby prevent-
ing a backward fall (Fig. 2). Each subject performed ten
trials with their eyes open. No practice trials were allowed.

2.3. Data acquisition

Body segment kinematics, and foot (vertical and horizon-
tal component) reaction forces were recorded. Head orienta-
tion and location in three-dimensional space were measured
at 100 Hz using infrared head-mounted light-emitting diodes
(LED) markers and an Optotrak® 3020 motion analysis sys-
tem to the nearest tenth of a mm. Three non-collinear LEDs
were affixed to a headband oriented in the Frankfort plane.
One LED was attached to the chair’s rear leg, and one to the
headrest, allowing the inclination of both head and chair to



A.A. Ahmed, J.A. Ashton-Miller / Gait and Posture 19 (2004) 252–262 257

be measured throughout the trial. The foot reaction forces
were recorded after amplification to volt levels at 100 Hz us-
ing a 12 bit analog-to-digital converter and microprocessor.

The kinematic data were low-pass filtered with a cut-
off frequency of 3 Hz using fourth-order Butterworth filter
(Matlab®) and differentiated using a five-point differentia-
tion algorithm to obtain velocity and acceleration data. The
force data were also filtered with a fourth-order, low-pass
Butterworth filter (Matlab®) and a cutoff frequency of 3 Hz.
The high and low-frequency components of the filtered force
signal were separated using a cutoff frequency of 0.3 Hz and
all filtering routines were employed forward and backward
to minimize phase shift artifact.

Bilateral sternocleidomastoid myoelectric data were
recorded at 2 kHz from bipolar surface electrodes (2 cm
spacing) and root-mean-square values calculated. However,
subsequent analyses showed that these signals were too
variable to be useful as markers of the first response to
a CEA (seeSection 4). This data was, therefore, omitted
from the analysis and an alternative method was employed
to determine the onset of a first response.

2.4. Data analysis

The appearance of the first observable response, often a
righting reflex and consisting of a large flexion acceleration
of the head, neck and/or torso, was taken as first evidence
that the CNS recognized system performance as inadequate.
Detection of the onset of this movement was achieved by
monitoring the difference between the angular velocity of the
head and the chair. Once the difference increased to a level
greater than ten standard deviations above the mean of past
data, head movement was confirmed. Commencement of the
reaction was then traced back to the onset of the response
by visual inspection. Reaction time (RT) was defined to be
the duration between the instant of CEA detection (TCEA)
and onset of the response (Fig. 3d).

To test the primary hypothesis, each trial was labeled
as ‘successful’ if TCEA preceded the instant that the chair
safety stops, F, struck the ground by less than 2 s, the
maximum time that the chair could physically take to fall

Table 1
Performance statistics of the 3� algorithm

Males Females All subjects

Hypothesis H1
Total trials, N1 98 99 197
Successful CEA detection, L, L/N1% 94, 95.9% 92, 92.9% 186, 94.4%
Average TF (SD) (s) 0.99 (0.168) 1.03 (0.186) 1.01 (0.177)

Hypothesis H2
Trials with reactions, N2 94 82 176
RT>100 ms, R, R/N2% 86, 91.5% 77, 93.9% 163, 92.6%
Average RT (SD) (ms) 443.4 (192.2) 514.6 (205.4) 479.0 (199.1)

The number of trials supporting the hypothesis H1 and H2 are denoted by L and R, respectively. The corresponding success rates (in %) are also given,
along with relevant temporal information.

backward. To test the secondary hypothesis, each trial was
labeled as ‘successful’ if the compensatory reaction lagged
the CEA by at least 100 ms, i.e. RT was greater then
100 ms.

Tests of the primary and secondary hypotheses were con-
ducted using the 3� algorithm. However, we also tested
the hypotheses using an alternative algorithm that estimated
the instant of CEA using fixed kinematic thresholds in the
manner of Wu[3]. This method searched the duration of
the trial for excessively large values of chair angular ac-
celeration and/or angular velocity greater than 0.1 rad/s2

and 0.03 rad/s, respectively. These values were determined
empirically. The performance of three algorithms using the
three possible combinations of these fixed kinematic thresh-
olds i.e. 0.1 rad/s2 (designated ‘Acc’), 0.03 rad/s (‘Vel’), 0.1
rad/s2 and 0.03 rad/s (‘Acc/Vel’), was compared with the
detection and predictive abilities of the 3� algorithm.

A sensitivity analysis was conducted on the 3� algorithm
parameters to determine their respective effect on the suc-
cessful detection of CEA. Values for the vestibular sensory
threshold, size of the parametric identification (ID) window,
size of the moving window, and the high-pass frequency
cutoff used to separate the force signal were all varied in
increments of 25% of their original value (Table 2).

Gender differences were examined using the independent
two-sidedt-test, and trial effect was evaluated with a single
factor analysis of variance, withP < 0.05 being considered
statistically significant.

3. Results

The results indicate that the 3� algorithm reliably de-
tected a CEA 2 s before the chair safety stops, F, contacted
the ground. The test of H1 was conducted on the set, N1, of
all 197 trials (98 male and 99 female subject trials). The al-
gorithm detected CEA with a 94.4% success rate (Table 1).
The average time between TCEA and the instant the chair
safety stops hit the ground, TF, was 1.01 s. One female trial
was lost due to software difficulties and two male trials were
not included due to excessive head movement. All CEA



258 A.A. Ahmed, J.A. Ashton-Miller / Gait and Posture 19 (2004) 252–262

Fig. 5. Frequency distribution of RT by trial number across all subjects.

detection failures were false positives, i.e. CEA was detected
more then 2 s before the chair stops hit the ground. Ten
out of these 11 failures exhibited both significantly lower
absolute error and angular acceleration at TCEA than did the
successful trials (P < 0.0001).

In testing H2 only the set, N2, of trials exhibiting a com-
pensatory reaction and a successfully-detected CEA could be
analyzed, so this number was a subset of N1 (Table 1). The

Fig. 6. Plots of (a) RT vs. velocity at TCEA with logarithmic trend line
y = −0.1311 ln(x) + 0.0087; and (b) RT vs. acceleration at TCEA with
logarithmic trend liney = −0.1107 ln(x) + 0.173. The data shown are for
the 163 trials exhibiting compensatory reactions (Table 1).

algorithm successfully predicted a compensatory response
in N2 that lagged TCEA in 163 (92.6%) of the 176 trials;
12 female trials could not to be used due to the lack of a
compensatory reaction (seeSection 4). For both males and
females, a significant proportion of RTs were greater than
the hypothesized 100 ms minimum (P < 0.001) (Fig. 5). The
following results were calculated using the data from the
163 trials in which the compensatory reaction was predicted
successfully. There was no significant statistical difference
between the RTs exhibited in males and females (P < 0.30),
nor a significant trial effect on RT (P < 0.35). The average
RT was 479.0 ms; longer RTs were associated with low ve-
locities and accelerations at TCEA, and vice versa. A linear
regression analysis using least squares fit a logarithmic trend
line (R2 = 0.82) through a series of points representing the
average RT of all trials exhibiting a velocity within a 0.01
rad/s interval. Similarly, a logarithmic trend line (R2 = 0.48)
described the relationship between RT and acceleration at
TCEA (Fig. 6).

There was no significant trial effect on the success of
either H1 or H2. An analysis of only the first five trials across
all subjects provided success rates of 91.92 and 93.18% for
H1 and H2, respectively. The average RT was 426.0 ms.

The optimal threshold level was found to be 3�; lower
levels resulted in more false positives, while higher levels

Fig. 7. Results of algorithm sensitivity to changes in threshold: (a) effect
of threshold magnitude on algorithm failure rates; and (b) a comparison
of algorithm performance using the 3� criterion and three examples of
a fixed kinematic threshold.
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Table 2
Sensitivity of successful CEA detection and reaction prediction (in %) to systematic changes in algorithm parameter values

Algorithm parameters Percent change in parameters

−75% −50% −25% Original +25% +50% +75% +100%

Sensory thresholds (rad/s) 2.18e−4 4.35e−4 6.53e−4 8.7e−4 10.9e−4 13.04e−4 15.23e−4 17.4e−4
(rad/s2) 0.00425 0.0085 0.01275 0.017 0.02125 0.0255 0.02975 0.034

H1 (%) 64 76 85 94 99 99 99 100
H2 (%) 96 95 95 93 86 86 82 79

ID window (s) 0.5 1 1.5 2 2.5 3 3.5 4
H1 (%) 91 93 93 94 93 90 89 89
H2 (%) 85 91 91 93 90 89 89 89

Moving window (s) 0.5 1 1.5 2 2.5 3 3.5 4
H1 (%) 67 84 89 94 96 95 96 94
H2 (%) 94 91 92 93 92 92 90 89

Cut-off frequency (Hz) 0.075 0.15 0.225 0.3 0.375 0.45 0.525 0.6
H1 (%) 94 93 90 94 94 94 96 97
H2 (%) 85 86 88 93 93 94 92 91

resulted in delayed CEA detection times (Fig. 7a). The algo-
rithm performance was relatively insensitive to 25% changes
in the vestibular sensory thresholds, the size of the mov-
ing or ID windows, or the cutoff frequency (Table 2). The
goodness of fit (R2) of the internal model regressed from
the 2 s identification window at the start of each trial also
varied with the high-pass cutoff frequency, forming an in-
verted U-shaped distribution with a maximumR2 value of
0.79 (averaged across all trials and all subjects) at 0.3 Hz
(Fig. 8).

All three combinations of the algorithm employing fixed
kinematic thresholds provided reduced rates of success in
detecting CEA and in predicting a compensatory response
(Fig. 7b). In those trials in which CEA was detected suc-
cessfully, both the Acc and Acc/Vel thresholds provided less
average recovery time before the chair stops hit the ground

Fig. 8. Plot of R2 values for the internal model regressed from the 2
s identification window (averaged across all trials for all subjects) vs.
high-pass cutoff frequency.

than did the 3� algorithm (0.82, 0.87, and 1.01 s, respec-
tively).

4. Discussion

The findings of this study support the first hypothesis, H1,
that a CEA can be detected by tracking externally-observable
physical input and output parameters while healthy subjects
perform a challenging balancing task. The scheme involves
comparing the current system residual with a 2-s aggregation
of past states, accumulated when the system was known to
be controlled.

The presence and timing of a compensatory reaction (H2)
provides evidence for a CEA as a valid indicator of a LOB.
The fact that CEA is detected using signals normally ob-
servable to the CNS suggests that the CNS may have indeed
detected a CEA and responded to it. Using position–velocity
stability limits, Pai et al. were able to predict a compen-
satory stepping response in 65% of experimental trials[2].
The 3� algorithm, using the high frequency components of
an acceleration-based measure of how well the movement
is controlled, provided a higher prediction of a compen-
satory reaction (92.6%). The trials in which the algorithm
failed to successfully predict a compensatory response
may have been the result of a conservative strategy on
the part of the subject, or increased values of velocity and
acceleration.

When the absolute values of the error and accelera-
tion were uncharacteristically low, the algorithm failed to
correctly detect a CEA despite the 3� threshold being ex-
ceeded. This result implies that perhaps, in addition to a
moving relative threshold on the error, a fixed minimum
error threshold could be added to the algorithm if needed.
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It is noteworthy that the reliability of the 3� algorithm in
detecting a CEA, and predicting a compensatory reaction,
was greater than when using a competing method based on
fixed angular acceleration and/or velocity thresholds. Dis-
advantages of using fixed kinematic thresholds are their de-
pendence on the task as well as the need for their a priori
empirical determination. Wu et al. used fixed thresholds on
horizontal and vertical velocity to detect falls an average of
0.42 s before the end of the fall[3]. In the present paper,
the 3� algorithm not only provided greater response time
before the end of the fall (1.01 s), but it could also predict
a recovery reaction.

The present model uses system identification techniques
to create an internal model online. This strategy contrasts
with earlier efforts. Although the idea of an internal model
is familiar, its creation without any assumption about initial
parameters is, we believe, novel. Despite the fact that in this
chair balancing task, subjects had no knowledge of the mass
or mass distribution of the chair and, prior to the first trial,
were not permitted to experiment with it, the online system
identification worked satisfactorily.

4.1. Effect of algorithm parameters

An identification window of 2 s provided the regression
analysis with 200 observations and proved optimal for reli-
able parametric identification in this task (‘ID Window’ in
Table 2). However, three trials only allowed 1 s for system
identification, due to their brief duration (3 s). The effect of
the duration of the identification interval on this and other
tasks, and the dynamics of parameter identification with re-
spect to changing tasks, environments, and learning, are wor-
thy of further investigation. Body segment movements may
be modeled internally and the accuracy of that model would
affect decisions concerning the state of the system, and the
timing and choice of a postural correction.

Another important aspect of the system identification is
the cutoff frequency used to separate the filtered input sig-
nal in preparation for the regression analysis. In order to re-
liably predict the output signal, the regression analysis was
only applied to the frequency range of the input signal in
which a sinusoidal input would result in an output signal
of steady amplitude. The cutoff frequency approximates the
−3 dB point of the linearized system’s frequency response,
when the amplitude of the output response to the input has
been reduced by 3 dB. Applying a lower or higher cutoff
frequency will decrease the goodness of fit of the internal
model, decreasing the algorithm’s success in both detecting
CEA and predicting a compensatory reaction (Fig. 8). This
implies that the accuracy of the internal model is highly im-
portant for the successful initiation of this reaction.

The size of the moving window used by the algorithm is
a function of the frequency content of the error signal. The
algorithm operates on the assumption that a value outside
the 3� limits has a 0.13% chance of occurrence and thus is
probably a CEA. This rule only applies, however, if the data

is normally distributed. The moving window must, therefore,
be large enough to provide data with a normal amplitude
distribution. In addition to optimal window size, the model
itself should be sufficient to provide normally-distributed
residuals.

The 2-s limit, applied following detection of the CEA in
order to furnish evidence of task failure, was based on know-
ing that the chair and subject together took approximately 1
s to fall from the balance point to the ground. An additional
second was added because the occurrence of a compensatory
reaction would slow this descent. We also assumed that in
order to maximize the likelihood of a recovery, the CNS
would detect a CEA before the onset of the fall if possible.
A longer limit would have compromised the selectivity of
the algorithm.

For this particular task, an upper threshold on the error
was used to detect CEA, reflecting the fact that the con-
trol input and threat of injury were unidirectional. This was
because only positive error, evidence of excessive posterior
acceleration, was cause for concern. In tasks in which the
control input and/or the threat of injury is bi-directional,
both upper and lower thresholds on the error signal would
be implemented.

4.2. On the compensatory response

Our CEA theory does not require that the first observ-
able response is necessarily a reflexive or righting response.
It simply has to be the first observable change in control
strategy, whether appropriate or not. In the case of a novel
balancing task, that response may well be inappropriate and
even detrimental; in the case of a well-learned and familiar
task, it would usually be both appropriate and efficacious.

The rationale for using the head flexion response as the
indicator of a change in control strategy is that it was the
most common, and probably the most efficacious, response
to the CEA in this particular balancing task. When it occurs,
this obvious change in control strategy suggests that a CEA
had been detected by the CNS. Although other reactions
were exhibited by subjects, including vocalization, a large
change in foot force, and/or raising the hands or arms, the
head reaction was the most consistently-exhibited reaction.
A large change in foot force may be ambiguous because it
could simply be a variation of the original control strategy of
modulating the ground reaction force, and the vocalization
has no effect on system control. In fact most subjects only
used the head flexion response and this either preceded or
occurred simultaneously with any lifting of the hands or
arms.

Subjects were instructed to maintain contact between
their head and the head support on the chair while they
were controlling the chair, thereby inhibiting the vestibu-
lospinal reflex and ensuring that any recovery reaction was
voluntary. It also allowed us to determine, from the change
in head velocity relative to the chair, when a change in
control strategy occurred. An additional assurance that the
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movement was indeed voluntary was the requirement that
the RT had to be greater than 100 ms, or on the order of the
fastest voluntary head movement RTs (107 ms) recorded
in seated subjects[14]. Reflexive head movements due to
whole-body linear acceleration are known to be shorter than
this, with latencies in the range of 73–81 ms[18].

Even though root-mean-square sternocleidomastoid my-
oelectric (EMG) data were measured for all the subjects, a
pilot analysis demonstrated that they proved unreliable as an
indicator for CEA. This was due to muscle pre-activation,
and therefore, increased variability, caused by subjects tend-
ing to coactivate the neck musculature as they approached
the balance point. So the EMG data were not used in any
further analyses.

4.3. Limitations

This study has several limitations. First, the only task that
was studied relied on continuous feedback control. It re-
mains to be determined whether the 3� algorithm will work
for tasks, such as gait, that involve intermittent feedback and
control of surface reaction forces. Second, we have not at-
tempted to identify any of the neural structures that might
implement the proposed control scheme. Wolpert et al. have
provided results that point to the location of internal mod-
els as being in the superior parietal lobe[19]. As for CEA
detection, the cerebellum may well be involved since it is
known to evaluate the error between intention and action
[20]. Thus CEA detection may likely occur in the higher
centers of the CNS, along with the inherent transmission de-
lays to and from an involved extremity thereby engendered.
Third, the algorithm requires an initial steady-state interval
to identify the internal model. In real life, this interval is
not available in some tasks and the CNS must then base the
internal model on recall of prior experience with similar ac-
tivities. Fourth, the onset of the reaction was determined by
visual inspection, and is therefore, open to subjective bias.
However, the potential error in estimating RT could not have
been greater than 5% due to the rapidity of the reaction.

The final limitation is that subject habituation may have
affected the compensatory reaction. Once subjects lost con-
trol, they were instructed to attempt to save themselves
in any way possible, with the exception of grabbing an
external structure. But once the system became unstable,
it was extremely difficult to stabilize, due to its consider-
able inertia as well as the small magnitude of the available
restoring torque (developed by lifting the weight of the foot
and dominant limb from the force transducer). In addition,
due to the fact that we had to provide safety stops to reduce
injury risk, some subjects eventually realized after several
trials that the compensatory reaction was not mandatory.
As a result, a few subjects eventually appeared to choose
not to react. However, 11 of the 12 trials lacking compen-
satory reactions occurred in just two such subjects. Other
evidence that subject adaptation had taken place during the
ten trials also comes from RTs being lengthened, perhaps

by an increasing lack of urgency in response. So, any lack
of urgency with which a subject triggered a reaction skewed
the RT distribution to the right inFig. 5. Future work might
focus on tasks in which the compensatory reaction and the
urgency of its use are inherently assured. Lastly, the longer
RTs that we observed may also be a result of lower ve-
locities and accelerations. For example, Nashner et al. also
found an inverse relationship between response times and
postural sway rate[16]. In the event of the smallest velocity
values, response times were on the order of 1.4 s, similar
to the maximum RTs observed in this task.

4.4. Why control error anomaly rather than loss of stability

We have already noted that any human balancing task in-
volves the control of an inherently unstable system, by defi-
nition. Therefore, a discussion of the concepts of control or
balance, must address the question of stability and loss of
stability. In this study we define a CEA as occurring when the
control error signal crosses a threshold (or bound) set at 3�,
i.e. the system has failed to respond to the given input with
an output within a certain limit. Thus a CEA in a balancing
task implies a loss of stability (and vice versa) in the sense
that the system has failed to respond to a bounded input with
a bounded output. Over 300 years ago, Francis Bacon once
wrote, ‘Whereas the meaning ought to govern the term, the
term governeth the meaning’[21]. We, therefore, use ‘con-
trol error anomaly’ here in preference to ‘loss of stability’
for several reasons. First, it describes the underlying mech-
anism and underscores the recognition of an unusual event
that occurs after skill has been achieved in the performance
of a motor task. Second, because there are many different
notions of stability (e.g. asymptotic, conditional), in static,
dynamic, passive or nonlinear systems, ambiguity results
from using the term ‘loss of stability’ since that term does
not technically imply that a control input is present. To those
in the fields of mechanical dynamics and control theory, no-
tions of stability have rigorous definitions and are often re-
stricted to simplified system types, such as linear systems.
The question of the stability of human balance, however,
cannot usually be simplified to consideration of the stability
of a linear system. Therefore, following Bacon’s advice, we
believe that a CEA more accurately describes the physical
behavior underlying a LOB while circumventing possible
misinterpretation of the term ‘loss of stability’.

4.5. Methodological advantages

The simplicity of the model used to predict the antici-
pated output is attractive. It suggests that, in this challenging
balancing task at least, knowledge of COM position is not
critical to identifying and predicting the system dynamics.
Using only the frequency components of the input sig-
nal corresponding to the bandwidth of the output signal’s
frequency response, and a basic linear additive model, it
was possible to predict system performance fairly reliably.
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Therefore, one novel aspect of the 3� threshold hypothesis
is that it does not require the CNS to use position feedback in
the control of balance; any input that can reliably predict the
expected output will suffice. The output is also not restricted
to an acceleration signal; the only requirement is that the
signal be dependent upon the input, and that this relation-
ship can be quantified as an internal model. Furthermore,
this method can be expanded to incorporate multiple in-
puts, outputs, and error signals in the case of multi-segment
movement. Finally, the CNS does not need to identify where
the COM is in order to detect a CEA. This is in contrast to
many postural control theories that assume the body’s COG
must be maintained within its BOS[22–24]. The method
does not require the existence of absolute position cues, and
the boundaries of the BOS do not need to be calculated. It
can, therefore, be used to analyze quasi-static and dynamic
tasks alike, provided that a sufficient internal model can be
generated. The lack of a dependence on a fixed reference
position means the 3� threshold hypothesis may have ap-
plication in the design of fall detectors applied to the elderly
as well as to the automatic control of ambulatory robots.
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