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jn.00700.2019.—Decisions are made based on the subjective value
that the brain assigns to options. However, subjective value is a
mathematical construct that cannot be measured directly, but rather is
inferred from choices. Recent results have demonstrated that reaction
time, amplitude, and velocity of movements are modulated by reward,
raising the possibility that there is a link between how the brain
evaluates an option and how it controls movements toward that
option. Here, we asked people to choose among risky options repre-
sented by abstract stimuli, some associated with gain (points in a
game), and others with loss. From their choices we estimated the
subjective value that they assigned to each stimulus. In probe trials, a
single stimulus appeared at center, instructing subjects to make a
saccade to a peripheral target. We found that the reaction time, peak
velocity, and amplitude of the peripherally directed saccade varied
roughly linearly with the subjective value that the participant had
assigned to the central stimulus: reaction time was shorter, velocity
was higher, and amplitude was larger for stimuli that the participant
valued more. Naturally, participants differed in how much they valued
a given stimulus. Remarkably, those who valued a stimulus more, as
evidenced by their choices in decision trials, tended to move with
shorter reaction time and greater velocity in response to that stimulus
in probe trials. Overall, the reaction time of the saccade in response to
a stimulus partly predicted the subjective value that the brain assigned
to that stimulus.

NEW & NOTEWORTHY Behavioral economics relies on subjec-
tive evaluation, an abstract quantity that cannot be measured directly
but must be inferred by fitting decision models to the choice patterns.
Here, we present a new approach to estimate subjective value: with
nothing to fit, we show that it is possible to estimate subjective value
based on movement kinematics, providing a modest ability to predict
a participant’s preferences without prior measurement of their choice
patterns.

decision making; motor control; subjective value; vigor

“A true theory of economy can only be attained by going
back to the great springs of human action—the feelings of
pleasure and pain.” William Stanley Jevons (1866)

INTRODUCTION

Theory of subjective value was introduced in the 19th
century to account for the fact that in voluntary transactions,
each party values the goods, labor, or money that they receive
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more than the goods, labor, or money that they provide (Jevons
1866; Menger 1871). The theory posited that subjective value
is not specified by an objective property of the good, but rather
the incremental increase in pleasure that an individual assigns
to acquisition of that good (Jevons 1866). Although subjective
valuation is an important aspect of behavioral economics, it is
an abstract quantity that cannot be measured directly. Rather, it
must be inferred from decisions that individuals make (von
Neumann and Morgenstern 1944), often in scenarios involving
lotteries and risky options.

A serendipitous discovery in motor neuroscience has been
the observation that factors that affect preference, such as
reward and effort, also affect movements (Shadmehr et al.
2010, 2019). For example, in goal-directed movements, people
and other primates move with a shorter reaction time and
greater velocity toward stimuli that they associate with greater
gain (Kawagoe et al. 1998; Milstein and Dorris 2007; Sum-
merside et al. 2018; Xu-Wilson et al. 2009; Yoon et al. 2018).
Recent work (Sedaghat-Nejad et al. 2019) has shown that if
presentation of a stimulus results in a reward prediction error,
the movement that ensues tends to be expressed with greater
vigor (defined as the reciprocal of reaction time plus movement
duration). Reward prediction error is the principal variable
that modulates dopamine release (Bayer and Glimcher 2005;
Schultz et al. 1997), and, intriguingly, stimulation of dopamine
around movement onset tends to increase movement acceler-
ation (da Silva et al. 2018). Thus, both the process of learning
subjective value from reward prediction error and control of
movement speed depend on dopamine, raising the possibility
that the vigor with which an individual moves toward an option
is partly influenced by the subjective value that they assign to
that option.

Previous work has established that when people are pre-
sented with a decision between two options, their deliberation
time is a measure of their strength of preference: participants
typically decide sooner if they prefer one stimulus much more
than another (Konovalov and Krajbich 2019; Spiliopoulos and
Ortmann 2018). Thus, these works have demonstrated that
certain aspects of behavior during decision making are related
to the difference in the subjective value of the two options.

Here, we asked a different question: suppose one could only
observe movements during presentation of a single stimulus,
but not during decision making. Can one infer subjective value
from the movements in response to single stimuli A and B and
then predict choice when the participant decides between A
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and B? To do this, one would have to predict choice despite
having a model that has never observed choice (thus, nothing
to fit). If this were possible, how well might movement kine-
matics in single stimulus trials allow one to predict subjective
value, and thus choice in decision trials?

It is possible that this approach will fail because movements
may not reflect subjective value, but rather a measure of
attention. For example, both the stimulus that promises a gain
and the stimulus that foretells a penalty are important and will
garner more attention than stimuli that promise smaller gain
and loss. In this scenario, movement kinematics will not vary
monotonically with subjective value, but rather produce a
U-shaped function, becoming large for both gains and losses.
In such a scenario, a kinematics-based model of subjective
value will fail to predict choice.

There are plausible neural mechanisms that support this
alternate hypothesis. Saccade reaction time and velocity are
partly modulated by the excitatory inputs that the superior
colliculus receives from the cortical regions which compute
subjective value: the frontal eye field (FEF) (Glaser et al. 2016;
Hanes and Schall 1996; Heitz and Schall 2012) and the lateral
intraparietal area (LIP) (Louie and Glimcher 2010; Platt and
Glimcher 1999s). LIP neurons that encode stimulus value
exhibit greater activity both when the stimulus promises a large
reward and when the stimulus promises a large penalty (Leath-
ers and Olson 2012). Some of these neurons exhibit sensitivity
to both novelty and value (Foley et al. 2014). Furthermore,
some dopamine neurons increase their activity when the stim-
ulus promises reward, whereas others increase their activity for
both punishment and reward (Matsumoto and Hikosaka 2009).
Thus, the neural activity that could modulate saccade kinemat-
ics shows positive sensitivity to gain, as well as loss. This leads
us to the question of whether saccade kinematics monotoni-
cally reflects valuation over a range that includes both losses
and gains, or is kinematics a U-shaped function of value.

Here, participants learned to associate value to 10 abstract
stimuli, each paired with a different magnitude of loss or gain.
Because the task involved learning, it induced between-partic-
ipant variability in assignment of subjective value. In decision
trials, the participants deliberated between various stimuli and
made a choice, from which we also inferred the subjective
value that they assigned to each stimulus. In probe trials, we
presented a randomly chosen stimulus and measured saccade
kinematics in response to it. We found that in probe trials,
saccade reaction time was lowest for stimuli that promised a
loss and highest for stimuli that promised a gain. Thus, sub-
jective value could be estimated from reaction time. This
kinematic based estimate correctly predicted ~60% of the
choices made in decision trials.

MATERIALS AND METHODS

Healthy participants (n = 24, 26.3 = 8.2 yr old, mean = SD, 8
women) with no known neurological disorders and normal color
vision sat in a well-lit room in front of an LED monitor (59.7 X 33.6
cm, 2560 X 1440 pixels, light gray background, frame rate 144 Hz)
placed at a distance of 35 cm. Their head was restrained using a bite
bar. They viewed visual stimuli on the screen, and we measured their
eye movements using an EyeLink 1000 (SR Research) infrared
recording system (sampling rate 1 kHz). Only the right eye was
tracked. All participants were naive to the paradigm. The experiments

VIGOR AS A REFLECTION OF SUBIJECTIVE VALUE

were approved by the Johns Hopkins University School of Medicine
Institutional Review Board, and all participants signed the written
consent form approved by the board. Participants were paid $15/hour
regardless of any behavioral outcome. One participant was excluded
from the results presented here because their performance in the task
was at chance level, suggesting that they did not learn to assign value
to the various stimuli.

Stimulus properties. We performed an experiment in which people
learned the value of 10 abstract visual stimuli (Fig. 14). Each stimulus
was a 2° X 2° colored box, designated with a + or — (Fig. 1B). Each
stimulus was randomly assigned to a point distribution, with a mean
that ranged from loss of 5 points to gain of 5 points. The points
associated with each color were selected randomly on each trial from
a beta distribution with parameters « = 3 = 2, scaled so that each
color was associated with a single mean: —5, —4, ..., +5. The plus
and minus indicator at the center of the stimulus noted the sign of the
mean of the distribution. The color-to-point relationship was selected
randomly for each participant, but remained consistent throughout the
experiment. For example, the plus yellow box in Fig. 1B was associ-
ated with a distribution with mean equal to gain of 4 points, and the
minus yellow box was associated with mean equal to loss of 4 points.
In addition to these 10 colored boxes, a black box with “0” at its center
was associated with exactly O points. Thus, the experiment design
employed abstract stimuli that the participants learned to associate
with points. We hoped that this would produce a wide diversity in
subjective values that the participants assigned to a given stimulus,
allowing us to test whether movement kinematics was a predictor of
the between participant differences in subjective value.

Decision trials. The experiment contained two types of trials,
randomly intermixed. Both types of trials (Fig. 1A) began with a
center fixation period that lasted for 1 s and ended with a beep (1
kHz).

In decision trials, the fixation point was replaced with three differ-
ent colored boxes (stimuli). Importantly, all three colored stimuli
appeared within 2° of the central location. In addition to the colored
stimuli at center, there were two dots (0.5 X 0.5°), one at +20° and
the other at —20° along the horizontal axis.

The sure bet was the colored box that appeared alone on one side
of fixation (Fig. 1A). The risky bet was the pair of boxes that appeared
together on the other side of fixation. If the participant chose the sure
bet, she would indicate that choice by making a saccade to the dot that
was on the same side as the single stimulus. She would then receive
with 100% probability the points associated with that stimulus. If the
participant chose the risky bet, she would indicate that choice by
making a saccade to the dot that was on the same side as the double
stimulus. She would receive the points associated with one of the two
stimuli (50% probability).

The participant had 5 s to indicate her choice (the sure bet or the
risky bet) by making a saccade to one of the dots. Once the saccade
concluded, the stimuli at center were erased and the trial consequences
were displayed for 1 s: the earned stimulus was displayed at the dot
location along with text that indicated the number of points acquired.
The points were drawn from the random distribution associated with
the colored box. Failure to make a choice within the time limit
resulted in loss of 10 points. The trial ended with the display of the
colored box and the amount of points gained or lost for that trial
(duration of 1 s).

In a decision trial, we randomly picked 3 stimuli from among the
11 stimuli. We presented the medium-valued stimulus as the sure bet
and the other two stimuli (one loss, and the other gain) as the risky bet.
Participants were not provided any information about the value of the
stimuli and thus had to make their decisions solely based on conse-
quences of previous trials. The side that represented the sure bet was
random and chosen with equal left-right frequency for each block.

Probe trials. Probe trials were randomly intermixed with decision
trials. In probe trials, the fixation point was removed, a single stimulus
(chosen at random from the 10 colored boxes) was displayed at center,
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Fig. 1. Estimating subjective value of abstract stimuli. A: in probe trials, a single stimulus was presented at center, and a dot was presented as saccade target
at = 20°. By making a saccade, the participants earned the points associated with that stimulus (gain or loss). In decision trials, a single stimulus representing
a sure bet and two stimuli representing a risky bet appeared at center. In addition two dots appeared at =20°. The participants made a choice by making a saccade
to one of the dots. B: the stimuli consisted of 11 boxes. The colored stimuli were associated with gain or loss (indicated with the plus or minus), each with a
distribution as shown. The black stimulus was always associated with zero points. C: we used a neural network to model the decision-making process. The input
x was an 11-element vector, with each element representing one of the stimuli x,,...,x;, starting from the most negative to the most positive, and the black box
(0 points) being the sixth element. On each trial, the input vector x was set so that one element had value of —1 for the sure stimulus, two elements had value
of +0.5 for the pair of risky stimuli, and O for the remaining elements. The weight vector u represented the subjective value of each stimulus. Variable z was
determined by Eg. I, and the output of the network was the probability (prob.) of picking the sure option. D: some of the choices made by a participant and the
output of the network. The colored dots indicate the stimuli that were presented for the risky option. For example, the red dots indicate trials in which —2 and
+5 were presented as the risky option. The x-axis is the point value of the sure option. The y-axis is the probability of picking the sure option by this participant.
The line traces connect the output of the network for each decision. For example, the green dots show the probability that the participant picked the sure option
when the risky option was +5 and —4 stimuli. The expected value of the risky option was 0.5. This participant tended to pick the sure option if that option had
a value greater than 0.5. E: there was diversity in the subjective valuation that the participants learned to assign to the stimuli. Left: subjective values that two
participants learned. Right: the distribution of the slope of the subjective versus objective values across the participants. F: subjective values across all
participants. Dashed line is identity. Error bars are SE. a.u., Arbitrary units; S02, S03, S05, individual subjects.

and a single dot appeared on the horizontal axis (at either +20° or  direction of saccades in probe trials, but rather differences in valuation

—20°). This was the instruction for the participant to make a saccade
to the dot. Once the saccade concluded, the stimulus at center was
erased and displayed at the dot location, along with text that indicated
the number of points that the participant had gained or lost for the
trial. As in the decision trials, the points were drawn from the random
distribution associated with the colored stimulus. The subject had 5 s
to complete the saccade. If no saccade was made, the subject was
penalized with —10 points.

We were concerned that the asymmetry in velocity of temporal and
nasal saccades could affect our ability to measure the relationship
between saccade velocity and subjective value. Therefore, we de-
signed our experiment so that, in probe trials, for each colored
stimulus (displayed at center) the peripheral dot was placed an equal
number of times at +20° and —20°. This ensured that any differences
in saccade velocity between stimuli were not due to differences in

of the stimulus. In addition, the 10 colored boxes were presented with
equal frequency within each block, distributed randomly in the probe
trials.

In summary, probe trials included boxes at the central location that
were associated with gain or loss. By making a saccade to a peripheral
dot, the participant earned that gain or loss. Failure to make a saccade
resulted in loss of 10 points.

Experiment design. Before the start of the experiment, the partic-
ipants were instructed that there were 10 stimuli consisting of two sets
of 5 colored boxes that represented points that could be gained or lost
on each trial. “Each color will indicate how many points you will gain
or lose. Black box will always give zero points when chosen. Boxes with
plus signs will add to your score, while boxes with minus signs will
decrease your score. For example, if orange box with plus sign indicates
gain of 10, orange box with minus sign will indicate loss of 10.”
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The experiment consisted of 11 blocks, each with 100 trials. The
first block was a training block and began with 100 points and
included only probe trials. This first block served to teach the
participants the points associated with the various stimuli. The re-
maining 10 blocks each had 40 probe trials and 60 decision trials,
distributed randomly. The total score was reset to 100 at the start of
the second block. Following completion of the second block, the final
score of the previous block was carried over as the starting score of
the next block. At the conclusion of every fourth trial, the total score
earned was displayed at center fixation.

Data analysis. Eye position data were filtered with a second-order
Savitzky-Golay filter (frame size 11, degree 3). Saccade onset and
offset were determined in real time with 20°/s threshold. We identified
valid saccades as those that occurred between stimuli with start
and end points that were within 5° of the boundaries of the start and
end images (to account for the fact that participants were not specif-
ically instructed to fixate on a precise location). For probe trials, we
excluded reaction times that were larger than 1 s.

Our goal was to test whether behavior in probe trials reflected the
subjective value that we had estimated from decision trials. Thus, we
focused on saccade kinematics in probe trials and inferred subjective
value based on choices made in decision trials. Statistical testing
relied on linear mixed-effect models. In each model, the dependent
variables were saccade peak velocity, reaction time, and amplitude.
Fixed effects were stimulus objective value and subjective value, and
random effects were individuals. Dependent variables were normal-
ized for each individual by dividing the measured value by the
within-subject mean. Statistics were performed on normalized depen-
dent variables.

Estimating subjective value of stimuli. The objective value of each
stimulus was set by the mean of the point distribution associated with
each colored stimulus (Fig. 1B). The participants formed subjective
values, and we inferred these values based on the choices that they
made in decision trials.

In a decision trial, the choice was between a sure option (a single
stimulus) and a risky option (two stimuli, 50% chance of each). To
model the choices that participants made, we designed a one-layer
perceptron network that had as its input the three stimuli that were
available on each trial. The input to the network was an 11 element
vector X, with each element representing one of the stimuli x,,...,.x;,
starting from the most negative to the most positive, and the black box
(0 points) being the sixth element. The output of the network was the
probability that the participant would pick the sure option (Fig. 1C).
To train the network, on each decision trial the input vector x was set
so that one element had value of —1 for the sure stimulus, two
elements had value of 0.5 for the pair of risky stimuli, and O for the
remaining elements. The weight vector u represented the subjective
value of each stimulus and was also an 11-element vector. A linear
combination of the available stimuli were represented with variable z:

z=u'x )

For example, if in a given trial the sure option was stimulus x,, and
the risky option was stimuli x, and x, then z = 0.5(x, + x;) — x,. In
other words, the variable z represented the difference between the
subjective values of the two options. This was then transformed via a
logistic function that produced an output y that represented the
probability of picking the sure option:

1

N 1+ exp(—z) @)

y

Our goal was to estimate the subjective value that the participant
had assigned to each stimulus, represented via the weight vector u.
We assumed that the subjective value of the zero stimulus (the sixth
element of u) was exactly zero. To find the remaining weights, we
used a binary cross-entropy loss function:
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N

1
J=——
Np=

(1"logy™ + (1 = 1*)log(1 — y™)) 3
1
In the above equation, N is the total number of decision trials (600).
Binary variable 1 represented the actual decision of the participant
on trial n: 1 = 1 for choosing the risky option, and ™ = 0 for the
sure option. To find the value of u that minimized Eq. 3, we used
stochastic gradient descent and differentiated Eg. 3 with respect to u.
We have:

dJ £ — ym
dy™ (1= y™)y® y
Ay exp(—2) @

d_z a (1 + exp(—z))2

In addition, we have dz/du = x. On each trial, we updated estimate
of u as follows:

dJ dy™

n+l) — ) _ (— 7
u u ady(”) dz

x(™ ®)

We stopped the algorithm when the norm of change of the subjec-
tive value Au was less than 10~*, which usually happened after 1,000
iterations. We used the full data set as one batch for each iteration.
The learning rate was set to 10 (as loss was divided by the number of
inputs).

Normalizing saccade velocity for changes in amplitude. In probe
trials, participants were presented with a colored stimulus at center
and a dot in the periphery. They made a saccade to the dot. We found
that the reaction time, peak velocity, and amplitude of this saccade
varied with the subjective value that the participant had assigned to
the colored stimulus: velocity and amplitude both increased with
stimulus value. Because velocity naturally increases with saccade
amplitude, we wondered whether all the velocity changes were driven
by amplitude, or whether velocity was specifically driven by subjec-
tive value over and beyond what would be expected because of
amplitude changes.

To normalize for amplitude-dependent changes in velocity, we
used a procedure described earlier (Reppert et al. 2015). For each
participant, and in all trials (probe and decision trials combined), we
measured the amplitude of each saccade along with its peak velocity.
Previous work had shown that a hyperbolic function is generally a
good fit to human saccade data (Choi et al. 2014). The resulting
hyperbolic function produced participant-specific expected saccade
velocity as a function of amplitude. In probe trials, for each saccade
we computed the ratio between the measured peak velocity and the
expected velocity. This ratio produced a within-subject measure of
amplitude-normalized peak velocity. We then looked to see whether
this amplitude-normalized velocity varied with stimulus subjective
value.

Using vigor in probe trials to predict choice in decision trials.
Once we determined reaction time, peak velocity, and saccade am-
plitude associated with a given stimulus in the probe trials, we asked
whether these variables could serve as a proxy for subjective value. To
evaluate the accuracy of such a policy we used two different ap-
proaches: a winner-take-all approach that predicted choice in the
decision trials, and a likelihood-estimate approach that predicted
probability of choice in decision trials.

In the winner-take-all approach, for each stimulus we computed the
mean saccade velocity, reaction time, and amplitude from the probe
trials. We defined subjective value of each stimulus by these kine-
matic variables. Then on each decision trial we used these kinematic
measures to predict choice. For example, for a given participant, we
assigned subjective value to the 11 stimuli based on reaction time on
their probe trials. That is, we set vector u to be equal to the mean
probe trial reaction time for the various stimuli. We these used these
values to predict choice of that participant in each decision trial: pick

J Neurophysiol » doi:10.1152/jn.00700.2019 « www.jn.org
Downloaded from journals.physiology.org/journal/jn at Univ of Colorado (198.011.030.118) on April 20, 2022.



VIGOR AS A REFLECTION OF SUBIJECTIVE VALUE

the option that has the highest subjective value. This was computed as
100% of the reaction time for the sure option stimulus, versus sum of
50% of reaction time for each of the risky option stimuli. Thus, this
model had no free parameters. Rather, it simply picked the option that
was associated with the lowest average reaction time (as measured in
probe trials).

We compared the accuracy of this kinematic-based policy with a
policy that made choices based on subjective values that were esti-
mated based on the actual decisions of each participant (the 10-
parameter model of Fig. 1C). To predict outcomes, we used the actual
options faced by each participant. We used Wilcoxon signed-rank test
to compare performance of the various policies.

In the likelihood-estimate approach, we began by setting the vector
u to be equal to the mean reaction time (or peak velocity or amplitude)
for the various stimuli in the probe trials. We then used this kinematic
based estimate of subjective value to predict the probability that the
participant would pick the sure option in a given decision trial:

1

=— 6
1 + exp(—Bz) ©)

Yy

In the above formulation, the term (3 appears because unlike Egq. 2,
z in Eq. 4 has units that are different than subjective value. We used
Eq. 3 to guide the gradient descent procedure for finding 3 for each
participant. Thus, we used Eg. 4 to predict the probability that on a
given trial the participant would pick the sure option. We then
evaluated the goodness of this policy by computing the log-likelihood.
We compared the kinematic based policy to a random policy. Log-
likelihood for the random policy was one in which the probability of
choosing the sure option was 0.5 (equivalent to having elements of u
equal to each other).

The neural network had 10 free parameters that were fit to the
actual choices that the participants made, resulting in a logistic model
that provided an upper bound on how well one could predict choices
of each participant. In contrast, the kinematic-based approach made
predictions regarding choice patterns using a model that had zero free
parameters. To provide a more fair comparison of the two models, for
the neural network, for each participant we fit the model using 90% of
the decision trials and then tested its accuracy for the remaining 10%.
We repeated this 10 times for each participant and report this cross-
validation decision accuracy.

RESULTS

In a baseline set of probe trials, the participants learned to
associate abstract stimuli (colored boxes) with a gain or loss
(Fig. 1B). In these trials, a single stimulus appeared at center,
and a dot appeared to one side. Once the saccade moved the
eyes to the dot, the value of the stimulus was revealed. In a
subsequent set of decision trials, participants were presented
with a sure option and a risky option (Fig. 1A, right column).
They expressed their choice by making a saccade to one side or
another. We asked whether we could use saccade kinematics
from the probe trials to estimate the subjective value that the
participant had assigned to each stimulus and then predict their
choices in decision trials.

Some of the choices made by a representative participant are
shown in Fig. 1D. The x-axis of this plot presents the objective
value of the sure option on various trials (mean of the point
distribution associated with that stimulus, Fig. 1B). The y-axis
of Fig. 1D presents the probability that the participant selected
the sure option. The various colored dots indicate the stimuli
that were presented for the risky option. For example, the green
dots show the probability that the participant picked the sure
option when the risky option consisted of the colors associated
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with +5 and —4 points. The expected value of the risky option
was 0.5. Indeed, this participant tended to pick the sure option
if that option had a value greater than 0.5. In another example,
the red dots show the probability that the participant picked the
sure option when the risky option was —2 and +5 points. In
this case, the risky option had an expected value of 1.5. The
participant now picked the sure option when that option had a
value that was greater than 1.5.

We used a one-layer neural network to model the choices
that each participant made in the decision trials and infer the
subjective value that they had assigned to each stimulus (Eg.
2). On each trial, given the sure and two risky stimuli, the
network predicted the probability that the participant would
pick the sure option (lines in Fig. 1D). We trained the network
with the actual choices that the participant had made. The loss
function (Eg. 3) was guaranteed to minimize the difference
between choices observed and choices predicted. After fitting
the network to the data of each participant, the weight vector u
provided the estimate of the participant’s subjective value for
each stimulus.

Examples of subjective values inferred from choices made
by two participants are illustrated in Fig. 1E, left. Participant
S03 learned a shallow function, distinguishing between posi-
tive and negative valued stimuli, but not distinguishing well
within stimuli that were positive or negative. In contrast,
participant SO5 learned a steep function that distinguished well
within negative and positive stimuli. Thus, among the partici-
pants there was diversity in the value that they assigned each
stimulus, as shown by the distribution of subjective versus
objective value slope (0.88 * 0.40, mean *= SD, Fig. 1E,
right). As we will see, this diversity played an important role
in the question of whether vigor was driven by subjective
value.

The average pattern of subjective value is presented across the
participants in Fig. 1F. We found that subjective value strongly
correlated with objective value of the stimuli (¥ = 0.72; P <
1073%). Within participant analysis of subjective value revealed a
main effect of objective value [F(1,262) = 585.7, P < 10739,
demonstrating that as the objective value of the stimuli increased,
so did the subjective value that the participants had assigned to
them.

Overall, our method for estimating subjective values cor-
rectly predicted choices that the participants made in 80.4 =+
1.5% of the trials. In comparison, when we assumed that the
objective values were known a priori, such a model correctly
predicted choices in 81.1 = 1.4% of the trials. Thus, the
participants learned the task. However, there were also differ-
ences among participants, with some learning steep value
functions, while others learning shallow functions.

Velocity increased and reaction time decreased with stimu-
lus value. In probe trials a single colored stimulus appeared at
center, indicating the value of that trial, and simultaneously a
dot appeared on the periphery, indicating the saccade target.
Presentation of the colored stimulus served as the go cue. The
dependent variables were reaction time, velocity, and ampli-
tude of the ensuing saccade. Participants had 5 s to make a
saccade to the peripheral dot and by doing so earned the loss or
gain that was associated with the stimulus. Notably, the loss
that was indicated by the negative valued stimuli was always
less than the large penalty (10 points) that would be applied if
the participants did not make the correct saccade.
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Figure 2A illustrates saccade amplitude, velocity, and reac-
tion times for one participant in probe trials for +5 and —5
stimuli. In response to the higher valued stimulus, this partic-
ipant produced a saccade that had a shorter reaction time, and
a higher peak velocity, but with little change in saccade
amplitude.

To examine these trends across the participants, we normal-
ized peak speed, reaction time, and amplitude for each indi-
vidual with respect to their own mean as measured across
probe trials (Haith et al. 2012). Data from two participants are
presented in Fig. 2B. Participant SO5 exhibited peak velocity
and reaction time that correlated strongly with stimulus objec-
tive value (velocity: r = +0.93, P < 10™% reaction time:
r=—0.96, P < 10~°). In contrast, in participant SO3 velocity
and reaction time were poorly correlated with objective value
(velocity: r = +0.39, P = 0.26; reaction time: r = —0.48, P =
0.16). In contrast, saccade amplitude did not vary significantly
with objective value in these two participants (S03, r = 0.55,
P = 0.10; S05, r = 0.62 P = 0.055).

The distribution of correlation coefficients for all partici-
pants is plotted in Fig. 2C. The correlation coefficients between
reaction time and subjective value had a mean of —0.38 =
0.076 (Wilcoxon signed-rank test, P = 2.1X10™%). With re-
spect to objective value, this distribution had a mean of
—0.42 = 0.072 (Wilcoxon signed-rank test, P = 3.2X107%.
The distribution of correlation coefficients between peak ve-
locity and subjective value had a mean of 0.29 = 0.082 (Wil-
coxon signed-rank test, P = 0.0051). With respect to objective

VIGOR AS A REFLECTION OF SUBIJECTIVE VALUE

value, this distribution had a mean of 0.28 + 0.085 (Wilcoxon
signed-rank test, P = 0.0032). The distribution of amplitude
and subjective value had a mean of 0.25 * 0.094 (Wilcoxon
signed-rank test, P = 0.0192). With respect to objective value,
this distribution had a mean of 0.23 = 0.09 (Wilcoxon signed-
rank test, P = 0.0225). Thus, these data suggested that, across
participants, kinematics in probe trials might serve as a sensi-
tive proxy for subjective value.

To examine the results together, we binned the vigor data
based on the objective value of the stimulus (10 bins, one per
stimulus, Fig. 3A) and found that saccade velocity and ampli-
tude increased with objective value of the stimulus [within-
subject effect, velocity F(1,228) = 28.6, P = 2.2X1077, am-
plitude F(1,228) = 17.97, P = 3.3%107°]. Similarly, reaction
time decreased with objective value of the stimulus [within-
subject effect, F(1,228) = 50.6, P = 1.4X10"'"]. Thus, al-
though there was diversity among the participants, saccade
kinematics in probe trials was significantly affected by objec-
tive value of the stimulus.

The reduction in reaction time despite increased saccade
amplitude is noteworthy because in horizontal saccades of 10°
or larger, reaction time tends to increase with increased am-
plitude (Reppert et al. 2018). Here, as objective value in-
creased, amplitude increased by 1.1 = 0.35%, peak velocity
increased by 3.1 = 0.97%, and reaction time declined by
7.35 = 2.1%.

We next tested the effects of subjective value on saccade
parameters. We observed that as subjective value increased,
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saccade velocity and amplitude increased [within-subject ef-
fect, velocity F(1,228) =33.6, P = 2.3X10°8, amplitude
F(1,228) =232, P =2.7X 10~%], and reaction time decreased
[within-subject effect, F(1,228) = 62.2, P = 1.3X10™ "], as
shown in the right part of Fig. 3A. To make this plot, we began
with the distribution of subjective values across all partici-
pants, and then sampled that distribution into 10 bins of equal
probability. Thus, the bins have error bars in both x- and
y-dimensions. Together, these data demonstrated that vigor in
probe trials was not a U-shaped function of stimulus value.
Rather, vigor tended to be smallest for stimuli that were
associated with loss, and largest for stimuli that were associ-
ated with gain.

Because peak velocity tends to increase with saccade am-
plitude, we wondered whether the velocity increase associated
with stimulus value was driven solely by amplitude changes, or
whether velocity increased over and beyond the expected
change with amplitude. For each participant, using data from
saccades in both probe and decision trials, we built a mathe-
matical model of the participant’s amplitude-velocity relation-
ship (Reppert et al. 2015). This model produced the expected
saccade velocity as a function of amplitude. For a given
stimulus in probe trials, we measured the resulting saccade
peak velocity and amplitude and represented velocity as a ratio
with respect to the expected velocity for that amplitude. This
produced an amplitude-normalized measure of velocity. We
then looked to see whether this amplitude-normalized measure
changed with stimulus value (Fig. 3B). In general, probe trial
saccades had velocities that were somewhat smaller than de-
cision trial saccades (thus, the values in Fig. 3B are not
centered at 1). However, amplitude-normalized velocity in-
creased with both objective and subjective value [objective

value: F(1,228) = 18.7, P = 2.31X107>, subjective value:
F(1,228) =23.7, P = 2.15X107°].

Given the between-subject diversity in the relationship be-
tween vigor and stimulus value in probe trials (Fig. 2C), we
wondered whether there was some characteristic of participants
in decision trials that dissociated their kinematic modulation in
probe trials. One clue was that some participants learned a
steep value function, while others learned a shallow function
(Fig. 1E). Indeed, we found that the slope of subjective to
objective values was modestly correlated with the slope of
saccade velocity with respect to subjective values (slope of
velocity versus subjective value compared with slope of sub-
jective value versus objective value, r = 0.49, P = 0.019).
That is, the participants whose saccade velocity was more
strongly modulated by stimulus value in probe trials tended to
have learned a steeper value function, as inferred from their
choices in decision trials.

In summary, we observed that in probe trials saccades had
reaction times that decreased with subjective value, and peak
velocities and amplitudes that increased with subjective value.
However, there was diversity in the strengths of these relation-
ships. It appeared that saccade kinematics was more strongly
modulated by stimulus value in those participants who had also
learned a steeper value function.

Between-subject differences in subjective value influence be-
tween-subject differences in modulation of saccade kinematics.
Some participants learned to assign a large subjective value to
a stimulus, while others assigned a lower value to the same
stimulus. Could this between-subject difference in valuation be
gleaned from the kinematic patterns?

To examine this question, we described our hypothesis via a
graphical model (Fig. 4A). In this model, choice depended on
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subjective value, which in turn depended (through learning) on
the objective value of the stimulus. In our null hypothesis (HO,
Fig. 4A), the objective value affected kinematics, whereas
subjective value affected choice. In our main hypothesis (HI,
Fig. 4A), objective value affected subjective value, which in
turn affected both choice and kinematics. Under HI, if a

VIGOR AS A REFLECTION OF SUBIJECTIVE VALUE

participant had learned to associate a small subjective value
with a stimulus, then their vigor would be low in response to
that stimulus. However, if that same stimulus was valued
highly by another participant, then their vigor would be high.
Thus, to test this hypothesis, we kept objective value constant
and asked whether changes in subjective value across partici-
pants modulated saccade kinematics.

To help explain how we tested this hypothesis, Fig. 4B
illustrates peak velocity in probe trials as a function of subjec-
tive value for two different stimuli. For the +5 stimulus, some
participants assigned a large value, while others assigned a
small value. Similarly, for the —5 stimulus, there was diversity
in assignment of subjective values. However, individuals that
assigned larger subjective value to a given stimulus also
appeared to move with greater velocity in response to that
stimulus (similar positive slopes of the red and blue lines in
Fig. 4B).

To test for the consistency of this relationship, for each
stimulus (constant objective value) we measured the kinematic
variable for a participant (i.e., the y-value of a point in Fig. 4B
with respect to the mean of the points with the same color), and
the subjective value that they had assigned (i.e., the x-value of
a point in Fig. 4B with respect to the mean of the points with
the same color). Thus, given a constant objective value, we
measured how the between-subject differences in subjective
value affected between-subject differences in kinematics (Fig.
4C). We found that given a constant objective value, an
increase in subjective value produced a reduction in reaction
time [F(1,228) = 8.7, P = 0.0036], and an increase in peak
velocity [F(1,228) = 8.1, P = 0.0047]. However, there was no
effect of subjective value on saccade amplitude [F(1,228) =
2.62, P = 0.11].

These results suggest that between-subject differences in
valuation of a stimulus can be partially inferred from the
between-subject differences in saccade kinematics: participants
who learned to associate a greater value to a given stimulus
also tended to exhibit a greater modulation of reaction time and
velocity (but not amplitude) in response to that stimulus.

Predicting preference from kinematics only. We next asked
how well kinematic measurements in probe trials could predict
choices that individuals made in decision trials. To predict
choice, we used only the kinematic data in probe trials. Thus,
our approach relied on an a priori model that had no free
parameters.

The kinematic measurements produced two policies: a pol-
icy that assigned subjective value based on reaction time in
probe trials, and another policy that assigned subjective value
based on peak velocity in the same trials (combining the two
policies only marginally improved performance). For example,
given the probe trial data for a participant, the reaction time
policy assigned a subjective value to the various stimuli, which
we then used to predict choice in decision trials for that
participant. This served as the winner-take-all approach. In
addition, we considered a likelihood approach in which we
predicted the probability that the participant would pick the
sure option based on their kinematic patterns in the probe trials
(this model had one free parameter).

For the winner-take-all approach (nothing to fit), we divided
the decision trials into easy and hard based on the difference in
the objective value of the sure and risky options: easy trials
were denoted by objective value difference of 1 point or more,
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and hard trials were denoted by objective value difference of
less than 1 point. We quantified accuracy of the kinematic
policies based on the number of correct predictions that the
reaction time and the velocity policies made.

To define an upper bound on prediction accuracy, we also
quantified performance of a policy that relied on the neural
network that was fit to the actual choices (termed logistic fit).
In comparison to our kinematic based model (0 or 1 free
parameter), the neural network had 10 free parameters. We
found that when the neural network was trained on all the
actual choices, the upper bound on decision accuracy was
around 80% (bars labeled “all”’; Fig. 5A). When we trained the
network on 90% of each participant’s choice data and then
predicted choices on the remaining 10%, decision accuracy of
the network dropped to around 70% (bars labeled cross vali-
dation, “cross val”; Fig. 5A).

The results of the kinematic based policy are shown in Fig.
5A. We found that for hard choices, a velocity-based policy
performed no better than chance (Fig. 5A, Wilcoxon signed-
rank test, P = 0.99). However, for the same hard choices a
reaction time policy performed significantly better than chance
(Wilcoxon signed-rank test, P = 0.0042). For the easier
choices, both the velocity based policy and the reaction time
policies performed significantly better than chance (Fig. 5A,
left subplot, velocity Wilcoxon signed-rank test P = 0.0225;
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reaction time Wilcoxon signed-rank test P = 5.5 X 10~%).
Reaction time policy produced a policy that had a decision
accuracy of roughly 60%.

In addition to predicting choice via winner take all, we also
used kinematic based estimates of subjective value to compute
the probability of choosing the sure option (Eq. 4). We esti-
mated the goodness of the vigor based predictions via log
likelihood and compared it to the likelihood from a random
policy (Fig. 5B). The value of the velocity and reaction time
policies were better than choosing randomly (Wilcoxon
signed-rank test, velocity: P = 1.22 X 10~ *; reaction time: P
=293 X 107%.

Overall, using kinematics in probe trials as a proxy for
subjective value was informative, as the results were better
than chance. Reaction time was a better predictor than velocity,
allowing one to predict with roughly 60% accuracy the choices
made by the participants. This compares with the cross-vali-
dation performance of roughly 70% accuracy when subjective
value was estimated from 90% of the actual choices and then
tested on the remaining 10%.

Kinematic patterns in decision trials. In decision trials the
participants expressed their choices with a saccade. We asked
whether vigor patterns in the decision trials carried information
about the contents of the trial.

The top plot of Fig. 6 displays time to decision (deliberation
time) as well as saccade velocity as a function of trial diffi-
culty. To quantify trial difficulty, we measured the subjective
value of the chosen option minus the subjective value of the
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Fig. 6. Behavior during decision trials. Decision time (DT) refers to time from
trial onset to the saccade onset that indicated choice. Peak velocity refers to the
velocity of the saccade that indicated choice. Top: trial difficulty was measured
for each participant via the difference between-subjective value of the chosen
option minus the value of the other option. Hard choices are those in which this
difference is less than or equal to 1. Easy choices are those in which this
difference is greater than 1. Bottom: trial value was measured for each
participant via the sum of the subjective values of the two options. When this
sum was large and positive, both options were good, predicting gain regardless
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bad, thus predicting loss. Saccade velocity that indicated choice increased with
trial value. subj., Subject; SV, subjective value.
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alternative option. For example, if the participant chose the
sure option, trial difficulty was the subjective value of the
chosen stimulus minus 0.5 times the sum of subjective values
of the two stimuli in the risky option. As this difference
became more positive, the decision became easier. Indeed,
easier decisions coincided with reduced deliberation time [la-
beled DT in Fig. 6, top, F(1,149) = 683, P = 7.2 X 10~ ',
Saccade velocity that reported the choice tended to be low in
the most difficult trials (yellow region, Fig. 6, top), possibly
indicating that reward was uncertain. This is consistent with
earlier work that reported low saccade velocity in trials with
increased reward uncertainty (Seideman et al. 2018).

The random nature of the stimuli resulted in some trials that
predicted a large loss regardless of choice and other trials that
predicted a large gain. For example, when the sure stimulus
was associated with a gain, the risky option often also included
stimuli that summed to a gain. Thus in this case both options
were associated with gain, producing a large trial value. When
we considered trial value as the sum of the subjective values
of both options, a pattern emerged: when the trial predicted
a loss (because both options were bad), reaction times
tended to be long and saccade velocities tended to be low
(Fig. 6, bottom). As trial value increased, saccade velocity
increased [F(1.275) = 20.3, P = 9.8 X 107°] while deci-
sion time decreased [F(1,275) = 133, P = 2.1 X 10~ %].
The dependence of saccade velocity on trial value was
present even after we normalized trials based on their
difficulty [effect of sum of subjective values on decision
time in easy trials: F(1,457) = 130.5, P = 9.3 X 10~ %; in
hard trials: F(1,457) = 7.56; P = 0.0062].

In summary, when the two options were both bad, forecast-
ing a loss, velocity of the saccade that reported the choice was
low. As the value of the trial improved, forecasting a gain,
saccade velocity increased. Thus, in both probe and decision
trials, saccade velocity tended to be low for trials that predicted
loss and high for stimuli that predicted gain.

DISCUSSION

The brain makes decisions based on subjective valuation of
the available options. Yet, how we value an option is a hidden
variable that cannot be measured directly. Rather, it must be
inferred from our decisions. Is there a component of behavior
other than choice that can serve as a proxy for subjective
valuation?

Here, we presented abstract visual stimuli that participants
learned to associate with gains or losses. We inferred the value
that each participant assigned to each stimulus from their
choices in decision trials. As expected, some participants
learned a steep value function that strongly differentiated the
various stimuli, whereas others learned a shallow function. In
probe trials, we presented the participants a single stimulus at
a central location, indicating the value of that trial, and asked
them to make a saccade to a peripheral target. The reaction
time, peak velocity, and amplitude of that saccade carried
information about the subjective value of the stimulus. For
example, reaction time was highest for stimuli that forecasted
loss, lowest for stimuli that predicted gain. Even after normal-
izing for amplitude, velocity varied with stimulus value. Sac-
cade kinematics were more strongly modulated in those par-
ticipants who had also learned a steeper value function.

VIGOR AS A REFLECTION OF SUBIJECTIVE VALUE

As expected, some participants valued a given stimulus
more than other participants. A critical question was whether
between-subject differences in valuation could be gleaned from
the between-subject differences in their patterns of saccade
kinematics. We found that for a given stimulus (thus a constant
objective value) there was a relationship between-subjective
value and kinematics: individuals that assigned larger subjec-
tive value to a stimulus also tended to move with greater
velocity and smaller reaction time in response to that stimulus.

We asked whether kinematic measurements in probe trials
could act as a proxy for subjective value and thus predict
choices that individuals made in decision trials. We found that
reaction time was a better estimator of subjective value than
peak velocity, allowing one to predict with roughly 60%
accuracy the decisions that were made by participants. This
compares to 70% cross-validation accuracy, as described by a
10-parameter model that was fitted to the actual choices. Thus,
kinematics in probe trials was modulated by subjective value.
Kinematics produced an a priori model (no free parameters)
that could provide moderately accurate predictions about indi-
vidual preferences.

Estimating subjective value. Estimating subjective value
usually relies on a concept called certainty equivalence (CE): if
the option is a risky one that has 50% probability of producing
one of two results, then the CE will be the mean of the
subjective values of the two results. CE could be directly
reported by the participants (Grether and Plott 1979), or via
fitting of a logistic function between the a fixed risky option
and the variable sure option, or even using a psychological
adaptive method such as PEST (parameter estimation by se-
quential testing) in which each option depends on the choice
made in the previous option (Bostic et al. 1990; Christopoulos
et al. 2009; Stauffer et al. 2014).

Here we employed a different approach: we implemented a
simple neural network, which we found to be an efficient way
to infer subjective values from the patterns of choice. Our
specific learning rule relied on a loss function that guaranteed
that the result would produce the optimum prediction of
choices made by each participant. Our approach had the
advantage that it allowed us to use a relatively small number of
decision trials (600) in which all stimuli were chosen at
random. The method produced reasonable results: subjective
valuation correlated strongly with objective value (Fig. 1F),
producing correct prediction of choice on roughly 81% of the
trials.

However, we analyzed the data based on an assumption of
stationarity of subjective values. That is, we assumed that
subjective value was constant throughout the decision trials.
We provided 100 baseline trials that provided information
about value of each stimulus to the participants before the
decision trials began, but our assumption is clearly a simplifi-
cation. Unfortunately, it is difficult to analyze the data without
the assumption of stationarity because in that case one must
assume a learning model, which introduces further unknown
parameters that require fitting to behavior. However, if such an
approach could be pursued, then one could estimate subjective
value as a function of time and look for correlations with
kinematics.

It is noteworthy that, on average, the participants placed as
much importance on the difference between gain and loss (e.g.,
subjective difference between 0 and +1) as they did on the
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exact quantity of gain or loss (e.g., subjective difference
between +1 and +5) (Fig. 1F). That is, subjective value rose
rapidly, then slowly. We think that this may be due to the fact
that the participants learned the value of the stimuli within the
positive (and negative) range, whereas they were explicitly
instructed, via the positive and negative labels inside each
stimulus, of a qualitative difference in the values of the labeled
stimuli. It seems likely that with further training the subjective
values would acquire a larger range over the domain of
objective values, perhaps resulting in greater modulation of
vigor.

Subjective value monotonically varies with saccade kinematics.
The main question that we wished to answer was whether vigor
of a movement was a monotonic function of its subjective
value across the range that spanned loss to gain. While sub-
jective value may be lower for a loss, the stimulus that predicts
a loss may gather equal or greater attention than the stimulus
that predicts gain. The neural circuits that influence saccade
vigor are affected by both subjective valuation (Platt and
Glimcher 1999) and attention (Leathers and Olson 2012),
making it unclear whether vigor would be influenced by one or
the other.

Reaction time, amplitude, and velocity of a saccade are
variables that are controlled by activity of neurons in the
superior colliculus (Dorris and Munoz 1995; Dorris et al. 1997;
Ratcliff et al. 2003; Smalianchuk et al. 2018; Sparks and Hu
2006). Collicular activity is in turn influenced by the excitatory
inputs it receives from the cerebral cortex, and the inhibitory
inputs that it receives from the basal ganglia. The cortical
inputs include projections from the frontal eye field (FEF) and
lateral intraparietal area (LIP), both of which house neurons
that tend to respond more strongly to stimuli that predict
greater reward (Glaser et al. 2016; Louie and Glimcher 2010;
Platt and Glimcher 1999). The basal ganglia projections are
from the substantia nigra reticulata (SNr), which houses inhib-
itory neurons that change their discharge in response to mag-
nitude of reward (Sato and Hikosaka 2002; Yasuda et al. 2012;
Yasuda and Hikosaka 2017). Thus, subjective valuation of a
rewarding stimulus could, in principle, be reflected in an
increase in the excitatory inputs to the colliculus from the
cortex and a decrease in the inhibitory inputs from the SNr,
resulting in a saccade that has a shorter reaction time and
greater velocity.

However, the cortical and basal ganglia inputs to the col-
liculus are also affected by attentional demands of the stimulus.
For example, firing rates of neurons in the regions that project
to the colliculus are not monotonically driven by value of the
stimulus. For example, LIP neurons that respond with greater
activity to more rewarding stimuli also respond more strongly
to stimuli that predict a stronger loss (Leathers and Olson
2012). In the basal ganglia, activity of SNr neurons is con-
trolled directly and indirectly by neurons in the striatum, which
in turn are modulated by dopamine. Dopamine regulates how
the striatal neurons respond to cortical inputs. However, while
increased dopamine release before onset of a movement tends
to invigorate that movement (Kawagoe et al. 2004), some
dopaminergic neurons show increased activity in response to a
reward predicting stimulus, while others respond with greater
activity to both reward and punishment predicting stimuli
(Matsumoto and Hikosaka 2009).
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Thus, assuming that saccade kinematics is a reflection of
excitatory cortical and inhibitory basal ganglia inputs to the
colliculus, the current neurophysiological data do not specify
whether vigor should be a monotonic function of stimulus
value, growing from loss to gain, or whether vigor should be a
U-shaped function, showing increased activity both for large
gains and large losses.

Here our results unequivocally demonstrate that saccade
amplitude, velocity, and reaction time grow monotonically
with subjective value across the range that spans from loss to
gain. It is possible that in some of the earlier studies in which
cortical and dopaminergic activity increased with punishment,
the movement that followed may have been expressed with
greater vigor (for example, increased rate of blinking).

Furthermore, we found that it was possible to infer some of
the between-subject differences in valuation from the between-
subject differences in patterns of kinematics. This is reminis-
cent of an earlier study that found a monkey that did not show
velocity and reaction time sensitivity to reward also lacked
dopaminergic sensitivity to stimuli that predicted reward
(Kawagoe et al. 2004).

Limitations. In our experiment the participants learned the
value of the stimuli through observation (probe trials) and
choice (decision trials), but we analyzed the data as if the
subjective values were constant throughout the decision trials.
A better approach would be to have a real-time estimate of
subjective values during the task. However, such an approach
would require fitting behavior to a learning model, which
introduces new parameters in the estimation problem. That
approach remains to be developed.

In probe trials, the stimulus predicted a loss or gain if the
participant performed the correct action (saccade to target).
However, if the participant performed an incorrect action (or
no action), the consequence was a large loss. Thus, in probe
trials the participant could prevent a large loss by perform-
ing the correct action but could not prevent the smaller loss
associated with the stimulus. In a different design in which
the stimulus predicts a loss, but the correct action can
prevent it, vigor of that action will likely grow with mag-
nitude of loss. That is, if the correct action can aid in
prevention of a loss, then we speculate that vigor would no
longer exhibit the pattern we found here. This conjecture
remains to be tested.

To test whether subjective value affects kinematics, we
relied on the fact that among participants, a given stimulus was
associated with a range of subjective values. This between-
subject analysis revealed that individuals who valued a stimu-
lus more tended to also exhibit greater changes in velocity and
reaction time. However, to conclusively infer a causal relation-
ship between-subjective value and a kinematic variable we
would need to test whether within participant changes in
subjective value produce changes in that variable. One way
with which subjective valuation may be increased is via ex-
penditure of effort: individuals who expend effort to acquire a
particular reward tend to increase the value that they assign that
reward. With saccades, effort expenditure can be modulated
via eccentricity (Yoon et al. 2018). Future work is needed to
explore the within-subject changes in valuation with their
vigor.
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