What Can Future Lunar Observatories Teach Us About Population III Star Formation?

Richard H. Mebane

University of California, Santa Cruz

with Steven R. Furlanetto (UCLA) and Jordan Mirocha (McGill)

The first stars formed in small dark matter halos that eventually evolved into galaxies.

 Early Pop III halos were small (10⁵ - 10⁶ M_☉) and contained pristine gas

 Pop III stars produced the metals required for more traditional star formation

 As halos grew, they became more stable to feedback and began to form galaxies

Early Pop III stars were likely very different than the stars we observe today.

- Form from pristine, metal-free gas
- Likely very massive due to less efficient molecular hydrogen cooling
- Form in "minihalos" where atomic hydrogen cooling is inefficient
- Likely only one or a few stars form at a time per halo due to extreme feedback effects

Pop III star formation generally plateaus and ends well before z~6.

The best chances for detection will come from indirect methods.

- Pop III halos too dim for direct detection
- Schauer et al. 2020 find we would need a 100m telescope in space!
- May see supernovae with Roman Space Telescope
- Possible signature of Pop III in cosmic 21-cm signal

The cosmic 21-cm signal can give us details on the first sources in the universe.

The cosmic 21-cm signal can give us details on the first sources in the universe.

The cosmic 21-cm signal can give us details on the first sources in the universe.

Pop III star formation can strongly affect the 21-cm signal.

Early formation means earlier Lyman-alpha background

 Accreting Pop III remnants could produce a strong radio background

 X-ray emission can heat the gas, lessening the strength of the signal

An excess radio background can increase the strength of the signal.

The x-ray background comes from the same sources but heats the gas.

Summary

- Pop III star formation is necessary to produce the metals required to form more traditional, metal-enriched stars.
- We will likely require indirect methods such as 21-cm observations to detect the presence of Pop III stars.
- Lyman-alpha emission from Pop-III star formation can cause an earlier absorption feature in the 21-cm global signal.
- The radio and x-ray backgrounds produced from accreting Pop III remnants can significantly affect the depth of the signal.

Extra Slides

The resulting radio background temperature from Pop III star formation can be much higher than the CMB.

$$\epsilon_{\nu}(z) \propto f_{\rm duty}(z) f_{\rm edd}(z) \rho_{\rm bh}(z)$$

The strongest signals come from models with high radio but low x-ray emission.

Pop III star formation can cause subtle changes in the shape of the 21-cm power spectrum.

