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• Transition that occurs in neutral 
hydrogen.

• The proton and electron have 
magnetic moments due to their 
spin.

• The energy difference between 
these moments being aligned 
and anti-aligned is equal to the 
energy of a photon with a rest 
wavelength (frequency) of 21cm 
(1420 MHz).
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• The multi-wavelength 
radiation emitted by 
these first luminous 
objects shifted the spin-
flip temperature of the 
intergalactic medium 
(IGM) gas.

• This changed the 
strength of the 21-cm 
line of HI (Madau et al. 
1997, Mirocha et al. 
2017) with respect to 
that of the Cosmic 
Microwave Background 
(CMB).

Image credit: J. Burns
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• Upper panel: Evolution of a Universe’s slice
from early (left) to late times (right).

• Lower panel: Standard models of the global
21-cm spectrum relative to the CMB
temperature; red models with metal-rich stars
(Pop II), black curves assume that metal-free
stars (Pop III) also occur, but only in low-mass
galaxies where atomic cooling is inefficient.
The dashed and solid curves differ in specific
emission and stellar properties (see Burns et
al. 2017 for details).

• The epochs B, C and D correspond to the
ignition of the first stars, the initial accretion of
black holes, and the onset of reionization,
respectively.

• Figure from adapted in turn from Pritchard &
Loeb (2010) using newer models from
Mirocha et al. (2017).
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• Unavoidable (beam-averaged) 
foregrounds which are > ~10%
times larger than the signal.

• Beam chromaticity mixes spatial 
and spectral structure of the 
foregrounds with that of the 
instrument.

• Also: Ionospheric effects (see 
Datta et al. 2016), RFI, radio Solar 
emissions.
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Burns et al (2017)

As part of the solution: The pipeline utilizes the differences between the signal and foregrounds 
in spatial and spectral variations as well as polarization.

BIGGEST CHALLENGES IN MEASURING THE 
GLOBAL 21-CM SIGNAL

MAY 30, 2018



• Antenna temperature simulated 
convolving beam, ! ", $ , and sky, 
%&'( ", $ , through

%) " = ∫! ", $ %&'( ", $ ,$
∫! ", $ ,$

• CST code used to model beam

• Sky maps from Guzmán et al. 
(2010) and Haslam et al. (1982)
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All-sky 408 MHz map from Haslam et al. (1982)
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• Left: The observed source distribution where the 
cross is the pointing center and the white arrow is the 
rotation direction of the antenna.

• Right: The net Q Stokes vector as measured by a 
symmetric Gaussian beam at 60 MHz.

• Case A: Four identical sources symmetric about the 
boresight resulting in a net zero polarization vector 
under rotation.

• Case B: Four sources symmetric about the boresight 
where source one is enhanced in intensity resulting in 
a non-zero net polarization vector.

• Case C: The real sky resulting in a non-zero net 
polarization vector.

• See Nhan et al. (2017) for further details.

MAY 30, 2018

EXPERIMENTAL DESIGN:
INDUCED POLARIZATION
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• Beam-weighted foreground training 
set for a single rotation angle about 
one of the 4 antenna pointing 
directions (top).

• The same training set with its mean 
subtracted (middle).

• The first 6 SVD basis functions
obtained from the training set 
(bottom).

• The different rotation angles about 
the antenna pointing direction are 
part of the same training set so that 
SVD can pick up on angle-dependent 
structure and imprint it onto the basis 
functions.
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EXPERIMENTAL DESIGN:
INCLUDING STOKES PARAMETERS INTO THE 

LIKELIHOOD FUNCTION
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• The signal training set used for 
our analysis was generated by 
running the ares code 7�105 
times within reasonable parameter 
bounds in order to fill the 
frequency band. 

• The top panel shows a thinned 
sample of that set (black curves). 
The SVD modes are ordered from 
most to least important.

• The modes are normalized so that 
they yield 1 when divided by the 
noise level, squared, and summed 
over frequency, antenna pointing, 
and rotation angles about the 
antenna pointing. 
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• Grid of values of the Deviance 
Information Criterion (DIC).

• The colors indicate the 
difference between the DIC and 
its minimal value, marked by 
the white square.

• This same process can be 
done with any information 
criteria (BIC, AIC, BPIC, etc.). 

• Although only a 12�12 grid is 
shown here, all of the 
information criteria were 
calculated over a 60�30 grid.
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Tauscher et al. (2018) to appear in ApJ
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MODEL SELECTION:
OPTIMIZING THE NUMBER OF

SIGNAL AND SYSTEMATIC MODES

Tauscher et al. (2018)
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MODEL SELECTION:
ANOTHER EXAMPLE USING BPIC

• Grid of values of the Bayesian 
Predictive Information Criterion 
(BPIC; Ando 2007).

• where y is the full data vector. 
See further definitions in 
Tauscher et al (2018).

• The colors indicate the 
difference between the BPIC 
and its minimal value, marked 
by the white square.

SVD is a reliable way of capturing the modes of variation of
a single training set, but if it is performed independently on all
components of the data, it may not yield the optimal set of basis
vectors for the present purpose, which is separating the
different components when they are combined in the same
data set and fit simultaneously. Nevertheless, in lieu of a more
sophisticated technique, we perform SVD independently on
each training set.

2.3. Model Selection

To select from the models formed by different truncations of
the SVD basis sets, we set up a framework within which we
test figures of merit, known as information criteria, based on
the competition between two terms, the goodness-of-fit term
that measures the bias in the fit to the data and the complexity
term that penalizes the number of parameters used in that fit.
We consider the following information criteria for every
truncation under consideration: the DIC (Spiegelhalter et al.
2002, 2014), the BPIC (Ando 2007), and the BIC (Schwarz
1978). For our likelihood function (Equation (4)), up to
constants independent of the parameters, these are given by

C NDIC 2 , 8aT
p

1d d= +- ( )
C C C DNBPIC 2 Tr , 8bT

p
1 1 1d d D= + +- - -( ) ( )

C N NBIC ln . 8cT
p c

1d d= +- ( )
Np is the total number of varying modes across all N sets of
basis vectors, Nc is the total number of data channels,

GSGTD = , G yd x= - , and D diag 2d= [ ( )] . Note that
while the goodness-of-fit remains the same across the
information criteria, the complexity term varies. The AIC
(Akaike 1974) and a variant of the DIC where the complexity
term is based on the variance of the log-likelihood (Gelman
et al. 2013, page 173) were also considered but since our model
is linear, they are both equivalent to the DIC in Equation 8(a).
When truncating, i.e., selecting between our nested SVD
models, we choose the model that minimizes the desired
criterion. We investigate which information criterion works
best in our analysis in Section 3.2.

3. 21 cm Global Signal Application

3.1. Simulated Data and Training Sets

To illustrate our methods, we propose a simple, simulated
experiment to measure the global 21 cm signal using dual-
polarization antennas that yield data for all four Stokes
parameters at frequencies between 40 and 120MHz. For
simplicity, we ignore all systematic effects other than beam-
weighted foreground emission, such as human generated Radio
Frequency Interference (RFI), refraction, absorption, and
emission due to Earth’s ionosphere, and receiver gain and
noise temperature variations. The experiment proposed here is
similar to a pair of antennas orbiting above the lunar farside,
where the ionospheric effects and RFI need not be addressed
(Burns et al. 2017). An instrument training set corresponding to
a realistic antenna and receiver will be included in the analyses
of Papers II and III.

The data product of our simulated experiment is a set of 96
brightness temperature spectra. The spectra correspond to four
Stokes parameters and six different rotation angles for four
different antenna pointing directions. The data vector, y,

consists of the concatenation of all of the spectra. The noise
level of the data, σ, is roughly constant across the different
Stokes parameters and is related to the total power (Stokes I)
brightness temperature, Tb, through the radiometer equation,

T tbs n n n= D D( ) ( ) , with a frequency channel width nD
of 1MHz and an integration time tD of 1000 hr (split between
the different antenna pointing directions and rotation angles
about those directions). The data are split into N=5 different
components—one for the 21 cm signal and one for the beam-
weighted foregrounds (which are correlated across boresight
angles and frequency) of each pointing. The signal is the same
across all four pointings, while the foregrounds for each
pointing only affect the data from that pointing. The expansion
matrices encode this fact.
To create the beam-weighted foreground data for each of the

four antenna pointing directions, we use the simulation
framework of Nhan et al. (2017), henceforth referred to as
N17. Each Stokes parameter, ζ, observed by the instrument is
given by an expression of the form B T dI galò Wzl , where Tgal

is the galaxy brightness temperature and dW is the differential
solid angle. As in N17, the four relevant beams at frequency ν,
polar angle θ, and azimuthal angle f are of the form
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where b , exp 22 2n q q a nµ -( ) [ ( )] and a n( ) is the angular
extent of the beam as a function of frequency. The beam’s
polarization response converts intensity anisotropy into appar-
ent polarization, while the monopole (cosmological signal)
averages to zero in the instrumental Stokes Q and U channels.
Measurement in the polarization channels therefore provides
discrimination of foreground modes from the signal. Further-
more, rotation about the boresight is used to modulate the
polarized components. N17 used this method assuming a
spectrally invariant beam, and a sky following a single power
law in frequency. Here, with the aid of training sets, we extend
the method to allow for spectrally varying beams and an
arbitrary sky model. The Galaxy map used in this paper is a
spatially dependent power-law interpolation between the maps
provided by Haslam et al. (1982) and Guzmán et al. (2011).
The beam-weighted foreground training sets are created using
125 Gaussian beams described by Equation (9) with varying
quadratic models of a n( ). Figure 1 shows the training set for
one of the four antenna pointing directions and some of the
corresponding basis functions. Although V=0 in this work
because B 0I V =l , in real 21 cm global signal experiments
with polarimetry, since we expect no circularly polarized light
to be incident on the antenna, V can contain useful information
about instrument variations.
The 21 cm global signal training set and a few of the SVD

basis functions it provides are shown in Figure 2. The training
set was created by varying the parameters of the Accelerated
Reionization Era Simulations (ares) code.12 See Mirocha
et al. (2015, 2017a, 2017b) for information on the signal
models used by ares. In this paper, we ignore the parameter

12 https://bitbucket.org/mirochaj/ares
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experiment to measure the global 21 cm signal using dual-
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parameters at frequencies between 40 and 120MHz. For
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weighted foreground emission, such as human generated Radio
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different antenna pointing directions. The data vector, y,
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level of the data, σ, is roughly constant across the different
Stokes parameters and is related to the total power (Stokes I)
brightness temperature, Tb, through the radiometer equation,
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of 1MHz and an integration time tD of 1000 hr (split between
the different antenna pointing directions and rotation angles
about those directions). The data are split into N=5 different
components—one for the 21 cm signal and one for the beam-
weighted foregrounds (which are correlated across boresight
angles and frequency) of each pointing. The signal is the same
across all four pointings, while the foregrounds for each
pointing only affect the data from that pointing. The expansion
matrices encode this fact.
To create the beam-weighted foreground data for each of the

four antenna pointing directions, we use the simulation
framework of Nhan et al. (2017), henceforth referred to as
N17. Each Stokes parameter, ζ, observed by the instrument is
given by an expression of the form B T dI galò Wzl , where Tgal

is the galaxy brightness temperature and dW is the differential
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where b , exp 22 2n q q a nµ -( ) [ ( )] and a n( ) is the angular
extent of the beam as a function of frequency. The beam’s
polarization response converts intensity anisotropy into appar-
ent polarization, while the monopole (cosmological signal)
averages to zero in the instrumental Stokes Q and U channels.
Measurement in the polarization channels therefore provides
discrimination of foreground modes from the signal. Further-
more, rotation about the boresight is used to modulate the
polarized components. N17 used this method assuming a
spectrally invariant beam, and a sky following a single power
law in frequency. Here, with the aid of training sets, we extend
the method to allow for spectrally varying beams and an
arbitrary sky model. The Galaxy map used in this paper is a
spatially dependent power-law interpolation between the maps
provided by Haslam et al. (1982) and Guzmán et al. (2011).
The beam-weighted foreground training sets are created using
125 Gaussian beams described by Equation (9) with varying
quadratic models of a n( ). Figure 1 shows the training set for
one of the four antenna pointing directions and some of the
corresponding basis functions. Although V=0 in this work
because B 0I V =l , in real 21 cm global signal experiments
with polarimetry, since we expect no circularly polarized light
to be incident on the antenna, V can contain useful information
about instrument variations.
The 21 cm global signal training set and a few of the SVD

basis functions it provides are shown in Figure 2. The training
set was created by varying the parameters of the Accelerated
Reionization Era Simulations (ares) code.12 See Mirocha
et al. (2015, 2017a, 2017b) for information on the signal
models used by ares. In this paper, we ignore the parameter

12 https://bitbucket.org/mirochaj/ares
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Signal Extraction 
optimization: The 
black line for all 
panels is the input 
21-cm signal. The 
blue bands are the 
pipeline 
reconstructions of 
the signal for a given 
number of SVD 
signal and 
systematic 
parameters/modes.
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ANOTHER EXAMPLE USING BPIC
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Signal Extraction 
optimization: The 
black line for all 
panels is the input 
21-cm signal. The 
blue bands are the 
pipeline 
reconstructions of 
the signal for a given 
number of SVD 
signal and 
systematic 
parameters/modes.
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Tauscher et al. (2018)

See the pylinex in this link: https://bitbucket.org/ktausch/pylinex
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SIGNAL EXTRACTION WITH THE CODE 
PYLINEX

Signal Estimates from linear models defined by SVD eigenmodes. The black curves show the input signals, the 
red curves the signal estimates, the dark/light red bands the posterior 68/95% confidence intervals. The input 
signals for the 4 left plots came from the ares signal training set, and the 4 on the right from the tanh model (see 
e.g. Harker et al. 2016).
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SIGNAL EXTRACTION WITH THE CODE 
PYLINEX
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Tauscher et al. (2018)

• The signal bias statistic is a measure of the 
root mean square error weighted bias of the 
signal fit:

• Estimate of the Cumulative Distribution 
Function (CDF) of the signal bias statistic from 
5000 input simulated datasets.

• A bias statistic of ε roughly corresponds to a 
bias at the εσ level. The solid black reference 
line is for the distribution which associates 1σ 
with 68% confidence and 2σ with 95%. 

• To guide the eye, the dotted black line 
indicates the 95% level.
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SIGNAL BIAS STATISTIC



• The deviance normalized by the 
degrees of freedom contains 
information about how well the training 
sets fit the data:

• Histogram of the Probability Distribution 
Function (PDF) for 5000 values of the 
normalized deviance from fits with 
different input signals, beam-weighted 
foregrounds, and noise when using the 
DIC to choose the best model.

• D should follow a distribution 
approximated by the extremely thin 
black region, which is a combination of 
chisquare distributions associated with 
the range of degrees of freedom 
chosen for the extractions.
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NORMALIZED DEVIANCE

Tauscher et al. (2018)
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Theory

• After extracting the signal in frequency space in the first step of the pipeline we need to 
transform this result into a constraint in physical parameter space.

• For this, we use a multi-dimensional interpolation using a Delaunay mesh for the change in 
parameter space and then a Markov Chain Monte Carlo search to constrain the full 
probability distribution.

(Rapetti et al. 2018, in preparation)
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SVD/MCMC DATA ANALYSIS PIPELINE
(PRELIMINARY)
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(Rapetti et al. 2018, in preparation)

• We generalize linear interpolation 
to arbitrary input and output 
dimensions.

• We use this interpolation to 
perform a least square fit (red 
line) using the training set.

• Importantly, note that having an 
starting point (green line) within 
the estimated error (blue band) 
provided by the first (very fast) 
step of the pipeline is crucial for 
the convergence of the MCMC in 
a vast parameter space where 
we do not have otherwise any 
prior information on the solution 
and its uncertainty (for the jump 
proposal).
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MULTI-DIMENSIONAL INTERPOLATION USING 
A DELAUNAY MESH (PRELIMINARY)
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• A challenge of extracting the global 21-cm signal is the large foregrounds.

• However, unlike the foregrounds, the signal is spatially uniform, has well-characterized
spectral features, and is unpolarized.

• We benefit from these differences using our novel approach for signal extraction and physical 
parameter constraints, using an SVD/MCMC pipeline.

• We obtain a highly significant improvement by using a pioneering induced polarization 
technique.

• Our pipeline can be used for both lunar orbit and lunar surface low-frequency radio 
telescopes.

• We are also working on running our pipeline on current/ongoing ground based data from 
EDGES and CTP using our Pattern Recognition/Information Criteria/MCMC to detect the 
expected absorption features in the Global 21-cm spectrum.
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CONCLUSIONS

URSI AT-RASC | Gran Canaria


