



# Spectral Index of the Diffuse Radio Background between 50-100 MHz

Tom Mozdzen, *Nivedita Mahesh*<sup>\*</sup>, Raul Monsalve, Alan Rogers, Judd Bowman

MNRAS, Issue-4, Vol-483, March 2019

National Radio Science Meeting 2019





# **EDGES** Instrument

- **Location:** Murchison Radio Observatory (-26.7° deg)
- **System:** Blade Dipole zenith pointing, Ground plane and temperature controlled receiver
- **Band:** Two low-band instruments (50-100MHz)
- Beamwidth: @ 75MHz -
  - 71.6 deg (parallel)
  - 108 deg (perp)









### **Data Collection**

#### • Data collection:

- o 244 nights/348 days
- Different configurations
- Only night time data (minimize solar and ionospheric disturbances)

| Instrument configuration | Year | Day Numbers | Span |
|--------------------------|------|-------------|------|
| Lowband 1 NS             | 2016 | 258 to 366  | 109  |
| Lowband 1 NS             | 2017 | 001 to 017  | 17   |
| Lowband 2 NS             | 2017 | 082 to 142  | 61   |
| Lowband 2 EW             | 2017 | 155 to 171  | 17   |
| Lowband 2 EW, no shield  | 2017 | 181 to 239  | 58   |





### **Data Processing**

- Absolute Calibration:
  - Coefficients estimated from the standard loads in the lab & S11 from the field
- Beam correction:
  - Scaled Haslam sky map
  - Simulated beam solution
    - FEKO model
    - Dielectric Ground
- **Time Binning:** Raw resolution  $\Rightarrow$  20 min averages
- **Freq Binning:** Raw resolution  $\Rightarrow$  400KHz (125 bins)





## **Data Processing- Modelling**

- The calibrated data is modelled as a power law. (primary components are synchrotron and free-free emission )
- Worked with two 2 and 3 term fits

$$T_{\rm ant} = T_{75} \left(\frac{\nu}{\nu_{75}}\right)^\beta + T_{\rm CMB}, \label{eq:Tant}$$

$$T_{\rm ant} = T_{75} \left(\frac{\nu}{\nu_{75}}\right)^{\beta + \gamma \ln(\frac{\nu}{\nu_{75}})} + T_{\rm CMB},$$

- $\beta$  Spectra index
- Y Curvature to the spectral index
- T<sub>CMB</sub> Background temperature (2.723K)





### **Results - Two parameter Fitting**

The fitting was carried out for every LST bin each day.

- Estimated Parameters:  $\beta \& T_{75}$
- Range: -2.46 to -2.60
- Galaxy up: -2.46
- Galaxy down: -2.58
- Stable over time







### **Results - Two parameter Fitting**

### Averaging the results:

- Averaged the parameters over days
- Added uncertainty
- Results from all configurations are within the systematic uncertainties







# Results - 2 & 3 parameter fitting









-

### **Results - Accounting for Uncertainties**

| 1. | Gro  | Ground Loss:                                                            |                                                            |  |  |  |  |
|----|------|-------------------------------------------------------------------------|------------------------------------------------------------|--|--|--|--|
|    | a.   | Finite ground plane ⇒ part of the beam is going to look into the ground |                                                            |  |  |  |  |
|    | b.   | Taking the higher limit of 0.5 per constant loss sin                    | $\Rightarrow \Delta_{\beta} = 0.002$                       |  |  |  |  |
| 2. | An   | tenna & Balun Loss:                                                     |                                                            |  |  |  |  |
|    | a.   | Balun that connects                                                     | $\Rightarrow \Delta_{\beta} = 0.005$                       |  |  |  |  |
|    | b.   | Antenna panel resistances                                               | $\Rightarrow \Delta_{\beta} = 0.001$                       |  |  |  |  |
| 3. | Be   | am Chromaticity:                                                        |                                                            |  |  |  |  |
| a. | Calc | ulated beta from two models finite ground and infinite                  | $\Rightarrow \Delta_a = 0.004$                             |  |  |  |  |
| b. | Effe | ct of uncertainty in the spatial structure of foreground at             | $\beta$ $\beta$                                            |  |  |  |  |
|    | 75M  | Hz                                                                      | $\Rightarrow \Delta_{\beta} = 0.01$                        |  |  |  |  |
|    | i.   | Used different scaling indices: -2.65 to -2.45                          |                                                            |  |  |  |  |
|    |      |                                                                         | :                                                          |  |  |  |  |
|    |      |                                                                         | $\Rightarrow \sigma_{\rm g} = 0.006 + \text{data scatter}$ |  |  |  |  |
|    |      | Adding all the errors in quadrature:                                    | ۲                                                          |  |  |  |  |





### **Results - Ionosphere Impact**



 Correcting for the ionosphere made *β* more negative for both 2 & 3 parameter fits

| Fits      | Points      | No<br>Ionosphere | With<br>Ionosphere |
|-----------|-------------|------------------|--------------------|
| 2 - Param | Galaxy Down | -2.58            | -2.594             |
| 3 - param | Galaxy Down | -2.60            | -2.61              |









### Results - Standard sky models

- **Comparison:** Spectral index results to simulated observations.
  - **Use:** EDGES beam (NS orientation) and sky maps:
    - de Oliveira-Costa GSM
    - Improved GSM
    - GMOSS

$$T_{\text{ant}}^{'}(\nu) = \int_{\Omega} T_{\text{sky-model}}^{'}(\nu, \Omega) B(\nu_{75}, \Omega) d\Omega + T_{\text{CMB}},$$

■ Haslam 408MHz & Guzman 45MHz









### Discussions

- Used EDGES lowband data (50 100 MHz)
- Instrument calibration, including corrections for ground loss, antenna losses, and beam chromaticity - Results stable over time.
- Derived the  $\beta$ 
  - two-parameter and
  - three-parameter equations
- Three-parameter β are more negative than two-parameter by approximately 0.02.
- Looked at effects of ionosphere
- Compared results to values from sky models.

### FUTURE WORK:

• Combine Lowband, Midband & Highband data and estimate β





# EXTRA SLIDES





### **Results - Extended Model**

• To investigate the possibility of bias added two more terms:

$$T_{\text{ant}} = T_{75} \left(\frac{\nu}{\nu_{75}}\right)^{\beta + \gamma \ln(\frac{\nu}{\nu_{75}}) + a_4 [\ln(\frac{\nu}{\nu_{75}})]^2 + a_5 [\ln(\frac{\nu}{\nu_{75}})]^3} + T_{\text{CMB}},$$

• Minimal change when compared to 3 term fits



| Terms | RMS(K) |  |  |
|-------|--------|--|--|
| 2     | 2.7    |  |  |
| 3     | 0.85   |  |  |
| 5     | 0.66   |  |  |

















|                 | 10 - C     |                            |         |                              | 0          |         |
|-----------------|------------|----------------------------|---------|------------------------------|------------|---------|
| Parameter       | LST<br>(h) | No ionospheric corrections |         | With ionospheric corrections |            | Exp-log |
|                 |            | (fitting                   | terms)  | (fitting terms)              |            | (terms) |
|                 |            | 2                          | 3       | 2                            | 3          | 5       |
| T <sub>75</sub> | 0          | 1806                       | 1807    | 1815                         | 1816       | 1807    |
| (K)             | 6          | 1673                       | 1673    | 1681                         | 1682       | 1673    |
|                 | 12         | 2566                       | 2568    | 2579                         | 2580       | 2568    |
|                 | 18         | 4749                       | 4752    | 4773                         | 4776       | 4751    |
| β               | 0          | -2.576                     | -2.592  | -2.590                       | -2.603     | -2.591  |
|                 | 6          | -2.571                     | -2.585  | -2.585                       | -2.595     | -2.585  |
|                 | 12         | -2.539                     | -2.568  | -2.553                       | -2.578     | -2.565  |
|                 | 18         | -2.463                     | -2.489  | -2.477                       | -2.499     | -2.489  |
| Y               | 0          | -                          | -0.055  | -                            | -0.042     | -0.068  |
|                 | 6          | -                          | -0.047  | -                            | -0.034     | -0.041  |
|                 | 12         | -                          | -0.099  | -                            | -0.086     | -0.090  |
|                 | 18         | -                          | -0.089  | -                            | -0.076     | -0.079  |
| a4              | 0          | _                          | _       |                              | _          | -0.048  |
|                 | 6          |                            | <u></u> |                              | <u> 11</u> | -0.004  |
|                 | 12         | -                          | -       |                              | -          | -0.053  |
|                 | 18         |                            | -       |                              | -          | 0.018   |
| a5              | 0          | -                          | -       | —                            |            | -0.022  |
|                 | 6          | -                          | _       | -                            |            | -0.031  |
|                 | 12         | -                          | —       | _                            |            | -0.158  |
|                 | 18         | -                          | _       | _                            | <u> </u>   | -0.025  |
| RMS             | 0          | 3.7                        | 1.2     | 2.9                          | 1.2        | 1.0     |
| Resid.          | 6          | 2.9                        | 0.9     | 2.2                          | 0.9        | 0.9     |
| (K)             | 12         | 9.0                        | 1.6     | 7.9                          | 1.6        | 1.4     |
|                 | 18         | 15                         | 3.6     | 13                           | 3.6        | 2.8     |











- β, Τ<sub>75</sub> & Υ
- Stable over time (within each instrument)
- Averaged the parameters over days
- Added uncertainty
- More between 8 -12h mainly because less data there.







- β, Τ<sub>75</sub> & Υ
- Stable over time (within each instrument)
- Averaged the parameters over days
- Added uncertainty
- More between 8 -12h mainly because less data there.







- β, Τ<sub>75</sub> & Υ
- Stable over time (within each instrument)
- Averaged the parameters over days
- Added uncertainty
- More between 8 -12h mainly because less data there.







- β, Τ<sub>75</sub> & Υ
- Stable over time (within each instrument)
- Averaged the parameters over days
- Added uncertainty
- More between 8 -12h mainly because less data there.







### **Results - Two parameter Fitting**

The fitting was carried out for every LST bin each day.

- Estimated Parameters:  $\beta \& T_{75}$
- Range: 1000K to 5000K
- Galaxy up: 4770K
- Galaxy down:1800K
- Stable over time (within each instrument)







### **Results - Two parameter Fitting**

The fitting was carried out for every time bin each day.

- Estimated Parameters:  $\beta \& T_{75}$
- Range: 2K to 15K
- Galaxy up: 17K
- Galaxy down:3K
- Stable over time (within each instrument)







## Introduction

#### **Motivation**

Spectral index useful for:

- To carry out basic ISM science
- To 21cm community for foreground removal

### **Our Approach**

- EDGES can help estimate the diffuse radio structure
- It has a wide beam that averages the sky flux
- We have already estimated and reported the spectral index for 100-200 MHz





## Results - Standard sky models

- The **GH model**:
  - For 2-param: good agreement at low LST values, around GC spectral index becomes more negative by up to 0.04
  - For 3-param shows more consistent agreement with measurements of spectral index across all LST values, differing by only up to ±0.02 across all LST.
- The **improved GSM** model more negative than the measured values
- The **GMOSS model** yields more positive predictions of the spectral index. (up to +0.10).
- We also include the spectral index as reported in the high-band paper (Mozdzen et al. 2017).
- The low-band spectral index has become less negative by approximately 0.02–0.04 as compared to the high-band results.

