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EDGES

* Measurement: Sky-averaged radio
spectrum below 200 MHz

* Requirement: Knowable instrument
response at 0.01%

* Instrument design: Widefield, wideband
radio spectrometer

 Compact antenna and embedded receiver

« Temperature controlled receiver with
internal references to provide a time-
invariant response through Dicke-switch
scheme

* Instrument strategy now followed by other
lobal 21cm experiments Well-matched to
unar surface or orbital missions

* Almost continuous remote operation since
2015 with three variations of antennas




Preparing core techniques

Absolute calibration and antenna modeling



Calibration

laboratory to solve for absolute temperature
scale NoTee
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* LUNAR and DARE: Integrating instrumental effects
into analysis (e.g. Tauscher et al. 2018)

* NESS: Developing joint Bayesian estimation of
calibration and science parameters (see Steven
Murray’s talk)

Monsalve et al. 2017, Rogers & Bowman 2012



Modeling Chromatic
Antenna Beams

* Antennas are chromatic — their properties depend on frequency.
This couples angular sky structure into observed spectrum

* Cannot presently measure antenna beam with sufficient
accuracy

* Need extremely accurate electromagnetic antenna models to
capture these effects

* Developed modeling techniques for EDGES and verified across
three numerical solvers. Validated by comparing EDGES data
and simulated observations

* Results: Uncertainty from sky model and antenna environment
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Example of Antenna
Environment

* Many factors have significant impact
* Multipath/reflections
* Soil properties
* Ambient weather conditions

* Unmodelled imperfections in ground
plane

Residuals to 5-term foreground model
15-min bins across 24 hr
Residuals increase toward GHA=0 hr (Galactic Center transit)

Studying structure seen at ~22 hr, which could correspond to
scattering by object tens of meters from antenna

A. Rogers and R. Monsalve
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Preparing knowledge of the sky

Three examples



Flux calibration of sky maps

* Accurate sky maps are critical for including
antenna chromatic effects in analyses

* Existing maps are calibrated to only about
10% accuracy.

* Using EDGES observations to improve flux
calibration of Guzman (45 MHz) and

Landecker & Wielebinski (150 MHz) sky
maps.

Correction factors

Scale: +7.6% +/- 3.4% (20)
Zero-level: -160K +/- 78K (20)

Monsalve et al. (submitted)
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High resolution sky maps

* OVRO-LWA has created high-
resolution sky maps for northern
hemisphere for 35-80 MHz
(Eastwood et al. 2018)

* EDGES team pilot program using
Murchison Widefield Array (MWA) in
Australia to apFIy same imaging
technique to fill in southern sky

Three-color composite image of the long
wavelength radio sky. The 36.5, 52.2, and 73.2
MHz data are represented as red, green, and
blue respectively. https.//lambda.gsfc.nasa.gov

Eastwood et al. 2018



New |limits on Radio Recombination Lines

* Radio recombination lines (RRLs) are
possible foregrounds for 21cm power
spectra during Dark Ages and Cosmic
Dawn

* Easily detected on Galactic plane, but
poorly constrained off plane

* Using EDGES observations to place
limits on these lines across the sky

Beam average across 0-4 hr LST

Carbon: >33 mK
Hydrogen: 6-24 mK

David Lewis et al. (in prep, applying to grad schools!)
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Applying lessons learned

Lunar surface and EDGES-3



Lunar Surface

* To minimize susceptibility to
soil and nearby objects,
need either:

* Very uniform soil properties
to 10s of meters cFepth

* To use a large metal ground
plane (ideally 100 meter
diameter)

* Does a lunar surface dipole " Se— mutiayer]
need a metal ground plane? B

* Modeling effects of regolith
to assess feasibility
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N. Mahesh



EDGES-3
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* Apply lessons learned to create next-
generation instrument

e 50-meter (or no) ground plane to improve
antenna beam effects

* Integrate receiver into antenna to minimize
electrical path length

* Integrate calibration standards into system

* Combine calibration and science inference
for full error propagation

* Open source software and public data

e Pathfinder for flight hardware
* Replacing mechanical switches with solid state
* Integrating into compact printed circuit board
* Reducing size for better thermal management

T. Samson and A. Rogers EDGES-3 test PCB



Summary

* EDGES has paved the way for lunar 21cm global missions
* Established fundamental instrument design and calibration techniques
* Developed accurate instrument and antenna modeling
* |dentified need for knowledge of environment and sky

* Preparing next-generation EDGES-3 and lunar instrument designs
based on this validated foundation

* NASA supported collaboration has provided critical advances for
EDGES and global 21cm experiments, including core calibration
techniques and sophisticated analysis strategies
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