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JOINT CONSTRAINTS ON PHYSICAL PARAMETERS

* In Paper | (Tauscher, Rapetti, Burns & Switzer 2018), we
presented a new method based on
and to obtain
on the global 21-cm signal.

 Converting spectral constraints into
Is presented in Paper Il
(Rapetti, Tauscher, Mirocha & Burns, to be submitted).

* This allows us to analytically find a of the

signal and systematics (currently, foreground) to be readily
used as starting point (mean and covariance) for our
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OVERLAP BETWEEN DATA COMPONENTS

Separation without correlation Separation with correlation  Schematic representation:
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] ] ’ 4 systematic modes increases the
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14- 147 Data (red vector), signal (blue)
121 12 and systematics (green) basis
> >~y vectors vectors on the origin.
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8- 8 The blue and green intervals are
] the 10 uncertainties on the
61 61 signal and foreground.
44 41
5] 5! The signal uncertainty is
] computed by projecting the
01 O noise ellipse parallel to the
0 2 4 6 8 10 12 0 2 4 6 8 10 12 foreground basis vector onto the
X Rapetti et al. (Paper II) X line defined by the signal basis

Left: Minimum uncertainties for each component (noise level) by using  vector and vice versa.
orthogonal modes. Right: Larger uncertainties due to overlap.
September 24, 2019 NESS SC meeting, CU Boulder 3



LINEAR SIGNAL EXTRACTION WITH PYLINEX

Tauscheretal. 2018) |nside training set ~ Outside training set
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Signal Linear Estimates from SVD eigenmodes. Black curves: Input signals. Red curves: Signal estimates.

Red bands: posterior 68/95% confidence intervals. Left: 4 input signals from the ares set. Right: 4 from the
tanh set (e.g. Harker et al. 2016).

Find the code pylinex in this link: https://bitbucket.org/ktausch/pylinex
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https://bitbucket.org/ktausch/pylinex

CHALLENGES OF GLOBAL 21-CM OBSERVATIONS
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MOTIVATION FOR MODELS:

OBSERVATIONAL MEASUREMENTS

Age of the Universe (Myr)
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EDGES
measured a 78
MHz absorption
profile at a
frequency
consistent with
those expected
for a Cosmic
Dawn signal in
the global 21-cm
spectrum using a
flattened
Gaussian model.




GLOBAL 21-CM MODELS: FLATTENED GAUSSIAN

Rapetti et al. (Paper 1)

Flattened Gaussian model
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The flattened Gaussian model depends on Sample of 200 curves from the training set
parameters: A (amplitude), v, (central freq.), for the flattened Gaussian model.
w (FWHM), and t (flattening). The first three A uniform (-1, -0.1) K
shift and scale the signal while T (at constant Vo uniform (60, 90) MHz
w) determines how long around v, the signal w uniform (1, 30) MHz
stays near its maximum depth. T exponential (1)
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MCMC CONDITIONAL FIT OF
21-CM SIGNAL MODEL OVER SVD FOREGROUND TERMS

e Our conditional MCMC over the
at each step, while exploring
only the physical parameter space.

* This calculation is and allows
for the natural separation of
and nonlinear signal
parameters to be MCMC sampled.

* This properly accounts for between the
(beam-weighted foreground, receiver, etc.).

in physics/astrophysics/cosmology could
benefit from our current set of novel solutions.
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FLATTENED GAUSSIAN MODEL:
LINEAR AND MCMC SPECTRAL CONSTRAINTS

Rapetti et al. (Paperll)  Flattened Gaussian model constraints
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Pipeline spectral constraints
for five random flattened
Gaussian cases
successfully recovered:

Blue bands: 95% confidence
intervals from the linear fit,
with SVD signal and
foreground modes.

Red bands: 95% confidence
intervals from the MCMC fit,
with the full nonlinear signal
model and SVD foreground

modes.

Note that for the linear fit,
the 95% confidence
intervals correspond to
8.750.




FLATTENED GAUSSIAN MODEL:
FULL MCMC PARAMETER CONSTRAINTS

Rapetti et al. (Paper II)
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1D (gray) and 2D (68/95%) MCMC posterior parameter constraints. The red, dashed lines mark the input
parameters. The left (right) plot corresponds to case 2 (4) before. The red contours represent 95% errors
for statistical noise alone. In case 4, systematics clearly play a larger role than in case 2.
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MOTIVATION FOR MODELS:
HYDROGEN COSMOLOGY THEORY

» dT, is a combination of
temperatures: Ts spin,
T}, kinetic, T, Lyman-a,
T, background (CMB).
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TS - TY

Z
80 30 20 15 12 10 8 7

e « B: First stars Ly-a

= emission couples back

g‘j _1505_ ,:\ ’/'Popll E Ts Tk_

2 : kY o g - C: Heating sources
=200 bopin U=+ ; including initial black
—250E_L . l N T S I S i hole accretion drive Ty,

20 40 60 80 100120140160180 T
MHz) P
Burns et al. (2017) v (MHz

o D: Relonization removes
signal (xy; — 0).
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GLOBAL 21-CM MODELS: TURNING POINT

Turning point model
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Black line: typical model with movable red dots defining a spline interpolation, for which 6T, and its
derivative are also fixed to 0 at v=0.
Broadly speaking, A represents Dark Ages, B Cosmic Dawn, C-D the epoch of heating & D-E the

epoch of reionization.

The red filled regions around A-D show the allowed positions of the points to build the training set (200
samples, right panel). The red horizontal line with vertical bars on its ends marks the same for E.
Adjacent frequencies are forced to be at least 10 MHz apart.
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TURNING POINT MODEL:
LINEAR AND MCMC SPECTRAL CONSTRAINTS

Turning point model #1
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Pipeline spectral
constraints for four
random cases
successfully
recovered:

Blue bands: 95%
confidence intervals
from the linear fit, with
SVD signal and
foreground modes.

Red bands: 95%
confidence intervals
from the MCMC fit,
with the full nonlinear
sighal model and SVD
foreground modes.

For the linear fit, the
95% intervals
correspond to 2.50.
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TURNING POINT MODEL:
FULL MCMC PARAMETER CONSTRAINTS

Rapetti et al. (Paper II) :
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1D (gray) and 2D (68/95%)
MCMC posterior parameter
constraints.

The red, dashed lines mark the
input parameters.

The red ellipses represent 95%
confidence contours when only
the statistical noise (Fisher-
matrix estimated) obscures the
signal.

All intervals assume 800 hours
of integration.

Note e.g. that the temperature
of turning point B, allowed to
only vary from -5 to 0 mK, is
not constrained within the prior,
and the temperature C is well
constrained.
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NUMBER OF MARGINALIZED FOREGROUND PARAMETERS

TURNING POINT MODEL:
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- 95% constraints on A-D if

marginalizing over 10 (red),
& 40 (blue)

terms in the MCMC fit.

- The dashed lines indicate
the input parameters.

- 10 terms are not sufficient
to explain the foreground (in
the linear fit, 24 were
chosen), so the signal is
biased with spuriously tight
constraints.

- For , the signal is
recovered with realistic
errors.

- For 40 terms, there is no
qualitative change thanks to
the use of foreground priors.
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TURNING POINT MODEL:
INCREASING THE INTEGRATION TIME

Rapetti et al. (Paper II) s
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- Left: 10 noise levels for the factor of 5 increases of integration times from our reference
of 800 hours. The red rectangles indicate the allowed values for turning points A (Dark
Ages) and C (Cosmic Dawn) and the black stars the input values.

- Right : Full uncertainties in frequency space for four different integration times with the

same random seed for noise generation.
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TURNING POINT MODEL:
INCREASING THE INTEGRATION TIME
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SUMMARY

We employ a linear, fast, analytic methodology to separate the global 21-cm
signal from systematics, with which it can have large overlaps, to estimate the
starting point of a full MCMC search of any selected physical signal model.

We utilize the linear SVD foreground terms to properly and efficiently (in terms of
convergence) account for this modeling by marginalizing over these generally
large number of parameters at each step of our MCMC signal calculation.

We test our novel pipeline on two physically motivated signal models, flattened
Gaussian (observationally based) and turning point (theoretical), and
successfully recover the input parameters for multiple random cases.

EDGES, CTP, DAPPER, FARSIDE, etc. measurements should benefit from this
statistically rigorous, robust pipeline which is able to extract the 21-cm signal
while modeling the systematics using detailed training sets from theory,
simulations and observations.
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