Characterizing the Radio Quiet Region Behind the Lunar Farside for Low Radio Frequency Experiments

Neil Bassett
University of Colorado Boulder
Center for Astrophysics and Space Astronomy

In collaboration with:

David Rapetti (CU Boulder/NASA Ames), Jack O. Burns (CU Boulder), Keith Tauscher (CU Boulder), and Robert MacDowall (NASA Goddard)

University of Colorado Boulder

Motivation

Farside Array for Radio Science Investigations of the Dark ages and Exoplanets (FARSIDE)

- 200 kHz 40 MHz
- Interferometric array of 128 antennas directly on lunar surface
- 21-cm power spectrum, direct imaging of exoplanet magnetospheres

Dark Ages Polarimeter PathfindER (DAPPER)

- 17 107 MHz
- Single Antenna in 50x125 km orbit of the Moon
- 21-cm global signal measurement

Ionospheric effects

 Right: Ionospheric attenuation as a function of frequency for four different Total Electron Content (TEC) values

Observations below ~30 MHz must be performed above Earth's ionosphere to avoid corruption of 21-cm spectrum

Earth-based Radio Frequency Interference (RFI)

Earth-based Radio Frequency Interference (RFI)

Even above ionosphere, terrestrial communications may interfere with low frequency measurements

Observations must be performed in a radio quiet environment where Earth-based RFI is mitigated

Lunar Radio Environment Geometry

Knife Edge Approximation

Knife Edge Approximation

Pluchino, Antonietti, & Maccone 2007

Diffraction around straight edge is analytically solvable, first by Somerfeld in 1896

More accurate treatment requires non-analytic methods, i.e. computer simulations

Finite Difference Time Domain (FDTD) Method

$$\frac{\partial E_x}{\partial t} = -\frac{1}{\epsilon_0} \frac{\partial B_y}{\partial z} \longrightarrow$$

$$\frac{E_x^{n+1/2}(k) - E_x^{n-1/2}(k)}{\Delta t} = -\frac{1}{\mu_0} \frac{B_y^n(k+1/2) - B_y^n(k-1/2)}{\Delta z}$$

$$\frac{\partial B_y}{\partial t} = -\frac{1}{\mu_0} \frac{\partial E_x}{\partial z}$$

$$\frac{\partial B_y}{\partial t} = -\frac{1}{\mu_0} \frac{\partial E_x}{\partial z} \qquad \frac{B_y^{n+1}(k+1/2) - B_y^{n}(k+1/2)}{\Delta t} = -\frac{1}{\mu_0} \frac{E_x^{n+1/2}(k+1) - E_x^{n+1/2}(k)}{\Delta z}$$

2-dimensional Lunar Simulations

Simulations performed using MEEP for Python (Oskooi et al. 2010)

RFI Attenuation

Science observations are taken in region where RFI is suppressed by at least 80 dB to prevent contamination

Lunar Topography

Data from Lunar Orbiter Laser Altimeter (LOLA) instrument on Lunar Reconnaissance Orbiter

http://pds-geosciences.wustl.edu/lro/lro-l-lola-3-rdr-v1/lrolol 1xxx/DATA/lola gdr/cylindrical/img/ldem 16.img

Lunar Topography

Lunar topography plays only a small part, but tends to increase attenuation of RFI behind farside, especially above the surface

Lunar Density Profiles

Constant average density profile provides lower limit on size of quiet region

Possible Surface Locations for Radio Experiments

Crater	Latitude	Longitude	RFI (100 kHz)
Schrodinger	75.0° S	132.4° E	-41 dB
Tsiolkovsky	20.4° S	129.1° E	-125 dB
Daedalus	5.9° S	179.4° E	-199 dB

Conclusions

- In order to extract 21-cm spectrum below 30 MHz, observations must be performed in a radio quiet environment above the Earth's ionosphere
- The Moon blocks terrestrial radio signals, providing a <u>unique radio quiet</u> <u>zone</u> behind the lunar farside
- Electromagnetic FDTD simulations show that the suppression of RFI on the farside is sufficient (≥ 80 dB) to perform cosmological 21-cm observations both on the surface and in lunar orbit
- The topography and density profile of the Moon do not significantly affect the size of the radio quiet zone
- At frequencies above 10 MHz, nearly all of the farside, including the South Pole Aitken Basin, are shielded from terrestrial RFI at the 80 dB level

Extra Slides

