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Planetary magnetospheres are complex, dynamic systems.

And they are embedded in helio/asterospheres, adding another layer of complexity!
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Here, Jupiter’s volcanic moon lo makes things extra messy.


https://adsabs.harvard.edu/abs/2004jpsm.book..593K/

It will be challenging to understand exo-magnetospheres in detail.
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“First principles” theory will be important, but 10
empirical characterization will be essential.
The underlying dynamo process is 1010
notoriously difficult to analyze; astrophysical
examples span a huge parameter space = H
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What other methods could we use to 10°
remote-sense these structures?
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http://dx.doi.org/10.1017/S1743921311017753

| believe that radiation belts will yield powerful diagnostics.

AKA “Van Allen belts” — the populations of

high-energy particles trapped in Solar
System magnetospheres.

In situ measurements in the Solar System
anchor a detailed theory of radiation belt

dynamics.

Dynamics dominated by two orthogonal
diffusion processes operating on three
action-angle coordinates:

« Radial diffusion (1D)
» Energy/pitch-angle diffusion (2D)

The particles can be probed remotely
through their synchrotron emission.
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https://dx.doi.org/10.1038/nphys703

The “ultra-cool dwarfs” are perfect test cases for this approach.

The “UCDs" are stars and brown dwarfs cooler than

~2700 K.

They can sustain magnetospheres that are essentially
planetary in nature (e.g. Hallinan+ 2007, Schrijver 2009).
-
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ne non-burst emission of the best-studied example,
LTT 33370 B (M7), is strongly reminiscent of Jupiter's.
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https://dx.doi.org/10.1086/519790
https://dx.doi.org/10.1088/0004-637X/699/2/L148
https://dx.doi.org/10.1088/0004-637X/799/2/192
https://dx.doi.org/10.1029/97JA00311

To match theory and data, new calculations are needed.
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Radiation belt electron populations are highly
anisotropic, a case rarely handled by existing
synchrotron codes or approximations.

| The fully generic polarized radiative transfer
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We can choose the linear polarization basis such that there are just eight unique

coefficients. But they're hard to compute!
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Radiation belt electron populations are highly
anisotropic, a case rarely handled by existing
synchrotron codes or approximations.

The fully generic polarized radiative transfer
equation is:
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I've developed a nhew synchrotron code.

Rimphony derives from Symphony
(Pandya+ 2016) but adds:

* Anisotropic particle distributions.

» Faraday conversion terms — all
eight coefficients!
(Heyvaerts+ 2013)

* A neural network approximator
for speed =

* Interface with grtrans
(Dexter 2016) RT integrator.

» Redesigned, modular
implementation of core algorithms
in the Rust language.

https://github.com/pkgw/rimphony

Normalized Stokes I emission coefficient
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PKGW+ in prep.


https://dx.doi.org/10.3847/0004-637X/822/1/34
https://dx.doi.org/10.1093/mnras/stt135
https://dx.doi.org/10.1093/mnras/stw1526
https://github.com/pkgw/rimphony

Indeed, “pancake” distributions are needed to match the data.

Isotropic pitch-angle distributions can't reproduce the observed variability amplitude.
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https://dx.doi.org/10.1088/0004-637X/799/2/192

Substantial cold plasma is heeded to erase linear polarization.

Without its Faraday rotation, expect substantial linear polarization at high frequencies.

Fractional polarization (%)

Faraday conversion may explain increasing circular polarization in optically thin regime, but
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Numerical models can tie the data to basic physical quantities.

As of now: magnetic moment, angle between field and rotation axis, etc.
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With stochastic differential equation diffusion model: spectrum of magnetosphere MHD
waves, presence of moons (?! — Santos-Costa & Bolton 2008)


https://arxiv.org/abs/1703.06192
https://dx.doi.org/10.1016/j.pss.2007.09.008

Modeling at lower frequencies is challenging.
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Jupiter's radiation-belt spectrum has a broad peak s
at 100-500 MHz =
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Refractive indices of X and O modes diverge —
modes proBagate separately — Stokes RT
formalism breaks down!

Ca

Start having to worry about modeling
gyroresonance layers, plasma emission.

flux density (Jy)
J

.. ot to mention the challenges that arise in low-
frequency radio astronomy in general.

II IlI[

0.1

0.5 1
frequency (GHz)

5

De Pater+ 2003


https://dx.doi.org/10.1016/S0019-1035(03)00067-8

Detecting exoplanetary radiation belts is likely to be even harder.

Pros of ECMI (inexhaustive):

* Intensity!

* Dia noses characteristics
of physically small regions

Pros of radiation-belt
synchrotron:

e Persistence

» Diagnoses overall
characteristics of
magnetosphere

* Diagnoses system in more-
or-less steady state
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https://dx.doi.org/10.1016/j.pss.2006.05.045

Here’s a summary.

» rimphony delivers synchrotron coefficients for fully-polarized RT with unprecedentedly
flexible particle distributions.

* NLTT 33370 B probably has a Jovian-type magnetosphere with a magnetodisk, a
scattered electron population, and substantial quantities of cold plasma.

 Future work will connect theory and data self-consistently through detailed particle
diffusion models.

. Characterizing the radiation belts of space-discovered exoplanets can provide insight
not available from auroral observations ...

» ... but it will be extremely challenging.

Thanks for your attention!

Peter K. G. Williams « @pkgw ¢ https://newton.cx/~peter/
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