Global 21-cm Data Analysis Pipeline for Hydrogen Cosmology using Lunar-based Observations

David Rapetti1,2, Keith Tauscher1, Jordan Mirocha3, Jack O. Burns1, Eric Switzer4, Steven Furlanetto3

1University of Colorado, Boulder, 2NASA Ames Research Center, 3University of California, Los Angeles, 4NASA Goddard Space Flight Center

Introduction/Outline
As part of the SSERVI Network for Exploration and Space Science (NESS) team, we are developing a data analysis pipeline for concepts of missions to observe neutral hydrogen’s cosmological 21-cm signal from radio quiet environments in lunar orbit at low frequencies (\sim10-200 MHz; \sim10 Myr-1 Gyr).

We parametrize signal and systematics with two separate sets of modes derived from training sets through Singular Value Decomposition (SVD).

Our pipeline incorporates all Stokes parameters consistently in the likelihood. The polarization induced by rotation about the anisotropic foreground helps significantly in separating this from the isotropic, unpolarized signal.

Signal Bias Statistic
Estimate of the cumulative Distribution Function (CDF) of a measure of the root mean square error weighted bias of the signal fits from 5000 input simulated datasets.

Normalized deviance
The deviance normalized by the degrees of freedom contains information about how well the training sets fit the data. Histogram of the probability distribution function (PDF) for 5000 values.

Interpolation
Generalized linear interpolation to arbitrary input or output grid points. We use this interpolation to perform a least square fit (red line) using the training set. Having a good MCMC starting point (green line) within the estimated error (blue band) provided by pylinex is crucial for convergence in a vast parameter space where we do not have otherwise any prior information on the solution and its uncertainty.

Extracted Global 21-cm Signals using Pylinex
Signal estimates from SVD eigenmodes. Black curves: input signals; red curves: estimates; dark/light red bands: 68/95% confidence intervals. The 4 left input signals are from the ares code, and the 4 right from the tanh model - See Tauscher et al. (2018) and the pylinex code: https://bitbucket.org/ktausch/pylinex

SVD/MCMC data analysis pipeline (preliminary)
After extracting the signal in frequency space in the first step of the pipeline we transform this result into a constraint in physical parameter space. For this, we use a multi-dimensional interpolation using a Delaunay mesh and then a Markov Chain Monte Carlo (MCMC) search to constrain the full probability distribution.

Acknowledgments
DR is supported by a NASA Postdoctoral Program Senior Fellowship at the NASA Ames Research Center, administered by the Universities Space Research Association under contract with NASA. This work was directly supported by the NASA Solar System Exploration Research Virtual Institute cooperative agreement 80ARDC017M0006.