

SSERVI NESS Site Visit

FARSIDE: A Low Frequency Radio Array on the Lunar Far Side

Gregg Hallinan E-mail: *gh@astro.caltech.edu*

Collaboration

PI: Jack Burns (University of Colorado Boulder); co-PI: Gregg Hallinan (Caltech) Robert MacDowall (NASA Goddard) Judd Bowman (ASU, Justin Kasper (University of Michigan), Richard Bradley (NRAO), David Rapetti (University of Colorado Boulder), Alex Hegedus, U. of Michigan, Jonathon Kocz, Jonathan Varghese, Zhongwen Zhan (Caltech), Wenbo Wu (Caltech), James T. Keane (JPL/Caltech), Jonathan Pober (Brown University), Steven Furlanetto (UCLA)

Lawrence Teitelbaum, Jim Lux, Andres Romero-Wolf, Tzu-Ching Chang, Marin Anderson, Issa Nesnas, Mark Panning, Andrew Klesh, Alex Austin, Patrick McGarey, Adarsh Rajguru, Matthew Bezkrovny, Varhaz Jamnejad, Eric Sunada, Jeff Booth

BLUE ORIGIN

Steve Squyres, Alex Miller and the Blue Origin Team

Chuck Carter, KISS/Caltech

Magnetospheres and Space Environments of Habitable Planets

Simulation: Marcelo Alvarez

The Dark Ages

and Cosmic Dawn

Investigation	Goals	Objectives	Scientific Measurement Requirements: Physical Parameters	Scientific Measurement Requirements: Observables	Instrument Functional Requirements	Instrument Predicted Performance	Mission Functional Requirements Common to all Investigations	Functional Requirement Specific to Each Investigation
Exoplanets and Space Weather	 NASA Science Plan 2014 Discover and study planets around other stars, and explore whether they could harbor life. New Worlds, New Horizons (2010) De cadal Survey) Do habitable worlds exist around other stars, and can we identify the telltale signs of life on an exoplanet? Discovery area: Identification and characterization of nearby habitable exoplanets. Exoplanet Science Strategy (National Academies of Sciences 2018) Goal 2: to learn enough about the properties of exoplanets to identify potentially habitable environments and their frequency, and connect these environments to the planetary systems in which they reside. The presence and strength of a global-scale magnetic field is a key ingredient for planetary habitability. 	E1: Determine the prevalence and strength of large-scale magnetic fields on rocky planets orbiting M dwarfs and assess the role of planetary magnetospheres in the retention and composition of planetary atmosheres and planetary habitabity.	Planetary magnetic field strength (proportional to frequency). Local stellar wind velocity. Planetary rotation period and assessment of the presence of a convective interior for a sample of rocky planets orbiting M dwarfs out to 10 pc.	Planetary radio flux: < 250 μJy (in the 150 kHz-250 kHz band). Frequency range: 150 kHz–1 MHz band. Polarization (IQUV stokes parameters)	Noise Equivalent Flux (for 60 second integration): 40 mJy @ 200 kHz \ 0.5 Jy @ 10 MHz Pointing Resolution (FWHM): 10 deg @ 200 kHz \ 10 arcmin @ 10 MHz Spectral Resolution: < 25 kHz Temporal Resolution: < 60 seconds Minimum Frequency: < 150 kHz Maxmimum Frequency: > 20 MHz Number of Frequency Channels in band: > 1000 Polarization: Full Stokes radio telescope or array on lunar farside with < 5% uncertainty Sky Coverage: > 5,000 sq. degrees Any other driving requirements with sidelobes? UV coverage? Confusion?	Noise Equivalent Flux: 40 mJy @ 200 kHz \ 0.5 Jy @ 10 MHz Pointing Resolution (FWHM): 10 deg @ 200 kHz \ 10 arcmin @ 10 MHz Spectral Resolution: 25 kHz Temporal Resolution: 60 seconds Minimum Frequency: 100 kHz Maxmimum Frequency: 40 MHz Number of Frequency Channels in band: 1400 Polarization: Full Stokes radio telescope or array on lunar farside (to avoid ionosphere and RFI), operational from 300 kHz to 10 MHz 15% uncertainty	Investigation Jy @ Location: Latitude and longitudes within 65 degrees of the anti-Earth point (required to suppress RFI from Earth by -80dB). Observation time: > 1000 hours Hz Hz MHz Investigation io Investigation io Investigation io Investigation	
		 E2: Determine whether the largest stellar flares are accompanied by comparably large CMEs that can escape the corona of the star to impact the space environment of orbiting exoplanets. E3: Determine the space weather environment of rocky planets orbiting M dwarfs during extreme space weather events and assess whether such events play a decisive role in atmospheric retention and planetary habitability. E4: Determine the impact of extreme space weather events on exoplanets orbiting Solar type (FGK) stars and assess whether such events play a decisive role in atmospheric retention and planetary habitability. 	Stellar radio bursts from particles accelerated in magnetic fields that vary with frequency due to their local plasma environment.	Radio burst dynamic spectrum: sensitivity 40 mJy @ 200 kHz \ 0.5 Jy @ 10 MHz over 60 seconds. Frequency range: 150 kHz–35 MHz band.	Noise Equivalent Flux (for 60 second integration): 40 mJy @ 200 kHz \ 0.5 Jy @ 10 MHz Pointing Resolution (FWHM): 10 deg @ 200 kHz \ 10 arcmin @ 10 MHz Spectral Resolution: < 25 kHz Temporal Resolution: < 60 seconds Minimum Frequency: <= 100 kHz Maxmimum Frequency: > 35 MHz Number of Frequency Channels in band: > 1000 Sky Coverage: > 5,000 sq. degrees	Sky Coverage: 10,000 sq. degrees		
Cosmology	"Explore how (the Universe) began and evolved" NASA Science Plan (2014) "What is the nature of dark matter?" Astro2010 "Resolve the structure present during the dark ages and the reionization epoch" NASA Astrophysics Roadmap	C1: Determine if excess cooling beyond adiabatic expansion in standard cosmology and exotic physics (e.g., baryon-dark matter interactions) are present in the Dark Ages with > 5σ confidence.	Redshift-dependent mean brightness temperature variation of the cosmic radio background at the level of -100 mK due to the spin-flip transition of neutral hydrogen. Redshift range approx. (50 < z < 130)	Brightness temperature: a ~40 mK absorption feature between 11-28 MHz against the cosmic radio background, globally averaged over > 10 deg^2. Frequency range approx. 11-28 MHz (corresponding to 50 < z < 130).	Noise Equivalent Brightness Temperature Sensitivity: < 20 mK Antenna Beam Size: field-of-view > 10 deg^2 (non-driving) Antenna Beam Pattern Knowledge: To a level of < 50 dB.	Noise Equivalent Brightness Temperature Sensitivity: 15 mK Antenna Beam Size: field-of-view > 10,000 deg^2 Antenna Beam Pattern Knowledge: 50 dB		Observation time: > 5000 hours

Science Traceability Matrix

1.1

From the Probe Study Report: https://arxiv.org/abs/1911.08649

Low Frequency Radio Emission

Credit: Chuck Carter & Caltech/KISS

Type II radio bursts traces density at CME shock

Auroral radio emission measures magnetic fields

Credit: Chuck Carter and Caltech/KISS

Do M dwarfs produce super-CMEs?

Can the magnetospheres of orbiting exoplanets support an atmosphere and biosphere

Type II Radio Bursts

Plasma radiation: traces density

The Need for a Low Frequencies

Adapted from Aarnio et al. 2012

No direct evidence of CMEs on any star other than the Sun to date

Magnetic field configuration may be play an important role (Alvarado-Gómez et al. 2018)

The Need for Low Frequencies

Electron cyclotron maser emission

Frequency (MHz) = $B_{Gauss} \times 2.8$

The Need for a Paradigm Shift...

pan·op·tic /paˈnäptik/)

adjective

showing or seeing the whole at one view.

"a panoptic aerial view"

Earth's AKR is Highly Variable

Requirements

Need many km² of collecting area...

in space...

that can monitor 1000s of stellar systems simultaneously

EASY!

What kind of Antenna?

The Lunar Farside

Credit: Andres Romero-Wolf

- Lunar highlands regolith is thick, has low conductivity, and varies slowly with depth
- No ground screen required

Simulations of the Radio Environment of the Moon

Bassett, Burns, et al. 2020, Advances in Space Research

Two-dimensional numerical electrodynamics simulations show that the relative intensity of terrestrial radio waves incident on the Moon is highly attenuated behind the farside.

The "radio quiet" region at 100 kHz (solid) and 10 MHz (dashed) defined by \geq 80 dB attenuation plotted over a map of the lunar surface.

Optimal Placement for Detecting Exoplanets

High School Senior Jonathan Varghese

FARSIDE Timeline to Date

- Nov 2018: Directed probe study commenced JPL selected as NASA Center
- Mar 2019: Overall architecture selected [Team X]
- Apr 2019: Follow up Rover, Base Station and Instrument studies [Team X]
- July 2019: Astro2020 APC White paper [https://arxiv.org/abs/1907.05407]
- Nov 2019: Final Probe Study Report submitted [https://arxiv.org/abs/1911.08649]
- April 2020: Commencement of JPL / Blue Origin Partnership
- Aug 2020: Planetary Science Decadal Review White Paper

Heritage from SunRISE and OVRO-LWA

FARSIDE Initial Configuration

video credit: M. Walker, J. Burns, University of Colorado Boulder

Lander/Rover Configuration Overview

Illustration: P. McGarey, JPL

FARSIDE Mission Architecture

Frequencies: 100 kHz to 40 MHz

Tether/Antenna Response (Nominal)

8.9 km arm length

4 spiral configuration (4 operational)

Frequency	Beam Width, arcsec		
100 kHz	55,255.2		
10 MHz	552.552		
40 MHz	138.138		
80 MHz	69.069		

Point Spread Function

MF4_Blob_4.002MHz.truth.psf-roster

36^m

J2000 Right Ascension

1.3^h48^m

12^m

nom

0.9

0.6 0.5

0.4

-0.1

See talk by Alex Hegedus

RMS of Azimuthally Averaged PSF

Data Products

Data products are identical to OVRO-LWA, but 100x lower in frequency

Frequency range: 0 – 40 MHz (1400 channels) Integration time: 60 s All visibilities: 65 GB/day All-sky imaging every 60 seconds (Stokes I and V) Deep all-sky imaging every lunar day (no confusion noise!)

Credit: Marin Anderson and the OVRO-LWA team

Median Exoplanet Radio Emission

Adapted from Vidotto et al. 2019

CME-driven Exoplanet Radio Emission

Adapted from Vidotto et al. 2019

Comparative Planetology

Additional Science

- First constraints on Dark Ages 21-cm power spectrum (ruling out exotic models)
- Heliophysics
- Monitoring of auroral processes and lightning at Jupiter, Saturn, Uranus and Neptune
- Searches for unknown large magnetized bodies in our solar system (e.g. Planet 9)
- Triggered spectroscopy of exoplanets experiencing geomagnetic storms
- Tomography of the ISM
- Lunar Seismology
- SETI
- Serendipitous!

Lunar Seismology with Distributed Acoustic Sensing (DAS)

Credit: Joel Caswell for Caltech

- i) What is the mantle structure and seismic activity at the far side
- ii) Is there a lunar liquid core

Summary

- FARSIDE is proposed to consist of 128 dipole antennas on the lunar far side
- NASA-funded study to define architecture and feasibility
- Recent collaboration between JPL and Blue Origin has greatly improved the design
- FARSIDE will measure the magnetospheres of the nearest candidate habitable planets
- FARSIDE will detect the signature of the Dark Ages
- FARSIDE will characterize far side moonquakes and the size and properties of the lunar core
- FARSIDE will study solar CMEs and planetary aurorae and lightning