DESIGN OPTIMIZATION FOR INTERFEROMETRIC SPACE-BASED 21-cm POWER SPECTRUM MEASUREMENTS

Jonathan Pober
Brown University

AAS 232, Denver, CO
June 6, 2018

Photo Credit: Peter Wheeler, ICRAR
The Dark Ages Signal

- Low frequencies require space-based observatory

- Compared with EoR/CD redshifts:
 - Signal is ~ 10 times fainter (in mK) than EoR/CD
 - Foregrounds ~3 orders of magnitude brighter
 - Noise ~3 orders of magnitude higher
Ground Based Experiments

- Numerous experiments have pursued a detection of the EoR and (more recently) post-EoR 21 cm signal for nearly a decade

- Need to compare performance with prediction, translate lessons to space-based trade studies
Lessons from the ground (1)

- Foregrounds are not uniformly distributed across the power spectrum domain
- Potential for “foreground avoidance” – just use modes unaffected by instrumental contamination

Barry et al. (2016)
The Wedge Paradigm at Other Redshifts

- Wedge slope is a function of redshift:
 \[k_{\parallel,\text{hor}} = \frac{2\pi |b|}{Y \frac{c}{\nu}} = \left(\frac{1}{\nu} \frac{X}{Y} \right) k_{\perp} \]
 - \(X \) converts from radians (primary beam) to Mpc
 - \(Y \) converts from Hz (bandwidth) to Mpc
 - Depend on on angular diameter distance, Hubble constant

- Wedge slope is 3.9 at \(z = 9.5 \), but 11 at \(z = 50 \)!

Foreground avoidance is a losing battle at high \(z \). Sensitivity will depend on how well foreground subtraction works!
Lessons from the ground (2)

- Potential gains from “non-traditional” interferometry
 - Delay/delay rate filters (Parsons and Backer 2009)
 - Redundant arrays (Parsons et al. 2012a)
 - Fringe-rate filtering (Parsons et al. 2016)
PAPER-64 Revisions
PAPER-64 Revisions

PRELIMINARY

\[\Delta^2 (\text{mK})^2 \]

- Dillon, 2014
- Dillon, 2015
- Patil, 2017
- Paciga, 2013
- Beardsley, 2016
- Ali, 2015
- Kolopanis et al

Fiducial 21cmFAST model
What happened…?

Empirical Covariance Matrices

- Frequency-frequency covariance matrix calculated from time average of data
- Need lots of time samples for empirical covariance to converge to true covariance

Fringe Rate Filter

- Sinc-like time average of data, characteristic width of ~ 1 hour
- Reduces the number of independent time samples to increase sensitivity

Cheng et al. (in prep.)
• Open source, massively parallelized visibility simulator
• All-sky “brute force” evaluation of the interferometer measurement equation
• Use for end-to-end testing of full analysis pipelines
 • Power spectrum is our metric for trade studies!
pyuvsim

- Will support non-terrestrial observers
 - No assumptions about horizons, sidereal rates, etc.

- Use to explore:
 - Observing strategies
 - Antenna placement and construction tolerances
 - Sensitivity gains from advanced analysis techniques
pyuvsim Team

James Aguirre (UPenn)
Adam Beardsley (ASU)
Bryna Hazelton (UW)
Danny Jacobs (ASU)
Matthew Kolopanis (ASU)
Adam Lanman (Brown)
Zac Martinot (UPenn)
Jonathan Pober (Brown)

Thanks!