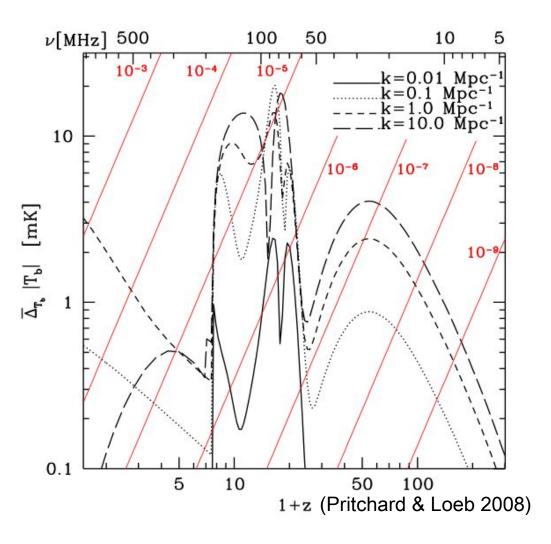
DESIGN OPTIMIZATION FOR INTERFEROMETRIC SPACE-BASED 21-CM POWER SPECTRUM MEASUREMENTS

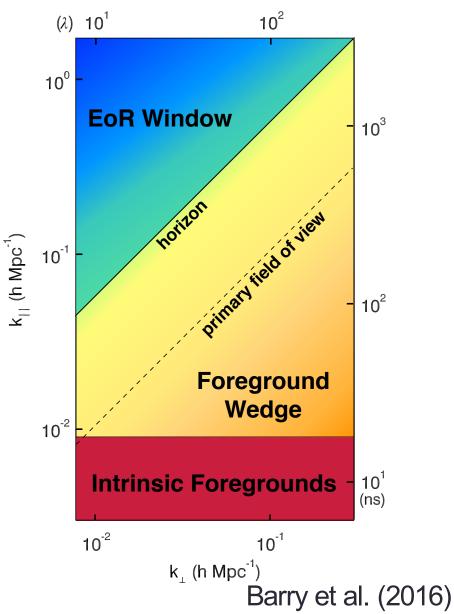

Jonathan Pober Brown University

AAS 232, Denver, CO June 6, 2018

Photo Credit: Peter Wheeler, ICRAR

The Dark Ages Signal

- Low frequencies require space-based observatory
- Compared with EoR/CD redshifts:
 - Signal is ~ 10 times fainter (in mK) than EoR/CD
 - Foregrounds ~3 orders of magnitude brighter
 - Noise ~3 orders of magnitude higher


Ground Based Experiments

- Numerous experiments have pursued a detection of the EoR and (more recently) post-EoR 21 cm signal for nearly a decade
- Need to compare performance with prediction, translate lessons to space-based trade studies

Lessons from the ground (1)

- Foregrounds are not uniformly distributed across the power spectrum domain
- Potential for "foreground avoidance" – just use modes unaffected by instrumental contamination

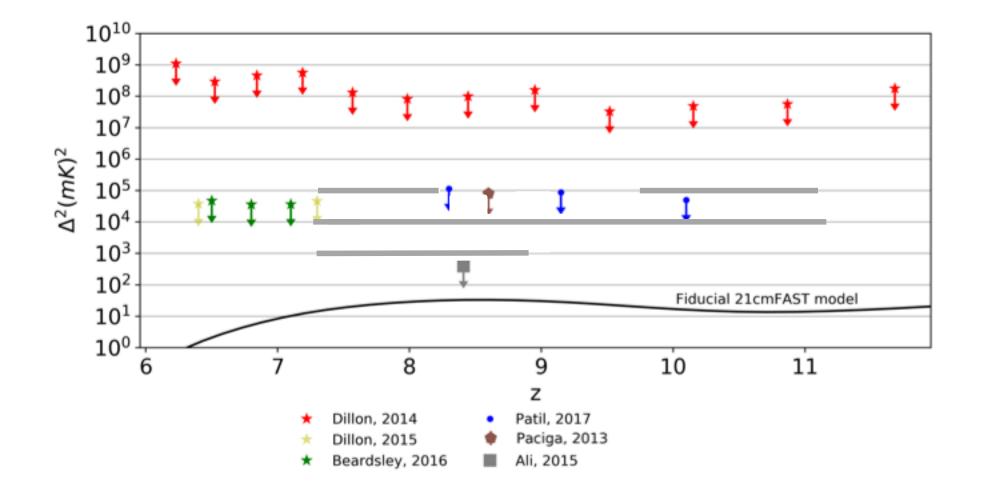
The Wedge Paradigm at Other Redshifts

• Wedge slope is a function of *redshift*:

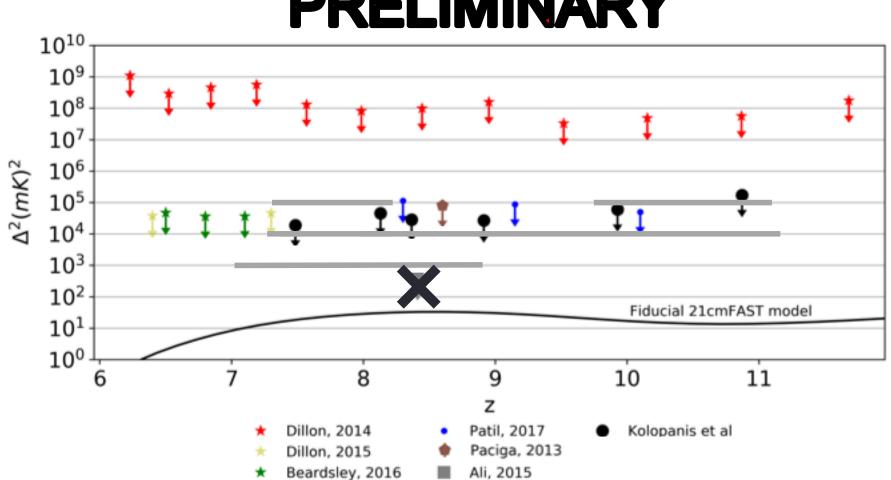
$$k_{\parallel,\text{hor}} = \frac{2\pi}{Y} \frac{|\boldsymbol{b}|}{c} = \left(\frac{1}{\nu} \frac{X}{Y}\right) k_{\perp}$$

- X converts from radians (primary beam) to Mpc
- Y converts from Hz (bandwidth) to Mpc
- Depend on on angular diameter distance, Hubble constant

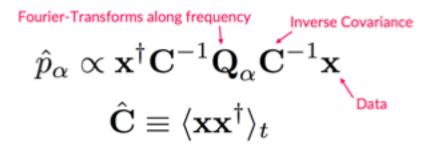
• Wedge slope is 3.9 at z = 9.5, but 11 at z = 50!


Foreground avoidance is a losing battle at high z. Sensitivity will depend on how well foreground subtraction works!

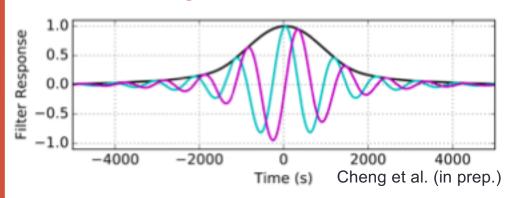
Lessons from the ground (2)


- Potential gains from "non-traditional" interferometry
 - Delay/delay rate filters (Parsons and Backer 2009)
 - Redundant arrays (Parsons et al. 2012a)
 - Fringe-rate filtering (Parsons et al. 2016)

PAPER-64 Revisions


PAPER-64 Revisions

PRELIMINARY

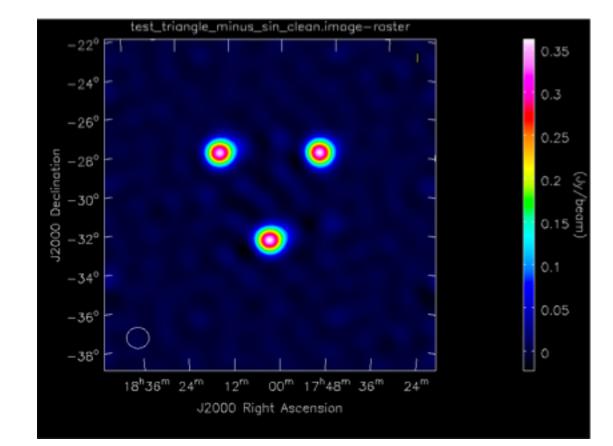

What happened...?

Empirical Covariance Matrices

- Frequency-frequency covariance matrix calculated from time average of data
- Need lots of time samples for empirical covariance to converge to true covariance

Fringe Rate Filter

- Sinc-like time average of data, characteristic width of ~ 1 hour
- Reduces the number of independent time samples to increase sensitivity


pyuvsim

🖫 HERA-Team /	pyuvsim	⊙ Watch ▼	28 ★ Sta	r 1	Fork 0
♦ Code ① Issues 13 ⑦ Pull requests 2					
Branch: master 👻	pyuvsim / pyuvsim /	Create new file	Upload files	Find file	History
aelanman <u>A three baseline test file and visibility calculation unit test</u>				81adb9f 4 c	days ago
🖬 data	A three baseline test file and visibility calculation unit test			4 d	ays ago
tests	A three baseline test file and visibility calculation unit test			4 d	ays ago
□initpy	deleted .data import ininit file		21 B	12 d	ays ago
uvsim.py	fix errors in calling UVBeam.interp		27.07 KB	10 d	ays ago

- Open source, massively parallelized visibility simulator
- All-sky "brute force" evaluation of the interferometer measurement equation
- Use for end-to-end testing of full analysis pipelines
 - Power spectrum is our metric for trade studies!

pyuvsim

- Will support nonterrestrial observers
 - No assumptions about horizons, sidereal rates, etc.
- Use to explore:
 - Observing strategies
 - Antenna placement and construction tolerances
 - Sensitivity gains from advanced analysis techniques

pyuvsim Team

James Aguirre (UPenn) Adam Beardsley (ASU) Bryna Hazelton (UW) Danny Jacobs (ASU) Matthew Kolopanis (ASU) Adam Lanman (Brown) Zac Martinot (UPenn) Jonathan Pober (Brown)

Thanks!